地球科学进展 ›› 2024, Vol. 39 ›› Issue (5): 504 -518. doi: 10.11867/j.issn.1001-8166.2024.038

全新世:人类世的历史背景 上一篇    下一篇

定量转换函数在人类世湖泊水环境变化研究中的应用
孙信尧 1( ), 张科 2, 林琪 2, 沈吉 1( )   
  1. 1.南京大学 地理与海洋科学学院,江苏 南京 210023
    2.中国科学院南京地理与湖泊研究所,湖泊与流域水安全重点实验室,江苏 南京 210008
  • 收稿日期:2023-12-13 修回日期:2024-04-24 出版日期:2024-05-10
  • 通讯作者: 沈吉 E-mail:geosxy@163.com;jishen@nju.edu.cn
  • 基金资助:
    国家自然科学基金项目(42230507)

Application of Quantitative Transfer Functions to the Study of Anthropocene Lake Aquatic Environmental Change

Xinyao SUN 1( ), Ke ZHANG 2, Qi LIN 2, Ji SHEN 1( )   

  1. 1.School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
    2.Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
  • Received:2023-12-13 Revised:2024-04-24 Online:2024-05-10 Published:2024-06-03
  • Contact: Ji SHEN E-mail:geosxy@163.com;jishen@nju.edu.cn
  • About author:SUN Xinyao, Master student, research areas include transfer functions for lake aquatic environments. E-mail: geosxy@163.com
  • Supported by:
    the National Natural Science Foundation of China(42230507)

近现代(1950年)以来,全球湖泊系统普遍面临水生态环境挑战,利用转换函数可定量重建湖泊水环境自然基线和演化历史,评估人类活动的影响程度并为生态修复提供合理目标。从转换函数构建及应用的基本流程入手,围绕pH值、总磷、溶氧量、透明度、水位、盐度和温度这几种水环境参数,综合梳理了生物—湖泊水环境定量转换函数在人类世湖泊流域中的典型应用案例,从不同角度考察了湖泊自然水生态环境受人类扰动而发生改变的速率、幅度以及演化过程与机制。最后,讨论了定量转换函数方法目前存在的不足,并从新载体开发和多指标体系构建、大样本训练集和机器学习、加强生物指标的现代生态学研究以及转换函数与生态系统模型的结合4个方面,针对性地提出几点展望,以进一步提升转换函数性能,并扩大其应用范围,为后续研究提供参考。

Global lake systems have been facing ubiquitous aquatic environmental challenges since 1950. The baseline and changing history of lake aquatic environments can be reconstructed by quantitative transfer functions, which aids in the assessment of the degree of human impact on lake ecosystems and in setting practical targets for ecological restoration. The basic processes of developing and applying quantitative transfer functions are first introduced. Then, typical case studies from various lake catchments are comprehensively summarized to elaborate on the application of quantitative transfer functions based on sedimentary subfossils to reconstruct lake aquatic environmental parameters. These parameters include water pH, total phosphorus, dissolved oxygen, transparency, water level, salinity, and temperature. The rate and magnitude of deviation from natural baselines due to anthropogenic disturbances, changing trajectories, and underlying mechanisms in typical lake environments in the Anthropocene were examined from multiple perspectives. Finally, constraints and prospects for lake transfer functions are discussed from the following aspects: developing new indicators and a multi-proxy approach, improving training sets with larger sample sizes and machine learning, improving modern ecological studies of biological indicators, and combining transfer functions with ecosystem modeling to further improve the quality of transfer functions and enlarge application fields to provide scientific references and guidance for future research.

中图分类号: 

图1 定量转换函数构建及应用的基本流程
Fig. 1 Basic processes of developing and applying quantitative transfer functions
表1 用于定量转换函数构建和应用的软件平台和 R语言程序包
Table 1 Software platforms and R packages used in quantitative transfer functions development and application
图2 人类世全球湖泊水环境转换函数定量重建研究点位分布图(各样点具体信息见表2
Fig. 2 Location map of global study sites of applying transfer functions to quantitatively reconstructing lake aquatic environmental changes in the Anthropocenedetailed information of each site is in Table 2
表2 人类世全球湖泊水环境转换函数定量重建研究信息汇总
Table 2 Summary of global studies on applying transfer functions to quantitatively reconstructing lake aquatic environmental changes in the Anthropocene
序号 训练集范围 转换函数类型 样本数/个 环境梯度 建模方法及质量 重建湖泊名称及重建时段 参考文献
13 27.2°N, 81.3°W 硅藻—透明度 35 1.86~7.06 m

WA-PLS, R2=0.59,

RMSEP=1.15 m

Annie湖:1633—2019年 29
14 25.9°N, 99.3°E 硅藻—水位 62 0~14.1 m

WA-PLS, R2=0.95;

RMSEP=1.20 m

云龙湖:1919—2013年 60
15 38.4°N, 75.0°E 硅藻—水位 45 0~19 m

WA-PLS, R2=0.89,

RMSEP=1.85 m

卡拉库里湖:9.9~0 ka 31
16 40.5°~40.6°N, 112.5°~112.8°E; 41.9°~42.2°N, 86.7°~87.4°E 摇蚊—水位 54 1.5~17 m

PLS, R2=0.85,

RMSEP=1.58 m

岱海:1500—2018年 30
17 28.0°~39.0°N, 87.3°~102.5°E

硅藻—盐度

(电导率)

87 100~119 400 μS/cm

WA, R2=0.74,

RMSEP=2.4 μS/cm

沉错,纳木错:1800—2000年 61
18 中亚地区

硅藻—盐度

(电导率)

387

WA, R2=0.77,

RMSEP=2.94 μS/cm

咸海:400—2000年 62
19 39.5°~39.9°N, 102.2°~102.5°E

硅藻—盐度

(电导率)

26 1370~38 150 μS/cm

WA-PLS, R2=0.91,

RMSEP=1.37 μS/cm

少白吉林湖:1950—2008年;

准敖格旗湖:1850—2008年

63
20 28.1°~38.9°N, 84.6°~100.7°E 摇蚊—盐度 38 0.24~56.59 g/L

WA-PLS, R2=0.77,

RMSEP=2.03 g/L

苏干湖:990—2000年 33 64
21 66.3°~69.5°S, 75.0°~102.0°E 硅藻—盐度 111 0.1~165 g/L

WA, R2=0.83,

RMSEP=2.02 g/L

Beall湖等3个湖泊:8.6~0 ka 65 - 66
22

26.0°~34.0°N,

99.0°~104.0°E

摇蚊—温度 100 4.2~19.8 ℃

WA-PLS, R2=0.63,

RMSEP=2.31 ℃

天才湖:1860—2008年 34
23 瑞士 摇蚊—温度

WA-PLS, R2=0.52,

RMSEP=0.88 ℃

Seebergsee湖:1070—2005年 67
24 东欧地区 摇蚊—温度 212 11.3~20.1 ℃

WA-PLS, R2=0.88,

RMSEP=0.88 ℃

Sylvilampi湖:1620—2014年 68
25

36.0°~40.0°S,

72.0°~71.0°W

金藻孢囊—温度(冬季天数) 24 0~216日

WA-PLS, R2=0.80,

RMSEP=28.7日

Escondida湖:1920—2009年 35
26 阿尔卑斯地区 金藻孢囊—温度(融冰日期) 29

WA-PLS, R2=0.85,

RMSEP=7.06日

Silvaplana湖:1870—1004年 69
108 ZHANG Can, KONG Xiangzhen, XUE Bin, et al. Double‐edged effects of anthropogenic activities on lake ecological dynamics in northern China: evidence from palaeolimnology and ecosystem modelling[J]. Freshwater Biology, 2023, 68(6): 940-955.
109 QIN Bo, KONG Xiangzhen, WANG Rong, et al. Lake restoration time of Lake Taibai (China): a case study based on paleolimnology and ecosystem modeling[J]. Journal of Paleolimnology, 2022, 68(1): 25-38.
1 STEFFEN W, CRUTZEN P J, MCNEILL J R. The Anthropocene: are humans now overwhelming the great forces of nature?[J]. Ambio, 2007, 36(8): 614-621.
2 STEFFEN W, BROADGATE W, DEUTSCH L, et al. The trajectory of the Anthropocene: the great acceleration[J]. The Anthropocene Review, 2015, 2(1): 81-98.
3 SHEN Ji, ZHANG Ke, LIU Zhengwen. Paleolimnological evidence of environmental change in Chinese lakes over the past two centuries[J]. Inland Waters, 2020, 10(1): 1-10.
4 SHEN Ji. Progress and prospect of palaeolimnology research in China[J]. Journal of Lake Sciences, 2009, 21(3): 307-313.
沈吉. 湖泊沉积研究的历史进展与展望[J]. 湖泊科学, 2009, 21(3): 307-313.
5 SHEN Ji. Spatiotemporal variations of Chinese lakes and their driving mechanisms since the Last Glacial Maximum: a review and synthesis of lacustrine sediment archives[J]. Chinese Science Bulletin, 2013, 58(1): 17-31.
沈吉. 末次盛冰期以来中国湖泊时空演变及驱动机制研究综述: 来自湖泊沉积的证据[J]. 科学通报, 2013, 58(1): 17-31.
6 YANG Xiangdong, WANG Rong, DONG Xuhui, et al. A review of lake palaeoecology research in China[J]. Journal of Lake Sciences, 2020, 32(5): 1 380-1 395.
羊向东, 王荣, 董旭辉, 等. 中国湖泊古生态研究进展[J]. 湖泊科学, 2020, 32(5): 1 380-1 395.
7 JUGGINS S. Transfer functions[M]// VIVIEN G. Encyclopedia of Paleoclimatology and ancient environments. Berlin: Springer, 2009: 959-962.
8 IMBRIE J, KIPP N G. A new micropaleontological method for quantitative paleoclimatology: application to a late Pleistocene Caribbean core[M]// TUREKIAN K K. The late Cenozoic glacial ages. New Haven: Yale University Press, 1971: 71-181.
9 BATTARBEE R W. Diatom analysis and the acidification of lakes[J]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 1984, 305(1 124): 451-477.
10 BARTLEIN P J, WEBB T, FLERI E. Holocene climatic change in the northern Midwest: pollen-derived estimates[J]. Quaternary Research, 1984, 22(3): 361-374.
11 BRAAK C J F TER, PRENTICE I C. A theory of gradient analysis[J]. Advances in Ecological Research, 1988, 18: 271-317.
12 BRAAK C J F TER, JUGGINS S. Weighted Averaging Partial Least Squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages[J]. Hydrobiologia, 1993, 269(1): 485-502.
13 OVERPECK J T, WEBB T, PRENTICE I C. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs[J]. Quaternary Research, 1985, 23(1): 87-108.
14 GUIOT J. Methodology of the last climatic cycle reconstruction in France from pollen data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1990, 80(1): 49-69.
15 HUISMAN J, OLFF H, FRESCO L F M. A hierarchical set of models for species response analysis[J]. Journal of Vegetation Science, 1993, 4(1): 37-46.
16 BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32.
17 ELITH J, LEATHWICK J R, HASTIE T. A working guide to boosted regression trees[J]. Journal of Animal Ecology, 2008, 77(4): 802-813.
18 ÖZESMI S L, TAN C O, ÖZESMI U. Methodological issues in building, training, and testing artificial neural networks in ecological applications[J]. Ecological Modelling, 2006, 195(1/2): 83-93.
19 WANG Q, HAMILTON P B, XU Min, et al. Comparison of boosted regression trees vs WA-PLS regression on diatom-inferred glacial-interglacial climate reconstruction in Lake Tiancai (southwest China)[J]. Quaternary International, 2021, 580: 53-66.
20 KOTRYS B, PŁÓCIENNIK M, SYDOR P, et al. Expanding the Swiss‐Norwegian chironomid training set with Polish data[J]. Boreas, 2020, 49(1): 89-107.
21 SALONEN J S, KORPELA M, WILLIAMS J W, et al. Machine-learning based reconstructions of primary and secondary climate variables from North American and European fossil pollen data[J]. Scientific Reports, 2019, 9(1). DOI:10.1038/s41598-019-52293-4 .
22 BATTARBEE R W, MONTEITH D T, JUGGINS S, et al. Assessing the accuracy of diatom-based transfer functions in defining reference pH conditions for acidified lakes in the United Kingdom[J]. The Holocene, 2008, 18(1): 57-67.
23 SICKMAN J O, BENNETT D M, LUCERO D M, et al. Diatom-inference models for acid neutralizing capacity and nitrate based on 41 calibration lakes in the Sierra Nevada, California, USA[J]. Journal of Paleolimnology, 2013, 50(2): 159-174.
24 DONG Xuhui, YANG Xiangdong, WANG Rong, et al. A diatom-total phosphorus transfer function for lakes in the middle and lower reaches of Yangtze River[J]. Journal of Lake Sciences, 2006, 18(1): 1-12.
董旭辉, 羊向东, 王荣, 等. 长江中下游地区湖泊硅藻—总磷转换函数[J]. 湖泊科学, 2006, 18(1): 1-12.
25 ZHANG EnLou, BEDFORD A, JONES R, et al. Quantitative model research of typical chironomid subfossils-total phosphorus of the lakes in the middle and lower reach regions of Yangtze River[J]. Chinese Science Bulletin, 2006, 51(11): 1 318-1 325.
张恩楼, BEDFORD A, JONES R, 等. 长江中下游地区典型湖泊摇蚊亚化石—湖水总磷定量模型研究[J]. 科学通报, 2006, 51(11): 1 318-1 325.
26 LUOTO T P, NEVALAINEN L. Inferring reference conditions of hypolimnetic oxygen for deteriorated Lake Mallusjärvi in the cultural landscape of Mallusjoki, Southern Finland using fossil midge assemblages[J]. Water, Air, & Soil Pollution, 2011, 217(1/4): 663-675.
27 LUOTO T P, SALONEN V P. Fossil midge larvae (Diptera: Chironomidae) as quantitative indicators of late-winter hypolimnetic oxygen in southern Finland: a calibration model, case studies and potentialities[J]. Boreal Environment Research, 2010, 15: 1-18.
28 ZAWISKA I, DIMANTE D I, LUOTO T P, et al. Long-term consequences of water pumping on the ecosystem functioning of Lake Sekšu, Latvia[J]. Water, 2020, 12(5). DOI: 10.3390/w12051459 .
29 EMERY B M A, GAISER E E, SWAIN H M, et al. Cyclical browning in a subtropical lake inferred from diatom records[J]. Frontiers in Ecology and Evolution, 2023, 11. DOI:10.3389/fevo.2023.1020024 .
30 NI Zhenyu, ZHANG Enlou, MENG Xianqiang, et al. Chironomid-based reconstruction of 500-year water-level changes in Daihai Lake, northern China[J]. CATENA, 2023, 227. DOI: 10.1016/j.catena.2023.107122 .
31 PENG Yumei, RIOUAL P, JIN Zhangdong. A record of Holocene climate changes in central Asia derived from diatom-inferred water-level variations in Lake Kalakuli (Eastern Pamirs, western China)[J]. Frontiers in Earth Science, 2022, 10. DOI: 10.3389/feart.2022.825573 .
32 YANG Xiangdong, KAMENIK C, SCHMIDT R, et al. Diatom-based conductivity and water-level inference models from eastern Tibetan (Qinghai-Xizang) Plateau lakes[J]. Journal of Paleolimnology, 2003, 30: 1-19.
33 ZHANG Enlou, JONES R, BEDFORD A, et al. A chironomid-based salinity inference model from lakes on the Tibetan Plateau[J]. Journal of Paleolimnology, 2007, 38(4): 477-491.
34 ZHANG Enlou, CHANG Jie, CAO Yanmin, et al. A chironomid-based mean July temperature inference model from the south-east margin of the Tibetan Plateau, China[J]. Climate of the Past, 2017, 13(3): 185-199.
35 de JONG R, ALENIUS T, HERNÁNDEZ-ALMEIDA I, et al. Recent temperature trends in the South Central Andes reconstructed from sedimentary chrysophyte stomatocysts in Laguna Escondida (1742 m a.s.l., 38°28′S, Chile)[J]. Global and Planetary Change, 2016, 137: 24-34.
36 HILL M O, GAUCH H G. Detrended correspondence analysis: an improved ordination technique[J]. Vegetatio, 1980, 42: 47-58.
37 BRAAK C J F TER. The analysis of vegetation-environment relationships by canonical correspondence analysis[J]. Vegetatio, 1987, 69: 69-77.
38 CHANG J C, SHULMEISTER J, WOODWARD C. A chironomid based transfer function for reconstructing summer temperatures in southeastern Australia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 423: 109-121.
39 BRAAK C J F TER, ŠMILAUER P. Canoco reference manual and user’s guide: Software for ordination, version 5.0[M]. New York: Microcomputer Power, 2012.
40 BIRKS H J B, BRAAK C T, LINE J M, et al. Diatoms and pH reconstruction[J]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 1990, 327(1 240): 263-278.
41 NDAYISHIMIYE J C, JU Lihua, LI Hongkai, et al. Temperature transfer functions based on freshwater testate amoebae from China[J]. European Journal of Protistology, 2019, 69: 152-164.
42 JUGGINS S. C2 version 1.5 user guide: software for ecological and palaeoecological data analysis and visualisation[M]. Newcastle: Newcastle University, 2007.
43 LIANG Chen, ZHAO Yan, QIN Feng, et al. Pollen-based Holocene quantitative temperature reconstruction on the eastern Tibetan Plateau using a comprehensive method framework[J]. Science China Earth Sciences, 2020, 63(8): 1 144-1 160.
44 TELFORD R J, BIRKS H J B. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages[J]. Quaternary Science Reviews, 2011, 30(9/10): 1 272-1 278.
45 WANG Rong, ZHANG Ke, LIU Jianbao, et al. The importance of lake ecosystem evolution for anthropocene research[J]. Journal of Lake Sciences, 2024, 36(2): 333-338.
王荣, 张科, 刘建宝, 等. 湖泊流域生态系统演化对人类世研究的重要意义[J]. 湖泊科学, 2024, 36(2): 333-338.
46 DUBOIS N, SAULNIER-TALBOT E, MILLS K, et al. First human impacts and responses of aquatic systems: a review of palaeolimnological records from around the world[J]. The Anthropocene Review, 2018, 5(1): 28-68.
47 PERGA M E, FROSSARD V, JENNY P, et al. High-resolution paleolimnology opens new management perspectives for lakes adaptation to climate warming[J]. Frontiers in Ecology and Evolution, 2015, 3. DOI: 10.3389/fevo.2015.00072 .
48 SPIERENBURG P, ROELOFS J G M, ANDERSEN T J, et al. Historical changes in the macrophyte community of a Norwegian softwater lake[J]. Journal of Paleolimnology, 2010, 44(3): 841-853.
49 MAGYARI E, BUCZKÓ K, JAKAB G, et al. Palaeolimnology of the last crater lake in the Eastern Carpathian Mountains: a multiproxy study of Holocene hydrological changes[J]. Hydrobiologia, 2009, 631(1): 29-63.
50 QUILLEN A K, GAISER E E, GRIMM E C. Diatom-based paleolimnological reconstruction of regional climate and local land-use change from a protected sinkhole lake in southern Florida, USA[J]. Journal of Paleolimnology, 2013, 49(1): 15-30.
51 CHEN Xu, YANG Xiangdong, DONG Xuhui, et al. Nutrient dynamics linked to hydrological condition and anthropogenic nutrient loading in Chaohu Lake (southeast China)[J]. Hydrobiologia, 2011, 661(1): 223-234.
52 ZHANG Qinghui, DONG Xuhui, YANG Xiangdong. Environmental evolution of Lake Liangzi and its driving factors over the past 100 years, Hubei Province[J]. Journal of Lake Sciences, 2016, 28(3): 545-553.
张清慧, 董旭辉, 羊向东. 湖北梁子湖近百年来环境演变历史及驱动因素分析[J]. 湖泊科学, 2016, 28(3): 545-553.
53 YANG Xiangdong, ANDERSON N J, DONG Xuhui, et al. Surface sediment diatom assemblages and epilimnetic total phosphorus in large, shallow lakes of the Yangtze floodplain: their relationships and implications for assessing long-term eutrophication[J]. Freshwater Biology, 2008, 53(7): 1 273-1 290.
54 ZHANG Enlou, CAO Yanmin, LANGDON P G, et al. Alternate trajectories in historic trophic change from two lakes in the same catchment, Huayang Basin, middle reach of Yangtze River, China[J]. Journal of Paleolimnology, 2012, 48(2): 367-381.
55 CAO Yanmin, ZHANG Enlou, LANGDON P G, et al. Spatially different nutrient histories recorded by multiple cores and implications for management in Taihu Lake, eastern China[J]. Chinese Geographical Science, 2013, 23(5): 537-549.
56 CHEN Xiaolin, CHEN Guangjie, LIU Yuanyuan, et al. Evaluation of the quantitative relationships between diatom communities and Total Phosphorus (TP) in 45 lakes and their applications for TP reconstruction in Yunnan, Southwest China[J]. Journal of Lake Sciences, 2023, 35(1): 88-104.
陈小林, 陈光杰, 刘园园, 等. 云南45个湖泊硅藻—总磷转换函数及其定量重建评价[J]. 湖泊科学, 2023, 35(1): 88-104.
57 CUMMING B F, LAIRD K R, GREGORY E I, et al. Tracking past changes in lake-water phosphorus with a 251-lake calibration dataset in British Columbia: tool development and application in a multiproxy assessment of eutrophication and recovery in Osoyoos Lake, a transboundary lake in Western North America[J]. Frontiers in Ecology and Evolution, 2015, 3. DOI: 10.3389/fevo.2015.00084 .
58 BERTHON V, MARCHETTO A, RIMET F, et al. Trophic history of French sub-alpine lakes over the last ~150 years: phosphorus reconstruction and assessment of taphonomic biases[J]. Journal of Limnology, 2013, 72(3). DOI: 10.4081/jlimnol.2013.e34 .
59 LUOTO T P, SARMAJA-KORJONEN K, NEVALAINEN L, et al. A 700 year record of temperature and nutrient changes in a small eutrophied lake in southern Finland[J]. The Holocene, 2009, 19(7): 1 063-1 072.
60 ZOU Yafei, WANG Luo, HE Haibo, et al. Application of a diatom transfer function to quantitative paleoclimatic reconstruction—a case study of Yunlong Lake, southwest China[J]. Frontiers in Earth Science, 2021, 9. DOI:10.3389/feart.2021.700194 .
61 WANG Rong, YANG Xiangdong, LANGDON P G, et al. Limnological responses to warming on the Xizang Plateau, Tibet, over the past 200 years[J]. Journal of Paleolimnology, 2011, 45(2): 257-271.
62 AUSTIN P, MACKAY A, PALAGUSHKINA O, et al. A high-resolution diatom-inferred palaeoconductivity and lake level record of the Aral Sea for the last 1600 yr[J]. Quaternary Research, 2007, 67(3): 383-393.
63 RIOUAL R, LU Yanbin, YANG Handong, et al. Diatom-environment relationships and a transfer function for conductivity in lakes of the Badain Jaran Desert, Inner Mongolia, China[J]. Journal of Paleolimnology, 2013, 50(2): 207-229.
64 CHEN Jianhui, CHEN Fahu, ZHANG Enlou, et al. A 1000-year chironomid-based salinity reconstruction from varved sediments of Sugan Lake, Qaidam Basin, arid Northwest China, and its palaeoclimatic significance[J]. Chinese Science Bulletin, 2009, 54(20): 3 749-3 759.
65 ROBERTS D, HODGSON D A, MCMINN A, et al. Recent rapid salinity rise in three East Antarctic lakes[J]. Journal of Paleolimnology, 2006, 36(4): 385-406.
66 VERLEYEN E, HODGSON D A, VYVERMAN W, et al. Modelling diatom responses to climate induced fluctuations in the moisture balance in continental Antarctic lakes[J]. Journal of Paleolimnology, 2003, 30: 195-215.
67 LAROCQUE-TOBLER I, STEWART M M, QUINLAN R, et al. A last millennium temperature reconstruction using chironomids preserved in sediments of anoxic Seebergsee (Switzerland): consensus at local, regional and Central European scales[J]. Quaternary Science Reviews, 2012, 41: 49-56.
68 LUOTO T P, KIVILÄ E H, KOTRYS B, et al. Air temperature and water level inferences from northeastern Lapland (69°N) since the Little Ice Age[J]. Polish Polar Research, 2020, 40(1): 23-40.
69 de JONG R, KAMENIK C. Validation of a chrysophyte stomatocyst‐based cold‐season climate reconstruction from high‐Alpine Lake Silvaplana, Switzerland[J]. Journal of Quaternary Science, 2011, 26(3): 268-275.
70 SUI Fengyang, ZANG Shuying, FAN Yawen, et al. Establishment of a diatom-total phosphorus transfer function for lakes on the Songnen Plain in northeast China[J]. Journal of Oceanology and Limnology, 2020, 38(6): 1 771-1 786.
71 BIGLER C, VON GUNTEN L, LOTTER A F, et al. Quantifying human-induced eutrophication in Swiss mountain lakes since AD 1800 using diatoms[J]. The Holocene, 2007, 17(8): 1 141-1 154.
72 CAO Yanmin, ZHANG Enlou, LANGDON P G, et al. Chironomid-inferred environmental change over the past 1400 years in the shallow, eutrophic Taibai Lake (south-east China): separating impacts of climate and human activity[J]. The Holocene, 2014, 24(5): 581-590.
73 HUANG Chunling, CAO Yanmin, CHEN Xu. Ecological environment changes inferred from subfossil chironomid record of Shahu Lake in Wuhan City[J]. Acta Hydrobiologica Sinica, 2018, 42(1): 162-170.
黄春玲, 曹艳敏, 陈旭. 武汉市沙湖摇蚊亚化石记录的湖泊生态环境变化[J]. 水生生物学报, 2018, 42(1): 162-170.
74 LIAO Yuejun, LI Chunhua, DONG Xuhui, et al. Environmental evolution of Datong Lake over the past 160 years and its nutrient baseline[J]. Acta Hydrobiologica Sinica, 2021, 45(1): 206-215.
廖粤军, 李春华, 董旭辉, 等. 湖南省大通湖百余年环境演化历史及营养物基准的建立[J]. 水生生物学报, 2021, 45(1): 206-215.
75 LI Xiaoping, CHEN Xiaohua, DONG Xuhui, et al. Nutrient dynamics over the past 100 years and its restoration baseline in Dianshan Lake[J]. Environmental Science, 2012, 33(10): 3 301-3 307.
李小平, 陈小华, 董旭辉, 等. 淀山湖百年营养演化历史及营养物基准的建立[J]. 环境科学, 2012, 33(10): 3 301-3 307.
76 DONG Xuhui, BENNION H, BATTARBEE R, et al. Tracking eutrophication in Taihu Lake using the diatom record: potential and problems[J]. Journal of Paleolimnology, 2008, 40(1): 413-429.
77 DONG Xuhui, YANG Xiangdong. Diatom community succession and nutrient evolution recorded from a sediment core of the Longgan Lake, a large shallow lake in east China[J]. Acta Hydrobiologica Sinica, 2006, 30(6): 702-710.
78 REAVIE E E D, HEATHCOTE A J, SHAW C V L. Laurentian Great Lakes phytoplankton and their water quality characteristics, including a diatom-based model for paleoreconstruction of phosphorus[J]. PLoS ONE, 2014, 9(8). DOI: 10.1371/journal.pone.0104705 .
79 CHEN Jianhui. Moisture variability over the last millennium recorded by chironomids from lacustrine sediments in arid northwestern China[D]. Lanzhou: Lanzhou University, 2009.
陈建徽. 我国内陆干旱区过去千年来湿度变化的摇蚊记录及其对比[D]. 兰州: 兰州大学, 2009.
80 MEDEIROS A S, FRIEL C E, FINKELSTEIN S A, et al. A high resolution multi-proxy record of pronounced recent environmental change at Baker Lake, Nunavut[J]. Journal of Paleolimnology, 2012, 47(4): 661-676.
81 BROOKS S J. Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region[J]. Quaternary Science Reviews, 2006, 25(15/16): 1 894-1 910.
82 LAROCQUE-TOBLER I, GROSJEAN M, KAMENIK C. Calibration-in-time versus calibration-in-space (transfer function) to quantitatively infer July air temperature using biological indicators (chironomids) preserved in lake sediments[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(1/2): 281-288.
83 PORINCHU D F, REINEMANN S, MARK B G, et al. Application of a midge-based inference model for air temperature reveals evidence of late-20th century warming in sub-alpine lakes in the central Great Basin, United States[J]. Quaternary International, 2010, 215(1/2): 15-26.
84 LAROCQUE-TOBLER I, FILIPIAK J, TYLMANN W, et al. Comparison between chironomid-inferred mean-August temperature from varved Lake Żabińskie (Poland) and instrumental data since 1896 AD[J]. Quaternary Science Reviews, 2015, 111: 35-50.
85 BAI Xue, CHEN Xu. Applications of chrysophyte stomatocysts in studies of aquatic environmental change[J]. Progress in Geography, 2022, 41(2): 351-360.
白雪, 陈旭. 金藻孢囊在水环境变化研究中的应用[J]. 地理科学进展, 2022, 41(2): 351-360.
86 STENGER-KOVÁCS C, BÉRES V B, BUCZKÓ K, et al. Diatom community response to inland water salinization: a review[J]. Hydrobiologia, 2023, 850(20): 4 627-4 663.
87 ZHANG Enlou, CHEN Jianhui, CAO Yanmin, et al. Subfossil chironomid archives and its application in palaeolimnological and global change study in China[J]. Quaternary Sciences, 2016, 36(3): 646-655.
张恩楼, 陈建徽, 曹艳敏, 等. 摇蚊亚化石记录及其在中国湖泊沉积与全球变化研究中的应用[J]. 第四纪研究, 2016, 36(3): 646-655.
88 JUGGINS S, ANDERSON N J, HOBBS J M R, et al. Reconstructing epilimnetic total phosphorus using diatoms: statistical and ecological constraints[J]. Journal of Paleolimnology, 2013, 49(3): 373-390.
89 JUGGINS S. Quantitative reconstructions in palaeolimnology: new paradigm or sick science?[J]. Quaternary Science Reviews, 2013, 64: 20-32.
90 REED J M, MESQUITA-JOANES F, GRIFFITHS H I. Multi-indicator conductivity transfer functions for Quaternary palaeoclimate reconstruction[J]. Journal of Paleolimnology, 2012, 47(2): 251-275.
91 LUOTO T P, NEVALAINEN L, KULTTI S, et al. An evaluation of the influence of water depth and river inflow on quantitative Cladocera-based temperature and lake level inferences in a shallow boreal lake[J]. Hydrobiologia, 2011, 676(1): 143-154.
92 BAJOLLE L, LAROCQUE-TOBLER I, ALI A A, et al. A chironomid-inferred Holocene temperature record from a shallow Canadian boreal lake: potentials and pitfalls[J]. Journal of Paleolimnology, 2019, 61(1): 69-84.
93 WANG Can, KUANG Xingxing, SHAN Jipeng, et al. Recent ostracods as ecological indicators and its applications: an example from the southern Tibetan Plateau[J]. Ecological Indicators, 2022, 143. DOI:10.1016/j.ecolind.2022.109326 .
94 BIRKS H J B. Numerical tools in palaeolimnology—progress, potentialities, and problems[J]. Journal of Paleolimnology, 1998, 20: 307-332.
95 SALONEN J S, ILVONEN L, SEPPÄ H, et al. Comparing different calibration methods (WA/WA-PLS regression and Bayesian modelling) and different-sized calibration sets in pollen-based quantitative climate reconstruction[J]. The Holocene, 2012, 22(4): 413-424.
96 HUANG Kangyou, WEI Jinhui, CHEN Bishan, et al. Research progress of pollen-based quantitative paleoclimate reconstruction using modern analogue technique[J]. Quaternary Sciences, 2013, 33(6): 1 069-1 079.
黄康有, 魏金辉, 陈碧珊, 等. 最佳类比法的孢粉—古气候定量重建研究进展[J]. 第四纪研究, 2013, 33(6): 1 069-1 079.
97 XIANG Lixiong, HUANG Xiaozhong, ZHANG Jiawu, et al. First Pediastrum-temperature transfer function and its application to mid-to-late Holocene reconstruction in Central Asia[J]. Quaternary Science Reviews, 2024, 327. DOI:10.1016/j.quascirev.2024.108516 .
98 GUILIZZONI P, MARCHETTO A, LAMI A, et al. Use of sedimentary pigments to infer past phosphorus concentration in lakes[J]. Journal of Paleolimnology, 2011, 45(4): 433-445.
99 MA Rui, CHEN Jianhui, LIU Jianbao, et al. Progress in the application of lake sediment DNA in climate and environmental change and ecosystem response[J]. Journal of Lake Sciences, 2021, 33(3): 653-666.
马睿, 陈建徽, 刘建宝, 等. 湖泊沉积物DNA在气候环境变化和生态系统响应研究中的应用[J]. 湖泊科学, 2021, 33(03): 653-666.
100 ZHU Liping, GUO Yun. Lake sediments and environmental changes on the Tibetan Plateau[J]. Science & Technology Review, 2017, 35(6): 65-70.
朱立平, 郭允. 青藏高原湖泊沉积记录与环境变化研究[J]. 科技导报, 2017, 35(6): 65-70.
101 MASLENNIKOVA A V. Development and application of an electrical conductivity transfer function, using diatoms from lakes in the Urals, Russia[J]. Journal of Paleolimnology, 2020, 63(2): 129-146.
102 DAVIES S J, METCALFE S E, CABALLERO M E, et al. Developing diatom-based transfer functions for Central Mexican lakes[J]. Hydrobiologia, 2002, 467: 199-213.
103 JUGGINS S, SIMPSON G L, TELFORD R J. Taxon selection using statistical learning techniques to improve transfer function prediction[J]. The Holocene, 2015, 25(1): 130-136.
104 SALONEN J S, LUOTO M, ALENIUS T, et al. Reconstructing palaeoclimatic variables from fossil pollen using boosted regression trees: comparison and synthesis with other quantitative reconstruction methods[J]. Quaternary Science Reviews, 2014, 88: 69-81.
105 SALONEN J S, VERSTER A J, ENGELS S, et al. Calibrating aquatic microfossil proxies with regression-tree ensembles: cross-validation with modern chironomid and diatom data[J]. The Holocene, 2016, 26(7): 1 040-1 048.
106 LI Jianyong, DODSON J, YAN Hong, et al. Quantitative precipitation estimates for the northeastern Qinghai-Tibetan Plateau over the last 18,000 years[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(10): 5 132-5 143.
107 ZHANG Jiawu, HE Jing, CHEN Shuo, et al. Applications of non-marine ostracods in Quaternary paleoenvironment—advances and problems in fossil assemblages[J]. Advances in Earth Science, 2009, 24(11): 1 229-1 237.
张家武, 何晶, 陈硕, 等. 第四纪湖相介形类壳体化石在古环境中的应用——种属组合研究进展与问题[J]. 地球科学进展, 2009, 24(11): 1 229-1 237.
[1] 吴亚妮, 陈旸, 王野, 莫朋军, 高伟斌. 210Pb同位素在人类世沉积物定年中的应用[J]. 地球科学进展, 2024, 39(1): 71-81.
[2] 周卫健, 赵雪, 陈宁. 中国人类世科学研究新进展[J]. 地球科学进展, 2024, 39(1): 1-11.
[3] 江鸿, 韩永明, 刘卫国, 曹蕴宁, 胡婧, 樊会敏, 刘博. 四海龙湾沉积物多指标反映人类活动从 1850年开始显著增强[J]. 地球科学进展, 2024, 39(1): 82-95.
[4] 刘学, 张志强, 郑军卫, 赵纪东, 王立伟. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
[5] 曾艳,陈敬安,朱正杰,李键. 湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望[J]. 地球科学进展, 2011, 26(8): 805-810.
[6] 高抒. 长江三角洲对流域输沙变化的响应:进展与问题[J]. 地球科学进展, 2010, 25(3): 233-241.
[7] 张家武,何晶,陈硕,李双. 第四纪湖相介形类壳体化石在古环境中的应用——种属组合研究进展与问题[J]. 地球科学进展, 2009, 24(11): 1229-1237.
[8] 申慧彦,李世杰. 湖泊沉积物中DNA提取与PCR扩增[J]. 地球科学进展, 2008, 23(4): 433-438.
[9] 苏有亮,郭志,王卫民,高星. 用转换函数研究珠峰站地壳结构[J]. 地球科学进展, 2007, 22(8): 835-841.
[10] 高抒. 亚洲地区的流域—海岸相互作用:APN近期研究动态[J]. 地球科学进展, 2006, 21(7): 680-686.
[11] 吴艳宏;李世杰. 湖泊沉积物色度在短尺度古气候研究中的应用[J]. 地球科学进展, 2004, 19(5): 789-792.
[12] 赵红艳,王升忠,白燕,冷雪天. 近10年来我国泥炭地学的研究进展[J]. 地球科学进展, 2002, 17(6): 848-854.
[13] 李玉成,王苏民,黄耀生. 气候环境变化的湖泊沉积学响应[J]. 地球科学进展, 1999, 14(4): 412-416.
[14] 张振克,王苏民. 中国湖泊沉积记录的环境演变:研究进展与展望[J]. 地球科学进展, 1999, 14(4): 417-422.
[15] 靳桂云. 土壤微形态分析及其在考古学中的应用[J]. 地球科学进展, 1999, 14(2): 197-200.
阅读次数
全文


摘要