Please wait a minute...
img img
高级检索
地球科学进展  2010, Vol. 25 Issue (10): 1003-1012    DOI: 10.11867/j.issn.1001-8166.2010.10.1003
综述与评述     
国外农情遥感监测系统现状与启示
吴炳方,蒙继华,李强子
中国科学院遥感应用研究所,北京 100101
Review of Overseas Crop Monitoring Systems with Remote Sensing
Wu Bingfang, Meng Jihua, Li Qiangzi
Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China
 全文: PDF(993 KB)  
摘要:

大范围的可靠农情信息对粮食市场及相关政策的制定至关重要,是保障区域及全球粮食安全的重要依据,在全球气候变化、人口增长、土地利用/覆盖变化剧烈的背景下,对这一信息的需求也更加迫切。传统农情信息的获取依赖于庞大的调查队伍和大量的调查工作,信息的获取存在成本高、时效性差和结果受主观影响大的缺点。伴随着近30年遥感技术本身及其在农情信息获取领域能力的提升,一些国家与国际组织建设了各自的农情遥感监测系统,并开展了运行化的监测。对美国、欧盟、FAO、加拿大、巴西、阿根廷、俄罗斯、印度等主要的农情遥感监测系统进展进行了详细的介绍,并通过对这些系统的分析得到一些农情监测系统建设的启示。指出作物种植面积估算、单产预测、长势监测、旱情监测是农情遥感监测中最主要的4个主题。在面积估算方面,各个系统在遥感技术不断发展的同时对地[JP2]面调查的依赖并没有减少,甚至得到了强化,这与遥感降低地面调查的初衷相违背,导致遥感技术在大范围农情监测中的潜力没有得到充分发挥,在单产预测方面,需要发展独立的遥感预测方法。提升遥感的作用是未来一段时间内农情遥感监测系统建设的主要方向。

关键词: 农情 遥感 系统    
Abstract:

Dependable information on large-area agricultural production and production estimation are essential for agricultural markets and the formulation of national and international agricultural policies. It can provide information and technical support for regional or global food security. Factors like worldwide climate change, increasing population and fast changes in land use/cover make the need more urgent. Traditional collection of crop information depends on huge in-situ investigation, which is expensive, time consuming and vulnerable to subjective difference. Along with the development in remote sensing technology and its application to crop information acquirement, some operational crop monitoring systems were developed and put into operation by several countries and international organizations. The development of major crop monitoring systems worldwide (United States, Europe, FAO, Canada, Brazil, Argentina, Russia and India) was reviewed and  introduced in detail. The paper points out that the crop acreage estimation, crop yield prediction, crop condition monitoring and drought monitoring are the four  primary themes in remote sensing based crop monitoring. In crop acreage monitoring, along with the development of remote sensing technology, the dependence of these systems on field survey has not been reduced, or even increased for some reasons. This is against the primary intention of remote sensing application: to reduce or substitute field survey. The potential of remote sensing in large-area crop monitoring has not been fully exerted. Independent crop yield predicting method with remote sensing is also in great need. How to increase the role of remote sensing will be the major direction for the development of remote sensing based crop monitoring systems.

Key words: Crop information    Remote sensing    System
收稿日期: 2010-06-22 出版日期: 2010-10-10
:  P237  
基金资助:

中国科学院知识创新工程重大项目“耕地保育与持续高效现代农业试点工程”(编号:KSCX1-YW-09-01);国家自然科学青年基金项目“基于生物量精准监测的冬小麦单产预测方法研究”(编号:40801144)资助.

通讯作者: 吴炳方     E-mail: wubf@irsa.ac.cn
作者简介: 吴炳方(1962-),男,江西省玉山人,研究员,主要从事农业与生态遥感研究. E-mail:wubf@irsa.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吴炳方,蒙继华,李强子. 国外农情遥感监测系统现状与启示[J]. 地球科学进展, 2010, 25(10): 1003-1012.

Wu Bingfang, Meng Jihua, Li Qiangzi. Review of Overseas Crop Monitoring Systems with Remote Sensing. Advances in Earth Science, 2010, 25(10): 1003-1012.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2010.10.1003        http://www.adearth.ac.cn/CN/Y2010/V25/I10/1003

[1] FAO. 1.02 billion starving people worldwide, U.N. says[EB/OL]. http://www.news-medical.net/news/20090623/102-billion-starving-people-worldwide-UN-says.aspx,2009.
[2] 郑国光. 科学应对全球变暖 提高粮食安全保障能力[EB/OL].http://www.gov.cn/gzdt/ 2009-12/01/content_1477574.htm,2009.
[3] Khabir Ahmad. Global population will increase to nine billion by 2050. UN report[J].The Lancet, 2001, 357(9 259): 864.
[4] GEO. Developing a Strategy for Global Agriculturel Monitoring in the Frame Work of Group on Earth Observations (GEO) Workshop Report [R]. 2007.
[5] Meng Jihua, Wu Bingfang, Li Qiangzi, et al. Research advances and outlook of crop monitoring with remote sensing at field level[J].Remote Sensing Information, 2010, (3):134-140.[蒙继华,吴炳方,李强子,等. 农田农情参数遥感监测进展及应用展望[J].遥感信息, 2010, (3):134-140.]
[6] Li Deren. Towards photogrammetry and remote sensing:Status and future development[J].Journal of Wuhan Technical University of Surveying and Mapping,2000,25(1): 1-5.[李德仁. 摄影测量与遥感的现状及发展趋势[J].武汉测绘科技大学学报,2000,25(1): 1-5.]
[7] Macdonald R B. The LACIE symposium[C]// Lyndon B, ed. Johnson Space Center, National Aeronautics and Space Administration. Houston: NASA,1979.
[8] Hallum C R. Experiment design overview[C]// Proceedings of the Large Area Crop Inventory Experiment (LACIE)Symposium. Houston, Texas: NASA/JSC,1978.
[9] U.S. Department of Agriculture. AgRISTARS Preliminary Technical Program Plan[R]. 1979.
[10] Yates H W, Tarpley J D, Schneider S R, et al. The role of meteorological satellites in agricultural remote sensing[J].Remote Sensing of Environment,1984, 14:219-233.
[11] Kleweno D D, Miller C E. 1980 AgRISTARS DC/LC Project Summary: Crop Area Estimates for Kansas and Iowa[R]. ESS staff report-U.S. Dept. of Agriculture, Economics and Statistics Service.1981. (AGESS810414), 18.
[12] Genovese G. Methodology of the MARS Crop Yield Forecasting System[R]. 2004,114,EUR-report 21291 EN.
[13] Baruth B, Royer A, Genovese G, et al. The use of remote sensing within the MARS crop yield monitoring system of the European commission[C]//ISPRS Archives ‘Remote Sensing Applications for a Sustainable Future’,2006,Vol. XXXVI, Part 8.
[14] USDA FAS. GLAM-Global Agricultural Monitoring [EB/OL]. http://www.pecad.fas.usda.gov/glam.cfm,2005.
[15] Wu Bingfang. China crop watch system with remote sensing[J].Journal of Remote sensing,2004,8(6):482-496.[吴炳方.中国农情遥感速报系统[J].遥感学报,2004,8(6):482-496.]
[16] USDA FAS. Production, Supply and distribution online[EB/OL]. http://www.fas.usda.gov/psdonline/, 2007.
[17] USDA FAS, The FAS crop explorer: A web success story[EB/OL]. http://www.fas.usda.gov/info/fasworldwide/2005/06-2005, 2005.
[18] USDA NASS. History of remote sensing for crop acreage[EB/OL]. http://www.nass.usda.gov/surveys/remotely_sensed_data_crop_acreage/index.asp,2009.
[19] USDA NASS. Cropland data layer[EB/OL]. http://www.nass.usda.gov/research/cropland/SARS1a.htm,2010.
[20] FAO. Famine early warning system network[EB/OL]. http://www.fews.net/pages/default.aspx, 2010.
[21] USDA NASS. Limited use for crop condition and crop yield[EB/OL]. http://www.nass.usda.gov/surveys/remotely_sensed_data_crop_yield/index.asp,2009.
[22] USGS. EROS early warning and environmental monitoring program[EB/OL]. http://earlywarning.usgs.gov/?l=en, 2010.
[23] EC JRC. The monitoring agricultural resources[EB/OL]. http://mars.jrc.ec.europa.eu, 2010.
[24] EC JRC. MARS unit-about us[EB/OL]. http://mars.jrc.it/mars/About-us, 2010.
[25] EC. GMES info [EB/OL]. http://www.gmes.info/, 2010.
[26] EC JRC. MARSOP introduction[EB/OL]. http://www.marsop.info, 2010.
[27] ESA. GMES Services Element (GSE) [EB/OL]. http://www.esa.int/esaLP/SEM2UV2IU7E_LPgmes_0.html, 2006.
[28] EC JRC. The Crop Growth Monitoring System (CGMS) [EB/OL]. http://mars.jrc.it/mars/About-us/AGRI4CAST/Crop-yield-forecast/The-Crop-Growth-Monitoring-System-CGMS,2010.
[29] Bochenek Z. Operational use of NOAA data for crop condition assessment in Poland[C]//EARSeL Symposium on Remote Sensing in the 21st Century: Economic and Environmental Applications. Valladolid, 1999 (in Anglais).
[30] Dabrowska-Zielinska K, Kogan F, Ciolkosz A, et al. Modeling of crop growth conditions and crop yield in Poland using AVHRR-based indices[J].International Journal of Remote Sensing,2002, 23(6):1 109-1 123.
[31] Aleksandra Bujakiewicz, Jozef Jachimski, Romuald Kaczynski. The Polish National Report for Photogrammetry and Remote Sensing 2000-2004[R]. XX ISPRS Congress in Istanbul, 2004.
[32] Zsuzsanna Suba , Gábor Csornai, Csaba Wirnhardt, et al. The Remote Sensing Based Hungarian Crop Production Forecast Program (Cropmon) and Its Other Applications[M]. Springer Berlin Heidelberg, Cartography in Central and Eastern Europe, 2010.
[33] Csornai G. CROPMON: Hungarian crop production forecast by remote sensing[C]//ISPRS Archives XXXVI-8/W48 Workshop proceedings. Remote Sensing Support to Crop Yield Forecast and Area Estimates. Commission VIII, WG VIII/10, Stresa, Italy,2006,36(8/W48).
[34] Martino L. The Agrit System for Short-term Estimates in Agriculture: A Project for 2004[R]. Polish Seminar: Information Systems in Agriculture. Krakow,2003.
[35] Giovacchini A,Brunetti A. Agricultural statistics by remote sensing in Italy: An ultimate cost analysis[C]//Conference on the Application of Remote Sensing to Agricultural Statistics. Belgirate. Office for Publications of the E.C. Luxembourg,1992.
[36] FAO, Global information and early warning system[EB/OL]. http://www.fao.org/WAICENT/faoinfo/economic/giews/english/index.htm, 2010.
[37] Hielkema J U, Snijders F L. Operational use of environmental satellite remote sensing and satellite communications technology for global food security and locust control by FAO: The ARTEMIS and DIANA systems[J].Acta Astronautica,1994, 32(9):603-616.
[38] FAO, WinDisp3.5 user′s manual [EB/OL]. http://www.fao.org/giews/english/windisp/manuals/WD35EN41.htm,1999.
[39] FAO, WinDisp-Map and Image Display and Analysis Software [EB/OL]. http://www.fao.org/giews/english/windisp/dl.htm,2003.[40] Food insecurity and vulnerability information and mapping systems. FIVIMS-better information for targeted action in hunger reduction[EB/OL]. http://www.fivims.org/, 2009.
[41] Statistics Canda. Overview of the crop condition assessment program[EB/OL]. http://www26.statcan.ca/ccap/overview-apercu-eng.jsp,2010.
[42] CONAB, GEOSAFRAS[EB/OL]. http://www.conab.gov.br/conabweb/index.php?PAG=81,2010.
[43] MinAgri-Argentina[EB/OL]. http://www.minagri.gob.ar/,2010.
[44] CONAE, Argentina on space[EB/OL]. http://www.en.argentina.ar/_en/science-and-education/C1477-argentina-on-space. php,2009.
[45] http://www.agrocosmos.gvc.ru/,2010.
[46] National Crop Forecasting Centre (NCFC)[EB/OL]. http://dacnet.nic.in/eands/ncfc/ncfc.htm,2010.
[47] Crop acreage and production estimation[EB/OL]. http://dacnet.nic.in/eands/cape.htm,2010.
[48] Patil V C, Ajit Maru, Shashidhara G B, et al. Remote sensing, geographical information system and precision farming in India: Opportunities and challenges[C]//Asian Agricultural Information Technology & Management. Proceedings of the Third Asian Conference for Information Technology in Agriculture (CAAS, AFITA), Beijing,2002.
[49] Indian space research organisation, forecasting of agriculture outputs through satellite, agrometeorology and land based observations (FASAL) [EB/OL].http://www.isro.org/scripts/rsa_fasal.aspx, 2010.

[1] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[2] 吴绍洪, 高江波, 戴尔阜, 赵东升, 尹云鹤, 杨琳, 郑景云, 潘韬, 杨勤业. 中国陆地表层自然地域系统动态研究:思路与方案[J]. 地球科学进展, 2017, 32(6): 569-576.
[3] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[4] 晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.
[5] 李青, 雷连发, 王振会, 魏鸣, 李东帅. 雷电流热效应的遥感观测研究进展[J]. 地球科学进展, 2017, 32(5): 481-487.
[6] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[7] 吴波, 周天军, 孙倩. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 2017, 32(4): 342-352.
[8] 陈晓龙, 吴波, 周天军. FGOALS-s2海洋同化系统中东亚夏季风和前冬厄尔尼诺—南方涛动关系的年代际变化[J]. 地球科学进展, 2017, 32(4): 362-372.
[9] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[10] 王佳, 谭先锋, 曾春林, 陈青, 冉天, 薛伟伟, 李霞, 陈岑. 泥质岩成岩系统过程及其对SiO2赋存状态的制约——以渝东南地区龙马溪组为例[J]. 地球科学进展, 2017, 32(3): 292-306.
[11] 黎伟标, 刘昊亚, 方容. 大气对海洋中尺度涡响应的研究进展[J]. 地球科学进展, 2017, 32(10): 1039-1049.
[12] 肖红平, 林畅松, 彭涌, 魏伟, 张金华, 张巧珍. 天然气水合物油气系统概念内涵及实例分析[J]. 地球科学进展, 2017, 32(1): 21-33.
[13] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[14] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[15] 周浙昆, 周忠和, 王怿. 陆地生态系统与地球环境的协同演化[J]. 地球科学进展, 2016, 31(7): 682-688.