地球科学进展 ›› 2023, Vol. 38 ›› Issue (5): 515 -532. doi: 10.11867/j.issn.1001-8166.2022.079

全球变化研究 上一篇    下一篇

全球变化背景下热带气旋主要变化特征及影响因素
韩岩松 1( ), 姜伟 1 , 2( ), 肖玉雯 1, 雍阳阳 1, 余克服 1 , 2   
  1. 1.广西南海珊瑚礁研究重点实验室/广西大学海洋学院, 广西 南宁 530004
    2.南方海洋科学与工程广东省实验室(珠海), 广东 珠海 519080
  • 收稿日期:2022-09-30 修回日期:2022-11-30 出版日期:2023-05-10
  • 通讯作者: 姜伟 E-mail:hanyansong1999@163.com;jianwe@gxu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“南海北部岸礁区海底地下水排泄的高分辨率珊瑚记录”(41976059);国家自然科学基金重点项目“全新世南海珊瑚礁发育的时—空差异及其对全球变暖的适应机制”(42030502)

Main Change Characteristics and Influencing Factors of Tropical Cyclones Under the Background of Global Change

Yansong HAN 1( ), Wei JIANG 1 , 2( ), Yuwen XIAO 1, Yangyang YONG 1, Kefu YU 1 , 2   

  1. 1.Guangxi Laboratory on the Study of Coral Reefs in the South China Sea/School of Marine Sciences, Guangxi University, Nanning 530004, China
    2.Southern Marine Science and Engineering;Guangdong Laboratory (Zhuhai), Zhuhai Guangdong 519080, China
  • Received:2022-09-30 Revised:2022-11-30 Online:2023-05-10 Published:2023-05-10
  • Contact: Wei JIANG E-mail:hanyansong1999@163.com;jianwe@gxu.edu.cn
  • About author:HAN Yansong (1998-), male, Baiyin City, Gansu Province, Master student. Research area includes ocean global change. E-mail: hanyansong1999@163.com
  • Supported by:
    the National Natural Science Foundation of China “High-resolution coral records of submarine groundwater discharge in the fringing reefs of the northern South China Sea”(41976059);“The spatial and temporal variations of Holocene coral reef development in the South China Sea and their significance on corals’ adaptation to global warming”(42030502)

热带气旋是可以影响全球中低纬度海域的气象现象。系统总结和回顾了国内外热带气旋的主要特征、潜在影响因素及影响机制的相关研究进展,并对其在全球变化背景下的变化趋势进行了总结和剖析。全球变暖以来,热带气旋的源地和路径都出现极移的趋势,移动速度略有增加,频率减小并且强度增大,但各大洋存在显著差异。重点回顾了火山活动、厄尔尼诺—南方涛动和太平洋年代际振荡、太阳辐射、热带辐合带以及气溶胶等因素对热带气旋的影响。其中,火山喷发导致平流层存在大量气溶胶,通过降低海表温度对热带气旋产生消极影响,但这种机制存在地域性差异;厄尔尼诺—南方涛动和太平洋年代际振荡以遥相关的方式调制全球热带气旋活动;太阳辐射和热带辐合带的变化与热带气旋频数存在相关性;气溶胶对不同发展阶段的热带气旋存在相反的影响机制。由于器测热带气旋数据在时间长度上和大部分替代指标在分辨率上的不足,严重制约了全球变化背景下热带气旋潜在影响因素的研究。未来可以通过寻找高分辨率记录载体来量化热带气旋活动历史,进一步解析热带气旋与潜在影响因素的关系,完善在气候波动影响下热带气旋活动的变化机制。

Tropical Cyclones (TCs) are meteorological phenomena that affect middle and low latitudes worldwide. This paper systematically summarizes and reviews the research progress on the main characteristics, potential influencing factors, and influencing mechanisms of TCs at home and abroad, and summarizes and analyzes their changing trends under the climate background of GW. With the significant increase in global temperature, the sources and tracks of global TCs have shifted poleward, with a slight increase in translation speed, decrease in frequency, and increase in intensity; however, there are significant differences in each ocean. This paper focuses on reviewing the effects of volcanic activity, El Ni?o-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), solar radiation, Intertropical Convergence Zone (ITCZ), and aerosols on TC activity. Volcanic eruptions release a large amount of aerosols in the stratosphere, thereby reducing sea surface temperature and negatively affecting TCs. However, there are regional variations in this mechanism. ENSO and PDO modulate the global TC activity through teleconnections, while changes in solar activity and ITCZ are also associated with TC activity. Aerosols have opposite influence mechanisms on TCs at different development stages. Due to the lack of time length and the coarse resolution of most surrogate indicators of instrumental TC data, research on the impact of potential influencing factors on TCs under long-term climate fluctuations is severely restricted. In the future, we should be able to quantify the history of storm activities by finding high-resolution record carriers, thereby further analyzing the relationships between TCs and potential influencing factors, and improving our understanding of the change mechanism in TC activity under the influence of climate fluctuations.

中图分类号: 

图1 热带气旋生成位置(a)和路径(b
(a)1842—2021年全球热带气旋生成位置;(b)2018—2021年全球热带气旋路径(数据来源于IBTrACS 10 );WP表示西北太平洋、EP表示东北太平洋、SP表示南太平洋、NA表示北大西洋、NI表示北印度洋和SI表示南印度洋
Fig. 1 Generation locationsaand tracksbof Tropical CyclonesTCs
(a) The global TC formation positions from 1842 to 2021;(b) The global TC tracks from 2018 to 2021 (data are from IBTrACS 10 );WP: West Pacific, EP: East Pacific, SP: South Pacific, NA: North Atlantic, NI: North Indian, SI: South Indian
表1 20112021年全球热带气旋的年平均发生数及占全球总数的百分比
Table 1 Annual average occurrence and percentage of global Tropical CyclonesTCsfrom 2011 to 2021
图2 不同区域年平均热带气旋移动速度的时间序列及其线性趋势
1949—2016年趋势用实线表示,1970—2016年趋势用虚线表示(数据来源于参考文献[ 21 ])
Fig. 2 The annual average Tropical Cyclone Translation SpeedTCTStime series and its linear trend in different regions
The trend from 1949 to 2016 is represented by solid line and the trend from 1970 to 2016 is represented by dotted line (data are from reference [ 21 ])
表2 衡量热带气旋强度的主要指标
Table 2 Main indicators of Tropical CycloneTCintensity
图3 19802019年全球主要海域热带气旋年际频率变化
这里指风速大于等于17.2 m/s的热带气旋。实线表示热带气旋数,虚线表示线性趋势(数据来源于参考文献[ 31 ])
Fig. 3 Interannual frequency changes of Tropical CyclonesTCsin major global seas from 1980 to 2019
This refers to tropical cyclones with wind speed ≥17.2 m/s. The solid line shows the number of TCs and the dotted line shows the linear trend (data are from reference [ 31 ])
图4 19802010年全球主要海域热带气旋年际气旋能量指数变化(数据来源于参考文献[ 42 ])
十字标识气旋能量指数年总值,线条取5年滑动平均
Fig. 4 Interannual changes of Accumulated Cyclone EnergyACEchanges of Tropical CycloneTCin the main sea areas of the world from 1980 to 2010data are from reference 42 ])
Crosses mark the annual value of ACE,while lines show 5 years running means
图5 19802019年北大西洋热带气旋频率和大西洋多年代际振荡分布
AMO使用7~10月平均数据,热带气旋数据来源于参考文献[ 31 ],AMO数据来源于http://climexp.knmi.nl/data/iamo_ersst_a.txt
Fig. 5 Tropical CycloneTCfrequency and Atlantic Multidecadal OscillationAMOdistribution in the North Atlantic from 1980 to 2019
AMO is 7~10 months average in figure, TC data are from reference [ 31 ], AMO data are from http://climexp.knmi.nl/data/iamo_ersst_a.txt
图6 19801996年和19972013年的熵亏损(a)、潜在强度(b)、垂直风切变(c)、涡度(d)、海表温度(e)和500 hPa高度处的湿度(f)季节平均差异
北半球使用8~10月数据,南半球使用1~3月数据,图片来源于参考文献[ 11
Fig. 6 Seasonal mean differences between 19801996 and 19972013 forentropy deficita), potential intensityb), shear wind shearc), vorticityd), skin temperatureeand humidity at 500 hPaf
The data of northern hemisphere is from August to October, the data of southern hemisphere is from January to March, figures are from reference [ 11
图7 埃尔奇琼火山和皮纳图博火山喷发前3年和喷发后3年大西洋的季节性热带气旋数(a)、热带气旋持续时间(b)、季节性气旋能量指数(c)和生命史最大强度变化(d)(数据来源于参考文献[ 48 ])
Fig. 7 Changes in number of seasonal Tropical CycloneTC) (a), duration of TCb), seasonal Accumulated Cyclone EnergyACE) (cand Lifetime Maximun IntensityLMI) (din the Atlantic Ocean during the three years before and after the eruption of El Chichón and Mount Pinatubodata are from reference 48 ])
图8 19502007年西北太平洋MEI指数(a)、PDO指数(b)和热带气旋频率(c)变化
热带气旋分类采用萨菲尔—辛普森等级(数据来源于参考文献[ 101 ])
Fig. 8 MEIa), PDO indexband Tropical CycloneTCfrequencycin the Northwest Pacific from 1950 to 2007
TC classification is based on the Saffir-Simpson scale (data are from reference [ 101 ])
图9 19962006年多海域热带气旋数和太阳磁暴数变化(数据来源于参考文献[ 130 ])
Fig. 9 Variations in the annual number of Tropical CyclonesTCsand planetary geomagnetic index in multiple sea areas from 1996 to 2006data are from reference 130 ])
图10 19802016年大西洋热带辐合带的纬度变化和热带气旋数的变化
虚线为线性趋势,数据来源于参考文献[ 24 138
Fig. 10 Annual variation in latitude of Intertropical Convergence ZoneITCZand frequency of Tropical CyclonesTCsin the Atlantic Ocean from 1980 to 2016
Dashed lines indicate linear trends and data are fromreferences [24,138]
图11 19791996年和19972010年阿拉伯海季风前和季风后生命史最大强度(a)和垂直风切变(b)的变化(数据来源于参考文献[ 145 ])
Fig. 11 Changes of Lifetime Maximum IntensityLMI) (aand vertical wind shearbin the Arabian Sea before and after monsoon1979-1996 and 1997-2010data are from reference 145 ])
1 ZHANG Qinghong, GUO Chunrui. Overview of the studies on tropical cyclone genesis[J]. Acta Oceanologica Sinica, 2008, 30(4): 1-11.
张庆红, 郭春蕊. 热带气旋生成机制的研究进展[J]. 海洋学报, 2008, 30(4): 1-11.
2 FENG Shizuo, LI Fengqi, LI Shaoqing. Introduction to marine science[M]. Beijing: Higher Education Press, 1999.
冯士筰, 李凤岐, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999.
3 BALKISSOON S S, BONGARD J T, CAIN T, et al. Hurricane florence makes landfall in the Southeast USA: sensitive dependence on initial conditions, parameterizations, and integrated enstrophy[J]. Atmospheric and Climate Sciences, 2020, 10(2): 101-124.
4 XIANG Chunyi, GAO Shuanzhu, LIU Da. Overview of typhoon activities over western North Pacific and the South China Sea in 2021[J]. Journal of Marine Meteorology, 2022, 42(1): 39-49.
向纯怡, 高拴柱, 刘达. 2021年西北太平洋和南海台风活动概述[J]. 海洋气象学报, 2022, 42(1): 39-49.
5 EMANUEL K. 100 years of progress in tropical cyclone research[M]. Washington, D.C.: Meteorological Monographs, 2018.
6 CAMARGO S J, WHEELER M C, SOBEL A H. Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index[J]. Journal of the Atmospheric Sciences, 2009, 66(10): 3 061-3 074.
7 KOSSIN J P, EMANUEL K A, CAMARGO S J. Past and projected changes in western North Pacific tropical cyclone exposure[J]. Journal of Climate, 2016, 29(16): 5 725-5 739.
8 ZHANG Wenlong, CUI Xiaopeng. Review of the studies on tropical cyclone genesis[J]. Journal of Tropical Meteorology, 2013, 19(2): 337-346.
张文龙, 崔晓鹏. 热带气旋生成问题研究综述[J]. 热带气象学报, 2013, 29(2): 337-346.
9 YANG Lüyuci, WU Lixin. Interannual variations of tropical cyclones activity over the Western North Pacific and relationship with large-scale circulation background[J]. Periodical of Ocean University of China (Natural Sciences Version), 2019, 19(5): 11-20.
杨吕玉慈, 吴立新. 西北太平洋热带气旋活动的年际变化及其与大尺度背景场的关系[J]. 中国海洋大学学报(自然科学版), 2019, 49(5): 11-20.
10 KNAPP R, KRUK M C, LEVINSON D H, et al. The International Best Track Archive for Climate Stewardship (IBTrACS) unifying tropical cyclone data[J]. Bulletin of the American Meteorological Society, 2010, 91(3): 363-376.
11 DALOZ A S, CAMARGO S J. Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis?[J]. Climate Dynamics, 2018, 50(1): 705-715.
12 CHEMKE R. The future poleward shift of Southern Hemisphere summer mid-latitude storm tracks stems from ocean coupling[J]. Nature Communications, 2022, 13. DOI:10.1038/s41467-022-29392-4 .
13 KOSSIN J P, EMANUEL K A, VECCHI G A. The poleward migration of the location of tropical cyclone maximum intensity[J]. Nature, 2014, 509(7 500): 349-352.
14 CHAN J. The physics of tropical cyclone motion[J]. Annual Review of Fluid Mechanics, 2005, 37: 99-128.
15 ZHAO Haikun, WU Liguang. Review on climate change of tropical cyclone in the northwest Pacific[J]. Journal of the Meteorological Sciences, 2015, 35(1): 108-118.
赵海坤, 吴立广. 西北太平洋热带气旋气候变化的若干研究进展[J]. 气象科学, 2015, 35(1): 108-118.
16 LI L, CHAKRABORTY P. Slower decay of landfalling hurricanes in a warming world[J]. Nature, 2020, 587(7 833): 230-234.
17 HAARSMA R, HAZELEGER W, SEVERIJNS C, et al. More hurricanes to hit western Europe due to global warming[J]. Geophysical Research Letters, 2013, 40(9): 1 783-1 788.
18 TAO S C, LIU K B, YU K F, et al. Poleward shift in tropical cyclone tracks in the northwest Pacific during warm periods: past and future[J]. Paleoceanography and Paleoclimatology, 2021, 36(12). DOI:10.1029/2021PA004367 .
19 ZHANG C X, WANG Y Q. Projected future changes of tropical cyclone activity over the western north and south Pacific in a 20-km-Mesh Regional Climate Model[J]. Journal of Climate, 2017, 30(15): 5 923-5 941.
20 KOSSIN J P. A global slowdown of tropical-cyclone translation speed[J]. Nature, 2018, 558(7 708): 104-107.
21 CHAN K. Are global tropical cyclones moving slower in a warming climate?[J]. Environmental Research Letters, 2019, 14(10). DOI:10.1088/1748-9326/ab4031 .
22 KIM S H, MOON I J, CHU P S. An increase in global trends of tropical cyclone translation speed since 1982 and its physical causes[J]. Environmental Research Letters, 2020, 15(9). DOI:10.1088/1748-9326/ab9elf .
23 YAMAGUCHI M, CHAN J C L, MOON I J, et al. Global warming changes tropical cyclone translation speed[J]. Nature Communications, 2020, 11(1). DOI:10.1038/s41467-019-13902-y .
24 EMANUEL K A. The maximum intensity of hurricanes[J]. Journal of the Atmospheric Sciences, 1988, 45(7): 1 143-1 155.
25 KLOTZBACH P J, BELL M M. Summary of 1990 Atlantic tropical activity and seasonal forecast verification[Z]. Colorado State University, Department of Atmospheric Science Paper issued on 28 November 1990, Fort Collins, Colorado, 1990: 29.
26 BELL G D, HALPERT M S, SCHNELL R C, et al. Climate assessment for 1999[J]. Bulletin of the American Meteorological Society, 2000, 81(6): s1-s50.
27 EMANUEL K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436(7 051): 686-688.
28 EMANUEL K. A statistical analysis of tropical cyclone intensity[J]. Monthly Weather Review, 2000, 128(4): 1 139-1 152.
29 XIAO F J, YIN Y Z, LUO Y, et al. Tropical cyclone hazards analysis based on tropical cyclone potential impact index[J]. Journal of Geographical Sciences, 2011, 21(5): 791-800.
30 BALAGURU K, FOLTZ G R, LEUNG L R, et al. Dynamic potential intensity: an improved representation of the ocean’s impact on tropical cyclones[J]. Geophysical Research Letters, 2015, 42(16): 6 739-6 746.
31 SOBEL A H, WING A A, CAMARGO S J, et al. Tropical cyclone frequency[J]. Earth’s Future, 2021, 9(12). DOI:10.1029/2021EF002275 .
32 SUGI M, NODA A, SATO N. Influence of the global warming on tropical cyclone climatology: an experiment with the JMA global model[J]. Journal of the Meteorological Society of Japan Series Ⅱ, 2002, 80(2): 249-272.
33 BENGTSSON L, HODGES K I, ESCH M, et al. How many tropical cyclones change in a warmer climate?[J]. Tellus A: Dynamic Meteorology and Oceanography, 2007, 59(4): 539-561.
34 SUGI M, MURAKAMI H, YOSHIMURA J. A reduction in global tropical cyclone frequency due to global warming[J]. SOLA, 2009, 5: 164-167.
35 WALSH K J E, MCBRIDE J L, KLOTZBACH P J, et al. Tropical cyclones and climate change[J]. WIREs Climate Change, 2016, 7(1): 65-89.
36 NAKAMURA J, CAMARGO S J, SOBEL A H, et al. Western north pacific tropical cyclone model tracks in present and future climates[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(18): 9 721-9 744.
37 TAN K X, HUANG P, LIU F, et al. Simulated ENSO’s impact on tropical cyclone genesis over the western North Pacific in CMIP5 models and its changes under global warming[J]. International Journal of Climatology, 2019, 39(8): 3 668-3 678.
38 MURAKAMI H, DELWORTH T L, COOKE W F, et al. Detected climatic change in global distribution of tropical cyclones[J]. Proceedings of the National Academy of Sciences, 2020, 117(20): 10 706-10 714.
39 VECCHI G A, DELWORTH T L, MURAKAMI H, et al. Tropical cyclone sensitivities to CO2 doubling: roles of atmospheric resolution, synoptic variability and background climate changes[J]. Climate Dynamics, 2019, 53(9/10): 5 999-6 033.
40 CHU J E, LEE S S, TIMMERMANN A, et al. Reduced tropical cyclone densities and ocean effects due to anthropogenic greenhouse warming[J]. Science Advances, 2020, 6(51). DOI:10.1126/sciadv.abd5109 .
41 EMANUEL K A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century[J]. Proceedings of the National Academy of Sciences, 2013, 110(30): 12 219-12 224.
42 SCHRECK Ⅲ C J, KNAPP K P, KOSSIN J P, et al. The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS[J]. Monthly Weather Review, 2014, 142(10): 3 881-3 899.
43 SUN Y, ZHONG Z, LI T, et al. Impact of ocean warming on tropical cyclone size and its destructiveness[J]. Scientific Reports, 2017, 7(1). DOI:10.1038/s41598-017-08533-6 .
44 BHATIA K, VECCHI G, MURAKAMI H, et al. Projected response of tropical cyclone intensity and intensification in a global climate model[J]. Journal of climate, 2018, 31(20): 8 281-8 303.
45 BHATIA K T, VECCHI G A, KNUTSON T R, et al. Recent increases in tropical cyclone intensification rates[J]. Nature Communications, 2019, 10(1). DOI:10.1038/s41467-019-08471-z .
46 BALAGURU K, FOLTZ G R, LEUNG L R, et al. Global warming-induced upper-ocean freshening and the intensification of super typhoons[J]. Nature Communications, 2016, 7(1). DOI:10.1038/ncomms13670 .
47 DELWORTH T L, MANN M E. Observed and simulated multidecadal variability in the Northern Hemisphere[J]. Climate Dynamics, 2000, 16(9): 661-676.
48 EVAN A T. Atlantic hurricane activity following two major volcanic eruptions[J]. Journal of Geophysical Research:Atmospheres, 2012, 117(D6). DOI:10.1029/2011JD016716 .
49 EVAN A T, FOLTZ G R, ZHANG D, et al. Influence of African dust on ocean-atmosphere variability in the tropical Atlantic[J]. Nature Geoscience, 2011, 4(11): 762-765.
50 HOLLAND G, BRUYÈRE C L. Recent intense hurricane response to global climate change[J]. Climate Dynamics, 2014, 42(3): 617-627.
51 GRAY W M. Tropical cyclone genesis[D]. Fort Collins, CO: Colorado State University, 1975.
52 GRAY W M. Hurricanes: their formation, structure and likely role in the tropical circulation[Z]. 1979.
53 CHEN Lianshou, MENG Zhiyong. An overview on tropical cyclone research progress in China during the past ten years[J]. Chinese Journal of Atmospheric Sciences, 2001, 25(3): 420-431.
陈联寿, 孟智勇. 我国热带气旋研究十年进展[J]. 大气科学, 2001, 25(3): 420-431.
54 KAPLAN J, DEMARIA M. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic Basin[J]. Weather and Forecasting, 2003, 18(6): 1 093-1 108.
55 CHAN J C L, LIU K S. Global warming and western north Pacific typhoon activity from an observational perspective[J]. Journal of Climate, 2004, 17(23): 4 590-4 602.
56 YU J H, LI T, TAN Z M, et al. Effects of tropical North Atlantic SST on tropical cyclone genesis in the western north Pacific[J]. Climate Dynamics, 2015, 46(3): 865-877.
57 ZHAN R F, WANG Y Q, LEI X T. Contributions of ENSO and east Indian Ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency[J]. Journal of climate, 2011, 24(2): 509-521.
58 ZHAN R F, WANG Y Q, WEN M. The SST gradient between the Southwestern Pacific and the western Pacific warm pool: a new factor controlling the northwestern Pacific tropical cyclone genesis frequency[J]. Journal of Climate, 2013, 26(7): 2 408-2 415.
59 ZHAN R F, WANG Y Q, ZHAO J W. Contributions of SST anomalies in the Indo-Pacific ocean to the interannual variability of tropical cyclone genesis frequency over the western north Pacific[J]. Journal of Climate, 2019, 32(11): 3 357-3 372.
60 WANG L, CHEN G H. Impact of the spring SST gradient between the tropical Indian Ocean and western Pacific on landfalling tropical cyclone frequency in China[J]. Advances in Atmospheric Sciences, 2018, 35(6): 682-688.
61 TORY K J, DARE R A, DAVIDSON N E, et al. The importance of low-deformation vorticity in tropical cyclone formation[J]. Atmospheric Chemistry and Physics, 2013, 13(4): 2 115-2 132.
62 SU Lixin. The effects of vertical wind shear on tropical cyclone intensity of variation in northwestern Pacific[D]. Nanjing: Nanjing University of Information Science & Technology, 2007.
苏丽欣. 环境风垂直切变对西北太平洋热带气旋强度变化的影响分析[D]. 南京:南京信息工程大学, 2007.
63 FRANK W M. Tropical Cyclone Formation[M]// Global perspectives on tropical cyclones: from science to mitigation. Word Scientific Publishing Company, 2015.
64 EMANUEL K, SUNDARARAJAN R, WILLIAMS J. Hurricanes and global warming: results from downscaling IPCC AR4 simulations[J]. Bulletin of the American Meteorological Society, 2008, 89(3): 347-368.
65 WU L T, SU H, FOVELL R G, et al. Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate[J]. Geophysical Research Letters, 2012, 39(20). DOI:10.1029/2012GL053546 .
66 NOLAN D. What is the trigger for tropical cyclogenesis?[J]. Australian Meteorological Magazine, 2012, 56(4): 241-266.
67 SINGH K, PANDA J, SAHOO M, et al. Variability in tropical cyclone climatology over north indian ocean during the period 1891 to 2015[J]. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55(2): 269-287.
68 DEMARIA M, KAPLAN J. A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin[J]. Weather and Forecasting, 1994, 9(2): 209-220.
69 FITZPATRICK P J. Understanding and forecasting tropical cyclone intensity change with the Typhoon Intensity Prediction Scheme (TIPS)[J]. Weather and Forecasting, 1997, 12(4): 826-846.
70 CHEN Guomin, SHEN Xinyong, LIU Jia. Role of vertical wind shear on tropical cyclone intensity and structure[J]. Journal of Meteorological Research and Application, 2010, 31(1): 1-4.
陈国民, 沈新勇, 刘佳. 垂直风切变对热带气旋强度及结构的影响[J]. 气象研究与应用, 2010, 31(1): 1-4.
71 ZENG Z H, WANG Y Q, WU C C. Environmental dynamical control of tropical cyclone intensity—an observational study[J]. Monthly Weather Review, 2007, 135(1): 38-59.
72 HENDRICKS E A, PENG M S, FU B, et al. Quantifying environmental control on tropical cyclone intensity change[J]. Monthly Weather Review, 2010, 138(8): 3 243-3 271.
73 GRAY W M. Global view of the origin of tropical disturbances and storms[J]. Monthly Weather Review, 1968, 96(10): 669-700.
74 BAI L N, WANG Y. Effect of vertical shear on tropical cyclone intensity change[J]. Journal of Atmospheric Sciences, 2016, 22(1): 11-18.
75 GU Jianfeng. Effects of vertical wind shear on inner-core thermodynamics of the tropical cyclone[D]. Nanjing: Nanjing University, 2014.
顾剑峰. 垂直风切变对热带气旋内核区域热力学结构的影响[D]. 南京:南京大学, 2014.
76 FLATAU M, SCHUBERT W H, STEVENS D E. The role of baroclinic processes in tropical cyclone motion: the influence of vertical tilt[J]. Journal of Atmospheric Sciences, 1994, 51(18): 2 589-2 601.
77 BRAUN S A, MONTGOMERY M T, PU Z X. High-resolution simulation of Hurricane Bonnie (1998). Part I: the organization of eyewall vertical motion[J]. Journal of the Atmospheric Sciences, 2006, 63(1): 19-42.
78 DEHART J C, HOUZE JR R A, ROGERS R F. Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear[J]. Journal of the Atmospheric Sciences, 2014, 71(7): 2 713-2 732.
79 BLACK M, GAMACHE J, MARKS Jr F, et al. Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: the effect of vertical shear on structure and intensity[J]. Monthly Weather Review, 2002, 130(9): 2 291-2 312.
80 ZENG Z H, WANG Y Q, CHEN L S. A statistical analysis of vertical shear effect on tropical cyclone intensity change in the North Atlantic[J]. Geophysical Research Letters, 2010, 37(2). DOI:10.1029/2009GL041788 .
81 FENG Qian, ZHANG Qinghong. Statistics of environmental vertical wind shear and water vapor field on the change of tropical cyclone structure in northwest Pacific Ocean from 2001 to 2014[J]. Acta Scientiarum Naturalium Universitatis Pekinensis (Natural Sciences Version), 2018, 54(4): 713-720.
冯乾, 张庆红. 西北太平洋2001—2014年热带气旋结构变化的环境垂直风切变和水汽场统计[J]. 北京大学学报(自然科学版), 2018, 54(4): 713-720.
82 WANG Xi, YU Jinhua. A comparative analysis of environmental dynamical control of change of tropical cyclones intensity in different oceans[J]. Journal of Tropical Meteorology, 2011, 27(3): 387-395.
王喜, 余锦华. 不同海域影响热带气旋强度变化的环境动力因素对比[J]. 热带气象学报, 2011, 27(3): 387-395.
83 VELDEN C S, SEARS J. Computing deep-tropospheric vertical wind shear analyses for tropical cyclone applications: does the methodology matter?[J]. Weather and Forecasting, 2014, 29(5): 1 169-1 180.
84 WANG Y, RAO Y, TAN Z M, et al. A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the western North Pacific[J]. Monthly Weather Review, 2015, 143(9): 3 434-3 453.
85 YAN Q, ZHANG Z S, WANG H J. Divergent responses of tropical cyclone genesis factors to strong volcanic eruptions at different latitudes[J]. Climate Dynamics, 2018, 50(5): 2 121-2 136.
86 PAUSATA F S R, CAMARGO S J. Tropical cyclone activity affected by volcanically induced ITCZ shifts[J]. Proceedings of the National Academy of Sciences, 2019, 116(16): 7 732-7 737.
87 PAUSATA F S R, CHAFIK L, CABALLERO R, et al. Impacts of high-latitude volcanic eruptions on ENSO and AMOC[J]. Proceedings of the National Academy of Sciences, 2015, 112(45): 13 784-13 788.
88 WATANABE M, SHIOGAMA H, TATEBE H, et al. Contribution of natural decadal variability to global warming acceleration and hiatus[J]. Nature Climate Change, 2014, 4(10): 893-897.
89 GUEVARA-MURUA A, HENDY E J, RUST A C, et al. Consistent decrease in North Atlantic tropical cyclone frequency following major volcanic eruptions in the last three centuries[J]. Geophysical Research Letters, 2015, 42(21): 9 425-9 432.
90 ZHANG Y, WALLACE J M, BATTISTI D S. ENSO-like interdecadal variability: 1900-93[J]. Journal of Climate, 1997, 10(5): 1 004-1 020.
91 MANTUA N J, HARE S R, ZHANG Y, et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 1997, 78(6): 1 069-1 079.
92 XIA Yang, SUN Xuguang, YAN Yan, et al. Change of ENSO characteristics in response to global warming[J]. Chinese Science Bulletin,2017, 62(16): 1 738-1 751.
夏杨, 孙旭光, 闫燕, 等. 全球变暖背景下ENSO特征的变化[J]. 科学通报, 2017, 62(16): 1 738-1 751.
93 FANG C F, WU L G, ZHANG X. The impact of global warming on the pacific decadal oscillation and the possible mechanism[J]. Advances in Atmospheric Sciences, 2014, 31(1): 118-130.
94 YANG Xiuqun, ZHU Yimin, XIE Qian, et al. Advances in studies of Pacific Decadal Oscillation[J]. Chinese Journal of Atmospheric Sciences, 2004(6): 979-992.
杨修群, 朱益民, 谢倩, 等. 太平洋年代际振荡的研究进展[J]. 大气科学, 2004(6): 979-992.
95 HE Pengcheng, JIANG Jing. Effect of PDO on the relationships between large scale circulation and tropical cyclone activity over the western north Pacific[J]. Scientia Meteorologica Sinica, 2011, 31(3): 266-273.
何鹏程, 江静. PDO 对西北太平洋热带气旋活动与大尺度环流关系的影响[J]. 气象科学, 2011, 31(3): 266-273.
96 LIN R P, ZHENG F, DONG X. ENSO frequency asymmetry and the Pacific Decadal Oscillation in observations and 19 CMIP5 models[J]. Advances in Atmospheric Sciences, 2018, 35(5): 495-506.
97 KURTZMAN D, SCANLON B R. El Niño-Southern Oscillation and Pacific Decadal Oscillation impacts on precipitation in the southern and central United States: evaluation of spatial distribution and predictions[J]. Water Resources Research, 2007, 43(10). DOI:10.1029/2007WR005863 .
98 KWON M, YEH S W, PARK Y G, et al. Changes in the linear relationship of ENSO-PDO under the global warming[J]. International Journal of Climatology, 2013, 33(5): 1 121-1 128.
99 XU Yidan, LI Jianping, WANG Qiuyun, et al. Review of the research progress in global warming hiatus[J]. Advances in Earth Science, 2019, 34(2): 175-190.
徐一丹, 李建平, 汪秋云, 等. 全球变暖停滞的研究进展回顾[J]. 地球科学进展, 2019, 34(2): 175-190.
100 MAUE R N. Recent historically low global tropical cyclone activity[J]. Geophysical Research Letters, 2011, 38(14). DOI:10.1029/2011GL047711 .
101 LEE H S, YAMASHITA T, MISHIMA T. Multi-decadal variations of ENSO, the Pacific Decadal Oscillation and tropical cyclones in the western North Pacific[J]. Progress in Oceanography, 2012, 105: 67-80.
102 WANG B, CHAN J. How strong ENSO events affect tropical storm activity over the western North Pacific[J]. Journal of Climate, 2002, 15(13): 1 643-1 658.
103 CHAN J. Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon[J]. Monthly Weather Review, 1985, 113(4): 599-606.
104 LIU Z H, CHEN X R, SUN C H, et al. Influence of ENSO events on tropical cyclone activity over the western north Pacific[J]. Journal of Ocean University of China, 2019, 18(4): 784-794.
105 CHAND S, MCBRIDE J, TORY K, et al. Impact of different ENSO regimes on southwest Pacific tropical cyclones[J]. Journal of Climate, 2013, 26(2): 600-608.
106 HUO L W, GUO P W, HAMEED S N, et al. The role of tropical Atlantic SST anomalies in modulating western North Pacific tropical cyclone genesis[J]. Geophysical Research Letters, 2015, 42(7): 2 378-2 384.
107 KIM H K, SEO K H, YEH S W, et al. Asymmetric impact of Central Pacific ENSO on the reduction of tropical cyclone genesis frequency over the western North Pacific since the late 1990s[J]. Climate Dynamics, 2020, 54(1/2): 661-673.
108 JIN F F, BOUCHAREL J, LIN I I. Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat[J]. Nature, 2014, 516(7 529): 82-85.
109 GRAY W M, LANDSEA C W, MIELKE P W, et al. Predicting Atlantic Basin seasonal tropical cyclone activity by 1 August[J]. Weather and Forecasting, 1993, 8(1): 73-86.
110 KNAFF J A. Implications of summertime sea level pressure anomalies in the tropical Atlantic region[J]. Journal of Climate, 1997, 10(4): 789-804.
111 SHAPIRO L J. Month-to-month variability of the Atlantic tropical circulation and its relationship to tropical storm formation[J]. Monthly Weather Review, 1987, 115(11): 2 598-2 614.
112 GOLDENBERG S B, SHAPIRO L J. Physical mechanisms for the association of El Niño and west African rainfall with Atlantic major hurricane activity[J]. Journal of Climate, 1996, 9(6): 1 169-1 187.
113 SINGH O P, KHAN T M A, RAHMAN M S. Changes in the frequency of tropical cyclones over the North Indian Ocean[J]. Meteorology and Atmospheric Physics, 2000, 75(1): 11-20.
114 ELSNER J B, KARA A B. Hurricanes of the North Atlantic: climate and society[M]. Demand: Oxford University Press, 1999.
115 ASHOK K, BEHERA S K, RAO S A, et al. El Niño Modoki and its possible teleconnection[J]. Journal of Geophysical Research, 2007, 112(C11). DOI:10.1029/2006JC003798 .
116 ASHOK K, YAMAGATA T. The El Niño with a difference[J]. Nature, 2009, 461(7 263): 481-484.
117 CHEN G H, TAM C Y. Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific[J]. Geophysical Research Letters, 2010, 37(1). DOI:10.1029/2009GL041708 .
118 KIM H M, WEBSTER P J, CURRY J A. Modulation of North Pacific tropical cyclone activity by three phases of ENSO[J]. Journal of Climate, 2011, 24(6): 1 839-1 849.
119 WANG C Z, LI C X, MU M, et al. Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific[J]. Climate Dynamics, 2013, 40(11): 2 887-2 902.
120 ENRICO S, GABRIELE V, SILVIO G, et al. The Pacific Decadal Oscillation modulates tropical cyclone days in the North Pacific Ocean[J]. Journal of Geophysical Research, 2021, 126(15). DOI:10.1029/2021JD034988 .
121 HU F, LI T, LIU J, et al. Decrease of tropical cyclone genesis frequency in the western North Pacific since 1960s[J]. Dynamics of Atmospheres and Oceans, 2018, 81: 42-50.
122 CHOI J W, CHA Y, LU R. Possible relationship between Korea affecting tropical cyclone activity and Pacific Decadal Oscillation in summer[J]. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55(4): 557-573.
123 LI H, WANG C, HE S P, et al. Plausible modulation of solar wind energy flux input on global tropical cyclone activity[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 192. DOI:10.1016/j.jastp.2018.01.018 .
124 HUNG C W. A 300-year typhoon record in taiwan and the relationship with solar activity[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2013, 24: 737-743.
125 ELSNER J B, JAGGER T H. United States and Caribbean tropical cyclone activity related to the solar cycle[J]. Geophysical Research Letters, 2008, 35(18). DOI:10.1029/2008GL034431 .
126 ELSNER J B, JAGGER T H, HODGES R E. Daily tropical cyclone intensity response to solar ultraviolet radiation[J]. Geophysical Research Letters, 2010, 37(9). DOI:10.1029/2010GL043091 .
127 HODGES R E, ELSNER J B. Evidence linking solar variability with US hurricanes[J]. International Journal of Climatology, 2011, 31(13): 1 897-1 907.
128 TRABING B C, BELL M M, BROWN B R. Impacts of radiation and upper-tropospheric temperatures on tropical cyclone structure and intensity[J]. Journal of the Atmospheric Sciences, 2019, 76(1): 135-153.
129 HAIG J E A, NOTT J. Solar forcing over the last 1500 years and Australian tropical cyclone activity[J]. Geophysical Research Letters, 2016, 43(6): 2 843-2 850.
130 IVANOV K G. Correlation between tropical cyclones and magnetic storms during cycle 23 of solar activity[J]. Geomagnetism and Aeronomy, 2007, 47(3): 371-374.
131 ROSENFELD D, ANDREAE M O, ASMI A, et al. Global observations of aerosol-cloud-precipitation-climate interactions[J]. Reviews of Geophysics, 2014, 52(4): 750-808.
132 WALISER D E, GAUTIER C. A satellite-derived climatology of the ITCZ[J]. Journal of Climate, 1993, 6(11): 2 162-2 174.
133 BERRY G, REEDER M J. Objective identification of the intertropical convergence zone: climatology and trends from the ERA-Interim[J]. Journal of Climate, 2014, 27(5): 1 894-1 909.
134 MA L, WILLIAMS R. How does intertropical convergence zone variation impact on tropical cyclone in the northern hemisphere?[R]. 19th EGU General Assembly. EGU 2017, Austria Vienna, 2017.
135 MOLINARI J, VOLLARO D. What percentage of western north pacific tropical cyclones form within the monsoon trough?[J]. Monthly Weather Review, 2013, 141(2): 499-505.
136 CAO Xi, CHEN Guanghua, HUANG Ronghui, et al. The intensity variation of the summer intertropical convergence zone in western north Pacific and its impact on tropical cyclones[J]. Journal of Tropical Meteorology, 2013, 29(2): 198-206.
曹西, 陈光华, 黄荣辉, 等. 夏季西北太平洋热带辐合带的强度变化特征及其对热带气旋的影响[J]. 热带气象学报, 2013, 29(2): 198-206.
137 MA L P, CHEN L S. The relationship between global warming and the variation in tropical cyclone frequency over the western north pacific[J]. Journal of Tropical Meteorology, 2009, 15(1): 38-44.
138 BYRNE M P, PENDERGRASS A G, RAPP A D, et al. Response of the intertropical convergence zone to climate change: location, width, and strength[J]. Current Climate Change Reports, 2018, 4(4): 355-370.
139 CHEN H F, LIU Y B, CHIANG C W, et al. China’s historical record when searching for tropical cyclones corresponding to Intertropical Convergence Zone (ITCZ) shifts over the past 2 kyr[J]. Climate of The Past, 2019, 15(1): 279-289.
140 LEE D, SUD Y C, OREOPOULOS L, et al. Modeling the influences of aerosols on pre-monsoon circulation and rainfall over Southeast Asia[J]. Atmospheric Chemistry and Physics, 2014, 14(13): 6 853-6 866.
141 LIANG Zhichao, DING Juli, FEI Jianfang, et al. Influence of aerosol direct and indirect effects on typhoon eye wall and rain belt and their separation contribution[J]. Science China Earth Sciences, 2022, 52(1): 154-170.
梁志超, 丁菊丽, 费建芳, 等. 气溶胶直接和间接效应对台风眼墙和外雨带的影响及其分离贡献[J]. 中国科学:地球科学, 2022, 52(1): 154-170.
142 CAO J, ZHAO H, WANG B, et al. Hemisphere-asymmetric tropical cyclones response to anthropogenic aerosol forcing[J]. Nature Communications, 2021, 12. DOI:10.1038/s41467-021-27030-z .
143 EVAN A T, DUNION J, FOLEY J A, et al. New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks[J]. Geophysical Research Letters, 2006, 33(19). DOI: 10.1029/2006GL026408 .
144 FAN J, ZHANG R, TAO W K, et al. Effects of aerosol optical properties on deep convective clouds and radiative forcing[J]. Journal of Geophysical Research, 2008, 113(D8). DOI: 10.1029/2007JD009257 .
145 EVAN A T, KOSSIN J P, CHUNG C E, et al. Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols[J]. Nature, 2011, 479(7 371): 94-97.
146 ZHAO Pengguo, YIN Yan, XIAO Hui, et al. Numerical simulation of the effects of aerosol on the intensity and electrification of tropical cyclone[J]. Journal of the Meteorological Sciences, 2016, 36(1): 1-9.
赵鹏国, 银燕, 肖辉, 等. 气溶胶对热带气旋强度及电过程影响的数值模拟研究[J]. 气象科学, 2016, 36(1): 1-9.
147 DING Jincai, GUO Yinghua, GUO Yongrun, et al. The composite analysis of the thermal structure of 17 typhoons by using COSMIC data[J]. Journal of Tropical Meteorology, 2011, 27(1): 31-43.
丁金才, 郭英华, 郭永润, 等. 利用COSMIC资料对17个台风热力结构的合成分析[J]. 热带气象学报, 2011, 27(1): 31-43.
148 YANG Y, PIPER D J W, XU M, et al. Northwestern Pacific tropical cyclone activity enhanced by increased Asian dust emissions during the Little Ice Age[J]. Nature Communications, 2022, 13(1). DOI: 10.1038/s41467-022-29386-2 .
149 HWANG Y T, FRIERSON D M W, KANG S M. Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century[J]. Geophysical Research Letters, 2013, 40(11): 2 845-2 850.
150 MITCHELL R M, CAMPBELL S K, QIN Y. Recent increase in aerosol loading over the Australian arid zone[J]. Atmospheric Chemistry and Physics, 2010, 10: 1 689-1 699.
151 BOOTH B B B, DUNSTONE N J, HALLORAN P R, et al. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability[J]. Nature, 2012, 484(7 393): 228-232.
[1] 张京, 宋照亮, 李强, 孙少波, 郝倩, 冉祥滨, 胡伟, 刘洪妍. 沿海地区气溶胶硅的组成、来源及其生态效应研究进展[J]. 地球科学进展, 2022, 37(6): 563-574.
[2] 朱欢欢, 姜胜, 江志红. 基于可靠性集合平均方法的全球 1.5/2.0 °C变暖下中国极端气候的未来预估[J]. 地球科学进展, 2022, 37(6): 612-626.
[3] 段晚锁, 秦晓昊. 非线性最优扰动方法在热带气旋目标观测研究和外场试验中的应用[J]. 地球科学进展, 2022, 37(2): 165-176.
[4] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[5] 杨慧,任福民,杨明仁. 不同强度热带气旋对中国降水变化的影响[J]. 地球科学进展, 2019, 34(7): 747-756.
[6] 徐一丹,李建平,汪秋云,林霄沛. 全球变暖停滞的研究进展回顾[J]. 地球科学进展, 2019, 34(2): 175-190.
[7] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[8] 祁建华, 李孟哲, 高冬梅, 甄毓, 张大海. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
[9] 安俊岭, 陈勇, 屈玉, 陈琦, 庄炳亮, 张平文, 吴其重, 徐勤武, 曹乐, 姜海梅, 陈学舜, 郑捷. 全耦合空气质量预报模式系统[J]. 地球科学进展, 2018, 33(5): 445-454.
[10] 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战 *[J]. 地球科学进展, 2018, 33(11): 1181-1192.
[11] 满文敏, 周天军. IAP年代际预测试验中火山活动对太平洋海温预测技巧的影响[J]. 地球科学进展, 2017, 32(4): 353-361.
[12] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[13] 林霄沛, 许丽晓, 李建平, 罗德海, 刘海龙. 全球变暖“停滞”现象辨识与机理研究[J]. 地球科学进展, 2016, 31(10): 995-1000.
[14] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[15] 曹芳, 章炎麟. 碳质气溶胶的放射性碳同位素( 14C)源解析:原理、方法和研究进展[J]. 地球科学进展, 2015, 30(4): 425-432.
阅读次数
全文


摘要