1 |
CROFT T A. Nighttime images of the earth from space[J]. Scientific American, 1978, 239(1): 86-98.
|
2 |
ZHUO Li, CHEN Jin, SHI Peijun, et al. Modeling population density of China in 1998 based on DMSP/OLS nighttime light image[J]. Acta Geographica Sinica, 2005, 60(2): 266-276.
|
|
卓莉, 陈晋, 史培军, 等. 基于夜间灯光数据的中国人口密度模拟[J]. 地理学报, 2005, 60(2): 266-276.
|
3 |
SUTTON P C, COSTANZA R. Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation[J]. Ecological Economics, 2002, 41(3): 509-527.
|
4 |
WELCH R. Monitoring urban population and energy utilization patterns from satellite Data[J]. Remote Sensing of Environment, 1980, 9(1): 1-9.
|
5 |
SU Yongxian, CHEN Xiuzhi, YE Yuyao, et al. The characteristics and mechanisms of carbon emissions from energy consumption in China using DMSP/OLS night light imageries[J]. Acta Geographica Sinica, 2013, 68(11): 1 513-1 526.
|
|
苏泳娴, 陈修治, 叶玉瑶, 等. 基于夜间灯光数据的中国能源消费碳排放特征及机理[J]. 地理学报, 2013, 68(11): 1 513-1 526.
|
6 |
MA Ting. Spatiotemporal characteristics of urbanization in China from the perspective of remotely sensed big data of nighttime light[J]. Journal of Geo-Information Science, 2019, 21(1): 59-67.
|
|
马廷. 夜光遥感大数据视角下的中国城市化时空特征[J]. 地球信息科学学报, 2019, 21(1): 59-67.
|
7 |
LI Guihua, FAN Junfu, ZHOU Yuke, et al. Development characteristics estimation of Shandong peninsula urban agglomeration using VIIRS night light data[J]. Remote Sensing Technology and Application, 2020, 35(6): 1 348-1 359.
|
|
李桂华, 范俊甫, 周玉科, 等. 基于VIIRS夜间灯光数据的山东半岛城市群发展特征研究[J]. 遥感技术与应用, 2020, 35(6): 1 348-1 359.
|
8 |
ZHANG Lin, LI Xi. Analysis on disparity of regional development in Pakistan under perspective of nighttime light remote sensing[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 269-279.
|
|
张霖, 李熙. 夜光遥感视角下的巴基斯坦区域发展差异分析[J]. 武汉大学学报(信息科学版), 2022, 47(2): 269-279.
|
9 |
ELVIDGE C, BAUGH K, HOBSON V, et al. Satellite inventory of human settlements using nocturnal radiation emissions: a contribution for the global toolchest[J]. Global Change Biology, 1997, 3(5): 387-395.
|
10 |
HU Xiuqing, XU Hanlie, LEI Songtao, et al. Overview of low light detection and application of FY-3 early morning satellite[J]. Acta Optica Sinica, 2022, 42(12): 33-46.
|
|
胡秀清, 徐寒列, 雷松涛, 等. 风云三号黎明星微光探测及应用综述[J]. 光学学报, 2022, 42(12): 33-46.
|
11 |
WANG W H, CAO C Y, BAI Y, et al. Assessment of the NOAA S-NPP VIIRS geolocation reprocessing improvements[J]. Remote Sensing, 2017, 9(10). DOI:10.3390/rs9100974 .
|
12 |
LIAO L B, WEISS S, MILLS S, et al. Suomi NPP VIIRS day-night band on-orbit performance[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(22): 12 705-12 718.
|
13 |
SCHUELER C F, LEE T F, MILLER S D. VIIRS constant spatial-resolution advantages[J]. International Journal of Remote Sensing, 2013, 34(16): 5 761-5 777.
|
14 |
LEE S, CHIANG K, XIONG X X, et al. The S-NPP VIIRS day-night band on-orbit calibration/characterization and current state of SDR products[J]. Remote Sensing, 2014, 6(12): 12 427-12 446.
|
15 |
XU Wei, JIN Guang, WANG Jiaqi. Optical imaging technology of JL-1 lightweight high resolution multispectral remote sensing satellite[J]. Optics and Precision Engineering, 2017, 25(8): 1 969-1 978.
|
|
徐伟, 金光, 王家骐. 吉林一号轻型高分辨率遥感卫星光学成像技术[J]. 光学精密工程, 2017, 25(8): 1 969-1 978.
|
16 |
ZHANG G, LI L T, JIANG Y H, et al. On-orbit relative radiometric calibration of the night-time sensor of the LuoJia1-01 satellite[J]. Sensors, 2018, 18(12). DOI:10.3390/s18124225 .
|
17 |
XIA Lang, MAO Kebiao, SUN Zhiwen, et al. Method for detecting cloud at night from VIIRS data based on DNB[J]. Remote Sensing for Land & Resources, 2014, 26(3): 74-79.
|
|
夏浪, 毛克彪, 孙知文, 等. 基于DNB验证的VIIRS夜间云检测方法[J]. 国土资源遥感, 2014, 26(3): 74-79.
|
18 |
JOACHIM L, STORCH T. Cloud detection for night-time panchromatic visible and near-infrared satellite imagery[Z]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020: 853-860.
|
19 |
EYRE J, BROWNSCOMBE J L, ALLAM R. Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery[J]. Meteorological Magazine, 1984, 113: 266-271.
|
20 |
JIANG J, YAN W, MA S, et al. Three cases of a new multichannel threshold technique to detect fog/low Stratus during nighttime using SNPP data[J]. Weather and Forecasting, 2015, 30(6): 1 763-1 780.
|
21 |
ZHOU Xiaoke, YAN Wei, BAI Heng, et al. Detection of heavy fogs and low clouds during nighttime using DMSP-OLS data[J]. Remote Sensing Information, 2012, 27(6): 86-90.
|
|
周小珂, 严卫, 白衡, 等. 基于DMSP/OLS数据的夜间低云大雾监测技术研究[J]. 遥感信息, 2012, 27(6): 86-90.
|
22 |
MILLER S D, NOH Y J, GRASSO L D, et al. A physical basis for the overstatement of low clouds at night by conventional satellite infrared-based imaging radiometer Bi-spectral techniques[J]. Earth and Space Science, 2022, 9(2). DOI: 10.1029/2021EA002137 .
|
23 |
HU S S, MA S, YAN W, et al. A new multichannel threshold algorithm based on radiative transfer characteristics for detecting fog/low stratus using night-time NPP/VIIRS data[J]. International Journal of Remote Sensing, 2017, 38(21): 5 919-5 933.
|
24 |
WALTHER A, HEIDINGER A K, MILLER S. The expected performance of cloud optical and microphysical properties derived from Suomi NPP VIIRS day/night band lunar reflectance[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(23): 13 230-13 240.
|
25 |
MIN M, DENG J B, LIU C, et al. An investigation of the implications of lunar illumination spectral changes for day/night band-based cloud property retrieval due to lunar phase transition[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(17): 9 233-9 244.
|
26 |
HOLTON J R. The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere[J]. Journal of the Atmospheric Sciences, 1982, 39(4): 791-799.
|
27 |
FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Reviews of Geophysics, 2003, 41(1). DOI:10.1029/2001RG000106 .
|
28 |
MCLANDRESS C. On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1998, 60(14): 1 357-1 383.
|
29 |
GELLER M A, ALEXANDER M J, LOVE P T, et al. A comparison between gravity wave momentum fluxes in observations and climate models[J]. Journal of Climate, 2013, 26(17): 6 383-6 405.
|
30 |
MILLER S D, STRAKA W C, YUE J, et al. Upper atmospheric gravity wave details revealed in nightglow satellite imagery[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(49): E6728-E6735.
|
31 |
MILLER S D, MILLS S P, ELVIDGE C D, et al. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): 15 706-15 711.
|
32 |
YUE J, MILLER S D, HOFFMANN L, et al. Stratospheric and mesospheric concentric gravity waves over tropical cyclone Mahasen: joint AIRS and VIIRS satellite observations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 119: 83-90.
|
33 |
MILLER S D, STRAKA W C, YUE J, et al. The dark side of hurricane Matthew: unique perspectives from the VIIRS day/night band[J]. Bulletin of the American Meteorological Society, 2018, 99(12): 2 561-2 574.
|
34 |
HU S S, MA S, YAN W, et al. Measuring gravity wave parameters from a nighttime satellite low-light image based on two-dimensional stockwell transform[J]. Journal of Atmospheric and Oceanic Technology, 2019, 36(1): 41-51.
|
35 |
AZEEM I, YUE J, HOFFMANN L, et al. Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere[J]. Geophysical Research Letters, 2015, 42(19): 7 874-7 880.
|
36 |
XU S, YUE J, XUE X H, et al. Dynamical coupling between hurricane Matthew and the middle to upper atmosphere via gravity waves[J]. Journal of Geophysical Research: Space Physics, 2019, 124(5): 3 589-3 608.
|
37 |
LAI C, YUE J, XU J Y, et al. Suomi NPP VIIRS/DNB imagery of nightglow gravity waves from various sources over China[J]. Advances in Space Research, 2017, 59(8): 1 951-1 961.
|
38 |
SHI G C, HU X, YAO Z G, et al. Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection[J]. Earth and Planetary Physics, 2021, 5(1): 79-89.
|
39 |
DVORAK V F. Tropical cyclone intensity analysis using satellite data[M]. Washington, D.C.: U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, 1984.
|
40 |
VELDEN C S, OLANDER T L, ZEHR R M. Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite infrared imagery[J]. Weather and Forecasting, 1998, 13(1): 172-186.
|
41 |
OLANDER T, VELDEN C. The advanced Dvorak technique: continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery[J]. Weather and Forecasting, 2007, 22(2): 287-298.
|
42 |
HAWKINS J D, SOLBRIG J E, MILLER S D, et al. Tropical cyclone characterization via nocturnal low-light visible illumination[J]. Bulletin of the American Meteorological Society, 2017, 98(11): 2 351-2 365.
|
43 |
HAWKINS J D, LEE T F, TURK J, et al. Real-time Internet distribution of satellite products for tropical cyclone reconnaissance[J]. Bulletin of the American Meteorological Society, 2001, 82(4): 567-578.
|
44 |
VELDEN C, DANIELS J, STETTNER D, et al. Recent innovations in deriving tropospheric winds from meteorological satellites[J]. Bulletin of the American Meteorological Society, 2005, 86(2): 205-224.
|
45 |
SIMPSON J, HALVERSON J B, FERRIER B S, et al. On the role of “hot towers” in tropical cyclone formation[J]. Meteorology and Atmospheric Physics, 1998, 67(1): 15-35.
|
46 |
DEMETRIADES N W, HOLLE R, BUSINGER S, et al. Eyewall lightning outbreaks and tropical cyclone intensity change[C]// Proceedings of the preprints, 29th conference on Hurricanes and tropical meteorology. Tucson, AZ, American Meteorlogical Society, 2010.
|
47 |
DEMARIA M, DEMARIA R. Applications of lightning observations to tropical cyclone intensity forecasting. Preprints [C] //Proceedings of the 16th conference on satellite meteorology and oceanography AZ Phoenixet al. American Meteorlogical Society, 2009.
|
48 |
HOFFMANN L, WU X, ALEXANDER M J. Satellite observations of stratospheric gravity waves associated with the intensification of tropical cyclones[J]. Geophysical Research Letters, 2018, 45(3): 1 692-1 700.
|
49 |
BANKERT R L, SOLBRIG J E, LEE T F, et al. Automated lightning flash detection in nighttime visible satellite data[J]. Weather and Forecasting, 2011, 26(3): 399-408.
|
50 |
MILLER S, STRAKA W III, MILLS S, et al. Illuminating the capabilities of the Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) day/night band[J]. Remote Sensing, 2013, 5(12): 6 717-6 766.
|
51 |
SEAMAN C J, MILLER S D. VIIRS captures aurora motions[J]. Bulletin of the American Meteorological Society, 2013, 94(10): 1 491-1 493.
|
52 |
AKASOFU S I. The development of the auroral substorm[J]. Planetary and Space Science, 1964, 12(4): 273-282.
|
53 |
CHAMI M, LARNICOL M, MIGEON S, et al. Potential for nocturnal satellite detection of suspended matter concentrations in coastal waters using a panchromatic band: a feasibility study based on VIIRS (NASA/NOAA) spectral and radiometric specifications[J]. Optics Express, 2020, 28(10): 15 314-15 330.
|
54 |
HUANG C W. Estimating coastal water turbidity using VIIRS nighttime measurement[D]. Tampa, FL, USA: University of South Florida, 2019.
|
55 |
HU Shensen. Data radiometric calibration and application technology of VIIRS low-light-level channel[D]. Changsha: National University of Defense Technology, 2019.
|
|
胡申森. VIIRS微光通道数据辐射定标与应用技术[D]. 长沙: 国防科技大学, 2019.
|
56 |
WANG M Q, HU C M. Extracting oil slick features from VIIRS nighttime imagery using a Gaussian filter and morphological constraints[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(10): 2 051-2 055.
|
57 |
SHI W, WANG M H. Ocean dynamics observed by the VIIRS day/night band satellite observations[J]. Remote Sensing, 2018, 10(2). DOI:10.3390/rs10010076 .
|
58 |
ELVIDGE C, ZHIZHIN M, BAUGH K, et al. Automatic boat identification system for VIIRS low light imaging data[J]. Remote Sensing, 2015, 7(3): 3 020-3 036.
|
59 |
LEBONA B, KLEYNHANS W, CELIK T, et al. Ship detection using VIIRS sensor specific data[C]// 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing: IEEE, 2016: 1 245-1 247.
|
60 |
COZZOLINO E, LASTA C A. Use of VIIRS DNB satellite images to detect jigger ships involved in the Illex argentinus fishery[J]. Remote Sensing Applications: Society and Environment, 2016, 4: 167-178.
|
61 |
GUO Ganggang, FAN Wei, XUE Jialun, et al. Identification for operating pelagic light-fishing vessels based on NPP/VIIRS low light imaging data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 245-251.
|
|
郭刚刚, 樊伟, 薛嘉伦, 等. 基于NPP/VIIRS夜光遥感影像的作业灯光围网渔船识别[J]. 农业工程学报, 2017, 33(10): 245-251.
|
62 |
XUE C C, GAO C X, HU J, et al. Automatic boat detection based on diffusion and radiation characterization of boat lights during night for VIIRS DNB imaging data[J]. Optics Express, 2022, 30(8): 13 024-13 038.
|
63 |
SHAO J N, YANG Q Y, LUO C Y, et al. Vessel detection from nighttime remote sensing imagery based on deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 12 536-12 544.
|
64 |
SUN S J, LU Y C, LIU Y X, et al. Tracking an oil tanker collision and spilled oils in the East China Sea using multisensor day and night satellite imagery[J]. Geophysical Research Letters, 2018, 45(7): 3 212-3 220.
|
65 |
MILLER S D, HADDOCK S H D, ELVIDGE C D, et al. Detection of a bioluminescent milky sea from space[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(40): 14 181-14 184.
|
66 |
MILLER S D. Boat encounter with the 2019 Java bioluminescent milky sea: views from on-deck confirm satellite detection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(29). DOI: 10.1073/pnas.2207612119 .
|
67 |
WANG J, ZHOU M, XU X G, et al. Development of a nighttime shortwave radiative transfer model for remote sensing of nocturnal aerosols and fires from VIIRS[J]. Remote Sensing of Environment, 2020, 241. DOI: 10.1016/j.rse.2020.111727 .
|
68 |
ZHANG J, REID J S, MILLER S D, et al. Strategy for studying nocturnal aerosol optical depth using artificial lights[J]. International Journal of Remote Sensing, 2008, 29(16): 4 599-4 613.
|
69 |
JOHNSON R S, ZHANG J, HYER E J, et al. Preliminary investigations toward nighttime aerosol optical depth retrievals from the VIIRS day/night band[J]. Atmospheric Measurement Techniques, 2013, 6(5): 1 245-1 255.
|
70 |
MCHARDY T M, ZHANG J, REID J S, et al. An improved method for retrieving nighttime aerosol optical thickness from the VIIRS day/night band[J]. Atmospheric Measurement Techniques, 2015, 8(11): 4 773-4 783.
|
71 |
ZHANG J L, JAKER S L, REID J S, et al. Characterization and application of artificial light sources for nighttime aerosol optical depth retrievals using the visible infrared imager radiometer suite day/night band[J]. Atmospheric Measurement Techniques, 2019, 12(6): 3 209-3 222.
|
72 |
JIANG Mengdie, CHEN Lin, HE Yuqing, et al. Nighttime aerosol optical depth retrievals from VIIRS day/night band data[J]. National Remote Sensing Bulletin, 2022, 26(3): 493-504.
|
|
姜梦蝶, 陈林, 何玉青, 等. 利用NPP/VIIRS微光数据反演夜间气溶胶光学厚度[J]. 遥感学报, 2022, 26(3): 493-504.
|
73 |
WANG J, AEGERTER C, XU X G, et al. Potential application of VIIRS day/night band for monitoring nighttime surface PM2.5 air quality from space[J]. Atmospheric Environment, 2016, 124: 55-63.
|
74 |
FU D, XIA X, DUAN M, et al. Mapping nighttime PM2.5 from VIIRS DNB using a linear mixed-effect model[J]. Atmospheric Environment, 2018, 178: 214-222.
|
75 |
XU G Y, REN X D, XIONG K N, et al. Analysis of the driving factors of PM2.5 concentration in the air: a case study of the Yangtze River Delta, China[J]. Ecological Indicators, 2020, 110. DOI: 10.1016/j.ecolind.2019.105889 .
|
76 |
ZHANG G, SHI Y R, XU M Z. Evaluation of LJ1-01 nighttime light imagery for estimating monthly PM2.5 concentration: a comparison with NPP-VIIRS nighttime light data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020. DOI:10.1109/JSTARS.2020.3002671 .
|
77 |
MIN M, ZHENG J Y, ZHANG P, et al. A low-light radiative transfer model for satellite observations of moonlight and earth surface light at night[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 247. DOI:10.1016/j.jqsrt.2020.106954 .
|
78 |
MIN M, ZHANG L, ZHENG J Y, et al. Can the Earth-Moon distance influence the accuracy of lunar irradiance with the plane-parallel assumption in atmospheric radiative transfer at night?[J]. Journal of the Atmospheric Sciences, 2021. DOI: 10.1175/JAS-D-20-0198.1 .
|
79 |
SOLBRIG J E, MILLER S D, ZHANG J L, et al. Assessing the stability of surface lights for use in retrievals of nocturnal atmospheric parameters[J]. Atmospheric Measurement Techniques, 2020, 13(1): 165-190.
|
80 |
ZHOU M, WANG J, CHEN X, et al. Nighttime smoke aerosol optical depth over U.S. rural areas: first retrieval from VIIRS moonlight observations[J]. Remote Sensing of Environment, 2021, 267. DOI: 10.1016/j.rse.2021.112717 .
|
81 |
MATSON M, DOZIER J. Identification of subresolution high temperature sources using a thermal IR sensor[J]. Photogrammetric Engineering and Remote Sensing, 1981, 47(9):1 311-1 318.
|
82 |
ELVIDGE C, ZHIZHIN M, BAUGH K, et al. Extending nighttime combustion source detection limits with short wavelength VIIRS data[J]. Remote Sensing, 2019, 11(4). DOI:10.3390/rs11040395 .
|
83 |
POLIVKA T N, WANG J, ELLISON L T, et al. Improving nocturnal fire detection with the VIIRS day-night band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5 503-5 519.
|
84 |
ELVIDGE C, ZHIZHIN M, HSU F C, et al. VIIRS nightfire: satellite pyrometry at night[J]. Remote Sensing, 2013, 5(9): 4 423-4 449.
|
85 |
WANG J, ROUDINI S, HYER E J, et al. Detecting nighttime fire combustion phase by hybrid application of visible and infrared radiation from Suomi NPP VIIRS[J]. Remote Sensing of Environment, 2020, 237. DOI: 10.1016/j.rse.2019.111466 .
|
86 |
ELVIDGE C D, CINZANO P, PETTIT D R, et al. The nightsat mission concept[J]. International Journal of Remote Sensing, 2007, 28(12): 2 645-2 670.
|