地球科学进展 ›› 2024, Vol. 39 ›› Issue (5): 519 -531. doi: 10.11867/j.issn.1001-8166.2024.033

层序地层学 上一篇    下一篇

川东北地区中—上二叠统层序地层格架内多重地质事件耦合的富有机质页岩成因模式
陈斐然 1 , 2( ), 刘珠江 1 , 2, 陆永潮 3, 魏富彬 1 , 2, 李飞 1 , 2, 郭金才 1 , 2, 苏泽昕 1 , 2   
  1. 1.中国石化勘探分公司物探研究院,四川 成都 610041
    2.页岩油气富集机理与高效开发全国 重点实验室,北京 102206
    3.中国地质大学(武汉) 资源学院,湖北 武汉 430074
  • 收稿日期:2024-02-22 修回日期:2024-04-23 出版日期:2024-05-10
  • 基金资助:
    中国石油化工股份有限公司科技攻关项目(P22136)

Organic-rich Shale Genesis Model Coupled with Multiple Geological Events in Middle-upper Permian Sequence Stratigraphic Framework in Northeastern Sichuan

Feiran CHEN 1 , 2( ), Zhujiang LIU 1 , 2, Yongchao LU 3, Fubin WEI 1 , 2, Fei LI 1 , 2, Jincai GUO 1 , 2, Zexin SU 1 , 2   

  1. 1.Research Institute of Geophysics, Exploration Company, China Petroleum & Chemical Corporation, Chengdu 610041, China
    2.State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 102206, China
    3.Resource Institute, China University of Geology (Wuhan), Wuhan 430074, China
  • Received:2024-02-22 Revised:2024-04-23 Online:2024-05-10 Published:2024-06-03
  • About author:CHEN Feiran, Associate professor, research areas include shale oil and gas geological exploration. E-mail: feiran.ktnf@sinopec.com
  • Supported by:
    the China Petroleum & Chemical Corporation Scientific and Technological Research Project(P22136)

川东北地区中—上二叠统发育大隆组、吴家坪组二段和茅口组三段3套优质页岩,是继五峰组—龙马溪组之后海相页岩气勘探重要的接替新层系。利用等时地层格架内建立重要地质事件与沉积构造、古环境及古生物之间的对应关系,对川东北地区中—晚二叠世上升流和火山活动等重大地质事件对富有机质页岩发育的影响进行研究。结果表明: 川东北地区茅口组三段—大隆组可划分为5个四级层序,其中TST1、TST3、TST4和TST5体系域为富有机质黑色硅质页岩发育有利层段,明确了中—晚二叠世等时地层格架内火山活动与上升流事件的地质响应特征; 建立了受火山活动和上升流等地质事件共同作用的优质页岩发育模式,明确了茅三段SqPm-2初始拉张期,上升流带来的丰富溶解硅和营养盐等物质,有利于硅藻、硅质海绵和放射虫等生物大量繁殖,为典型上升流—生物耦合发育模式,发育高碳(>10.0%)、高硅(>70.0%)页岩,但厚度相对较薄,具有典型“薄而肥”的特征,是普光地区页岩气勘探亟待突破的有利新层系;吴二段—吴三段SqPw-2快速拉张期,火山活动形成的火山灰携带营养物质有利于有机质的富集,为火山活动—热液富有机质页岩发育模式,页岩总有机碳含量超过4%、硅质矿物含量超过50.0%,但厚度相对较薄,是下一步积极拓展的有利层系;大隆组SqPd-1~SqPd-2拉张鼎盛定型期,基底沉降,上升洋流和热液活动造成硅质生物繁盛,大量有机质在深水缺氧强还原条件下得到良好保存,为上升流—热液富有机质页岩发育模式,优质页岩厚度相对较大(>30 m),具备良好的勘探潜力,是下一步提交页岩气规模储量的有利层系。

There exist three sets of quality shale that developed in the Dalong, Wujiangping, and Maokou Formations during the mid-upper Permian, which are important replacements for marine shale gas exploration or the Wufeng Formation-Longmaxi Formation. Based on the relationships between important geological events built on an isochronous stratigraphic framework, sedimentary structures, paleoenvironments, and ancient living organisms, the influence of major geological events, such as middle-late Permian upwelling and volcanic activity, on the development of organic-rich shale in northeastern Sichuan was studied. It was concluded that the 3rd member of the Maokou-Dalong Formation can be divided into five four-level sequences, among which the systems of TST1, TST3, TST4, and TST5 are favorable for black organic-rich siliceous shale development, and the geological response characteristics of Middle and Late Permian volcanic activity and upwelling events were clarified. A high-quality shale development model with the combined action of volcanic activity, upwelling, and other geological events was established. It was clear that SqPm-2 represents the initial stage underwent by tectonic extension. The upwelling brought abundant soluble silicon and other nutrients that are favorable for the rapid breeding of organisms such as diatoms, siliceous sponges, and radiolarians. Belonging to a typical coupled developing mode of upwelling and organisms, the shale has high carbon (>10.0%) and silicon (>70.0%) content, whereas the thickness is relatively thin, a typical “thin and high-quality” characteristic, which represents a favorable new layer for shale gas exploration in the Puguang area. SqPw-2 is the state that underwent rapid extension, the tephra that carries abundant nutrients is favorable for organic matter accumulation, belonging to the coupled developing mode of volcanic activity and organisms. The TOC of shale is >4% and siliceous minerals >50.0%, but it is relatively thin, which is favorable for further exploration and expansion. SqPd-1~SqPd-2 is the flourishing stage whereby the ocean trough came into being. The base subsided, and upwelling and hydrothermalism enabled siliceous organisms to flourish. A great deal of organic matter is maintained in deep anoxic environments, belonging to a coupled development mode of upwelling and thermal fluids. The high-quality shale layer is relatively thick (>30 m), which offers good exploration potential and is a favorable stratum for the next step of large-scale shale gas storage and production.

中图分类号: 

图1 四川盆地东北部地区二叠系大隆组沉积相图
Fig. 1 Sedimentary facies map of the Permian Dalong Formation in northeastern Sichuan Basin
图2 川东北地区雷页1井中—上二叠统层序地层划分
KTH:无铀伽马;GR:自然伽马;LLS:浅探测感应测井;LLD:深探测感应测井; AC:声波时差:CNL:中子;DEN:密度
Fig. 2 Stratigraphic division of the middle-upper Permian sequence in Well Leiye 1 in northeastern Sichuan
KTH: Gamma ray without uranium; GR: Natural gamma ray; LLS: Shallow investigate induction log; LLD: Deep investigate induction log; AC: Acoustic; CNL: Neutron; DEN: Density
图3 雷页1井中—上二叠统SB1~SB4层序地层界面
(a)SB1层序地层界面;(b)SB2层序地层界面;(c)SB3层序地层界面;(d)SB4层序地层界面
Fig. 3 The sequence stratigraphic interface of the middle-upper Permian SB1~SB4 in Well Leiye 1
(a) SB1 sequence stratigraphic interface;(b) SB2 sequence stratigraphic interface;(c) SB3 sequence stratigraphic interface;(d) SB4 sequence stratigraphic interface
图4 雷页1井中—上二叠统层序地层格架内的沉积构造与地质事件响应特征
(a)灰黑色硅质页岩夹薄层硅质岩岩心照片,茅三段;(b)灰黑色硅质页岩岩石薄片照片,茅三段;(c)放射虫镜下形态照片,茅三段;(d)灰色沉凝灰岩岩心照片,吴一段;(e)灰色沉凝灰岩岩石薄片照片,吴一段;(f)深灰色凝灰质泥岩岩石薄片照片,吴一段;(g)灰黑色含灰硅质页岩夹薄层凝灰岩岩心照片,吴二段;(h)灰黑色含灰硅质页岩岩石薄片照片,吴二段;(i)有孔虫碎片岩石薄片照片,吴二段;(j)灰黑色含灰硅质页岩夹薄层凝灰岩岩心照片,隆一段;(k)灰黑色含灰硅质页岩夹薄层硅质岩岩心照片,隆一段;(l)放射虫镜下形态照片,隆一段;(m)灰黑色含灰硅质页岩岩心照片,隆二段;(n)灰黑色含灰硅质页岩岩石薄片照片,隆二段;(o)深灰色泥质灰岩岩石薄片照片,隆二段;HST5:高位体系域5;MSF:最大海泛面;TST5:海侵体系域5;HST4:高位体系域4;TST4:海侵体系域4;TST3:海侵体系域3;HST2:高位体系域2;TST2:海侵体系域2;TST1:海侵体系域1
Fig. 4 Sedimentary structure and geological event response characteristics in middle-upper Permian sequence stratigraphic framework of Well Leiye 1
(a) Gray-black siliceous shale with thin layer of siliceous rock core photos, the third member of Maokou Formation;(b) Gray-black siliceous shale rock slice photos, the third member of Maokou Formation;(c) Morphological photos of radiolarians under microscope, the third member of Maokou Formation;(d) Gray sedimentary tuff core photos, the first member of Wujiaping Formation;(e) Gray sedimentary tuff rock slice photos, the first member of Wujiaping Formation;(f) Dark gray tuffaceous mudstone rock slice photos, the first member of Wujiaping Formation;(g) Gray-black gray siliceous shale with thin tuff core photos, the second member of Wujiaping Formation;(h) Gray-black gray siliceous shale rock slice photos, the second member of Wujiaping Formation;(i) Foraminiferal fragment rock slice photos, the second member of Wujiaping Formation;(j) Gray-black gray siliceous shale with thin tuff core photos, the first member of Dalong Formation;(k) Gray-black gray siliceous shale with thin layer of siliceous rock core photos, the first member of Dalong Formation;(l) Morphological photos of radiolarians under microscope, the first member of Dalong Formation;(m) Gray-black gray siliceous shale core photos, the second member of Dalong Formation;(n) Gray-black gray siliceous shale rock slice photos, the second member of Dalong Formation;(o) Dark gray argillaceous limestone rock slice photos, the second member of Dalong Formation;HST5: Highstand Systems Tract 5;MSF: Maximum Flooding Surface;TST5: Transgressive Systems Tract 5;HST4: Highstand Systems Tract 4;TST4: Transgressive Systems Tract 4;TST3: Transgressive Systems Tract 3;HST2: Highstand Systems Tract 2;TST2: Transgressive Systems Tract 2;TST1: Transgressive Systems Tract 1
图5 雷页1井中—上二叠统总有机碳和沉积环境指标变化趋势
Fig. 5 Trends of Total Organic CarbonTOCand sedimentary environmental indexes in middle-upper Permian in Well Leiye 1
表1 雷页 1井中—上二叠统不同层段总有机碳及元素地球化学指标
Table 1 Total Organic CarbonTOCand elemental geochemical indexes of different intervals in middle-upper Permian in Well Leiye 1
图6 雷页1井中—上二叠统黑色页岩成因机理判别图解
(a) Fe/Ti-Al/(Al+Fe+Mn)图解;(b) Hf-Zr图解;(c) Co×Mn-Al图解;(d) V/Al-Mo/Al图解 20
Fig. 6 Diagram of the genetic mechanism in middle-upper Permian black shale in Well Leiye 1
(a) Diagram of Fe/Ti-Al/(Al+Fe+Mn);(b) Diagram of Hf-Zr;(b) Diagram of Co×Mn-Al;(d) Diagram of V/Al-Mo/Al 20
图7 雷页1井中—上二叠统黑色页岩主要影响事件、沉积环境及发育模式
Fig. 7 The middle-upper Permian black shale in Well Leiye 1 mainly affects eventssedimentary environments and development patterns
表2 雷页 1井中—上二叠统不同层段优质页岩特征对比
Table 2 Comparison of high-quality shale characteristics of different intervals in middle-upper Permian of Well Leiye 1
1 HU Dongfeng, WEI Zhihong, WANG Wei, et al. Breakthrough of shale gas exploration in Dalong Formation of Upper Permian by Well Leiye 1 in the northeastern Sichuan Basin and its implications[J]. Natural Gas Industry, 2023, 43(11): 28-39.
胡东风, 魏志红, 王威, 等. 四川盆地东北部雷页1井上二叠统大隆组页岩气勘探突破及其启示[J]. 天然气工业, 2023, 43(11): 28-39.
2 HU Degao, ZHOU Lin, BAO Hanyong, et al. Breakthrough and significance of Permian shale gas exploration of Well HY1 in Hongxing area, eastern Sichuan Basin[J]. Acta Petrolei Sinica, 2023, 44(2): 241-252.
胡德高, 周林, 包汉勇, 等. 川东红星地区HY1井二叠系页岩气勘探突破及意义[J]. 石油学报, 2023, 44(2): 241-252.
3 XIA Maolong, WEN Long, WANG Yigang, et al. High-quality source rocks in trough facies of Upper Permian Dalong Formation of Sichuan Basin[J]. Petroleum Exploration and Development, 2010, 37(6): 654-662.
夏茂龙, 文龙, 王一刚, 等. 四川盆地上二叠统海槽相大隆组优质烃源岩[J]. 石油勘探与开发, 2010, 37(6): 654-662.
4 CHEN Ruiyin, ZHU Guangyou, ZHOU Wenbao, et al. Geochemical characteristics and hydrocarbon resource potential of Dalong formation Permian, northeast Sichuan[J]. Natural Gas Geoscience, 2013, 24(1): 99-107.
陈瑞银, 朱光有, 周文宝, 等. 川北地区大隆组烃源岩地球化学特征与生气潜力初探[J]. 天然气地球科学, 2013, 24(1): 99-107.
5 FU Xiaodong, QIN Jianzhong, TENG Geer, et al. Evaluation on Dalong formation source rock in the North Sichuan Basin[J]. Petroleum Geology & Experiment, 2010, 32(6): 566-571.
付小东, 秦建中, 腾格尔, 等. 四川盆地北缘上二叠统大隆组烃源岩评价[J]. 石油实验地质, 2010, 32(6): 566-571.
6 LI Denghua, LI Jianzhong, HUANG Jinliang, et al. An important role of volcanic ash in the formation of shale plays and its inspiration[J]. Natural Gas Industry, 2014, 34(5): 56-65.
李登华, 李建忠, 黄金亮, 等. 火山灰对页岩油气成藏的重要作用及其启示[J]. 天然气工业, 2014, 34(5): 56-65.
7 CAO Guangyao, LIU Yu, ZHOU Xiaolin, et al. Sedimentary environment and accumulation pattern of organic matter in Wufeng-Longmaxi formations in the southwestern Sichuan, China[J]. Journal of Earth Sciences and Environment, 2023, 45(5): 1 227-1 245.
曹光耀, 刘宇, 周小琳, 等. 川西南地区五峰组—龙马溪组沉积环境及有机质富集模式[J]. 地球科学与环境学报, 2023, 45(5): 1 227-1 245.
8 FU Xiaodong, CHEN Yana, LUO Bing, et al. Characteristics and petroleum geological significance of the high-quality source rocks in the Gufeng member of the Middle Permian Maokou Formation in the northern Sichuan Basin[J]. Acta Geologica Sinica, 2021, 95(6): 1 903-1 920.
付小东, 陈娅娜, 罗冰, 等. 四川盆地北部中二叠统茅口组孤峰段优质烃源岩特征及其油气地质意义[J]. 地质学报, 2021, 95(6): 1 903-1 920.
9 HU Dongfeng. Breakthrough in natural gas exploration in the platform margin shoal at the Maokou Fm in the Yuanba area, Sichuan Basin, and its implications[J]. Natural Gas Industry, 2019, 39(3): 1-10.
胡东风. 四川盆地元坝地区茅口组台缘浅滩天然气勘探的突破与启示[J]. 天然气工业, 2019, 39(3): 1-10.
10 WEN Siyu, ZHANG Bing, YAO Yongjun, et al. Pyrite morphology in shale of Permian Wujiaping Formation in eastern Sichuan Basin and its indicative significance to oceanic anoxic events[J]. Lithologic Reservoirs, 2023, 35(5): 71-80.
温思宇, 张兵, 姚永君, 等. 川东地区二叠系吴家坪组页岩中黄铁矿形态及其对大洋缺氧事件的指示意义[J]. 岩性油气藏, 2023, 35(5): 71-80.
11 MA Yongsheng, MOU Chuanlong, TAN Qinyin, et al. A discussion on Kaijiang-Liangping Ocean trough[J]. Oil & Gas Geology, 2006, 27(3): 326-331.
[马永生, 牟传龙, 谭钦银, 等. 关于开江—梁平海槽的认识[J]. 石油与天然气地质, 2006, 27(3): 326-331.
12 LI Yang, WANG Xingzhi, PU Baiyu, et al. Sedimentary characteristics of oolitic beach of Triassic Feixianguan Formation in eastern Kaijiang-Liangping trough, Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(2): 116-130.
李阳, 王兴志, 蒲柏宇, 等. 四川盆地开江—梁平海槽东侧三叠系飞仙关组鲕滩沉积特征[J]. 岩性油气藏, 2022, 34(2): 116-130.
13 WIGNALL P B, SUN Y D, BOND D P G, et al. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China[J]. Science, 2009, 324(5 931): 1 179-1 182.
14 HE B, XU Y G, ZHONG Y T, et al. The Guadalupian-Lopingian boundary mudstones at Chaotian (SW China) are clastic rocks rather than acidic tuffs: implication for a temporal coincidence between the end-Guadalupian mass extinction and the Emeishan volcanism[J]. Lithos, 2010, 119(1/2): 10-19.
15 ZHOU L, KYTE F T. The Permian-Triassic boundary event: a geochemical study of three Chinese sections[J]. Earth and Planetary Science Letters, 1988, 90(4): 411-421.
16 SPEARS D A. The origin of tonsteins, an overview, and links with seatearths, fireclays and fragmental clay rocks[J]. International Journal of Coal Geology, 2012, 94: 22-31.
17 SHEN S Z, YUAN D X, HENDERSON C M, et al. Progress, problems and prospects: an overview of the Guadalupian series of South China and North America[J]. Earth-Science Reviews, 2020, 211. DOI: 10.1016/j.earscirev.2020.103412 .
18 WU Q, RAMEZANI J, ZHANG H, et al. High-precision U-Pb zircon age constraints on the Guadalupian in West Texas, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 548. DOI:10.1016/j.palaeo.2020.109668 .
19 HUANG Renchun. Formation and evolution of Permian-Triassic Kaijiang-Liangping shelf and development of reef-shoal reservoirs in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(4): 452-457.
黄仁春. 四川盆地二叠纪—三叠纪开江—梁平陆棚形成演化与礁滩发育[J]. 成都理工大学学报(自然科学版), 2014, 41(4): 452-457.
20 SWEERE T, van den BOORN S, DICKSON A J, et al. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations[J]. Chemical Geology, 2016, 441: 235-245.
21 WINGUTH A M E, HEINZE C, KUTZBACH J E, et al. Simulated warm polar currents during the middle Permian[J]. Paleoceanography, 2002, 17(4): 9-1-9-18.
22 MURCHEY B L, JONES D L. A mid-Permian chert event: widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 96(1/2): 161-174.
23 BEAUCHAMP B, BAUD A. Growth and demise of Permian biogenic chert along northwest Pangea: evidence for end-Permian collapse of thermohaline circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 184(1/2): 37-63.
24 KAMETAKA M, TAKEBE M, NAGAI H, et al. Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze platform, China: the Gufeng Formation: a continental shelf radiolarian chert[J]. Sedimentary Geology, 2005, 174(3/4): 197-222.
25 WEI H Y, CHEN D Z, YU H, et al. End-Guadalupian mass extinction and negative carbon isotope excursion at Xiaojiaba, Guangyuan, Sichuan[J]. Science China Earth Sciences, 2012, 55(9): 1 480-1 488.
26 BREIT G N, WANTY R B. Vanadium accumulation in carbonaceous rocks: a review of geochemical controls during deposition and diagenesis[J]. Chemical Geology, 1991, 91(2): 83-97.
27 TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
28 ZHANG Kai, ZHANG Qing, YAO Huijun, et al. Meso-cenozoic tectonics and evolution of riftogenic petroliferous basins along China’s Sea area and its vicinity[J]. Oil & Gas Geology, 1983, 4(4): 353-364, 452-453.
张恺, 张清, 姚慧君, 等. 中国海域及邻区中—新生代大地构造演化特征与裂谷型含油气盆地演化系列[J]. 石油与天然气地质, 1983, 4(4): 353-364, 452-453.
29 OLGUN N, DUGGEN S, ANDRONICO D, et al. Possible impacts of volcanic ash emissions of Mount Etna on the primary productivity in the oligotrophic Mediterranean Sea: results from nutrient-release experiments in seawater[J]. Marine Chemistry, 2013, 152: 32-42.
30 LIU Rong, ZHANG Kun, LIU Zhaojun, et al. Oil shale mineralization and geological events in China[J]. Acta Sedimentologica Sinica, 2021, 39(1): 10-28.
柳蓉, 张坤, 刘招君, 等. 中国油页岩富集与地质事件研究[J]. 沉积学报, 2021, 39(1): 10-28.
[1] 韩岩松, 姜伟, 肖玉雯, 雍阳阳, 余克服. 全球变化背景下热带气旋主要变化特征及影响因素[J]. 地球科学进展, 2023, 38(5): 515-532.
[2] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[3] 满文敏, 周天军. IAP年代际预测试验中火山活动对太平洋海温预测技巧的影响[J]. 地球科学进展, 2017, 32(4): 353-361.
[4] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[5] 朱如凯,邹才能,白斌,苏玲,高志勇,罗忠. 全球油气勘探研究进展及对沉积储层研究的需求[J]. 地球科学进展, 2011, 26(11): 1150-1161.
[6] 郭正府,刘嘉麒. 火山活动与气候变化研究进展[J]. 地球科学进展, 2002, 17(4): 595-604.
[7] 彭元桥;殷鸿福;杨逢清. 陆相二叠系—三叠系界线研究进展[J]. 地球科学进展, 2001, 16(6): 769-776.
[8] 吴根耀. 构造层序地层学[J]. 地球科学进展, 1996, 11(3): 310-313.
[9] 李从先,张桂甲. 下切古河谷高分辨率层序地层学研究的进展[J]. 地球科学进展, 1996, 11(2): 216-220.
[10] 李增学. 内陆表海聚煤盆地的层序地层分析──华北内陆表海聚煤盆地的研究进展[J]. 地球科学进展, 1994, 9(6): 65-70.
[11] 李书舜. 层序地层学的发展与应用[J]. 地球科学进展, 1992, 7(2): 24-.
[12] 田白. 白云岩化研究的新进展——火山作用与白云岩化的关系[J]. 地球科学进展, 1991, 6(4): 51-52.
[13] 肖义越. 地震地层学[J]. 地球科学进展, 1991, 6(3): 100-101.
阅读次数
全文


摘要