地球科学进展 ›› 2022, Vol. 37 ›› Issue (2): 165 -176. doi: 10.11867/j.issn.1001-8166.2022.010

青促会之地球科学领域 上一篇    下一篇

非线性最优扰动方法在热带气旋目标观测研究和外场试验中的应用
段晚锁 1 , 2( ), 秦晓昊 1( )   
  1. 1.中国科学院大气物理研究所 大气科学和地球流体力学数值模拟国家重点实验室,北京 100029
    2.中国科学院大学海洋学院,北京 101408
  • 收稿日期:2021-12-22 修回日期:2022-01-19 出版日期:2022-02-10
  • 通讯作者: 秦晓昊 E-mail:duanws@lasg.iap.ac.cn;xhqin@lasg.iap.ac.cn
  • 基金资助:
    国家重点研发计划项目“台风目标观测研究”(2018YFC1506402);国家自然科学基金项目“非线性强迫奇异向量—集合预报方法及其在厄尔尼诺和台风可预报性研究中的应用”(41930971)

Application of Nonlinear Optimal Perturbation Methods in the Targeting Observations and Field Campaigns of Tropical Cyclones

Wansuo DUAN 1 , 2( ), Xiaohao QIN 1( )   

  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China
    2.College of Marine Science,University of Chinese Academy of Sciences,Beijing 101408,China
  • Received:2021-12-22 Revised:2022-01-19 Online:2022-02-10 Published:2022-03-08
  • Contact: Xiaohao QIN E-mail:duanws@lasg.iap.ac.cn;xhqin@lasg.iap.ac.cn
  • About author:DUAN Wansuo
    DUAN Wansuo (1973-), Yangcheng County, Shanxi Province, Professor. Research areas include air-sea interaction, as well as the predictability, targeting observation, data assimilation and ensemble forecasts of high-impact weather and climate events. E-mail: duanws@lasg.iap.ac.cn
    QIN Xiaohao. Application of nonlinear optimal perturbation methods in the targeting observations and field campaigns of tropical cyclones[J].
  • Supported by:
    the National Key Research and Development Program "Targeting observation research on typhoons"(2018YFC1506402);The National Natural Science Foundation of China "The nonlinear forcing singular vector-ensemble forecast method and its application in the predictability study in El Ni?o and tropical cyclone"(41930971)

综述了我国学者近年来用非线性最优扰动方法探索热带气旋目标观测及其外场试验的主要进展,具体包括:从提高数值模式初始场精度的角度,用条件非线性最优扰动方法确定了热带气旋路径和强度预报的目标观测敏感区,并成功应用于“风云四号”气象卫星和下投探空仪台风目标观测外场试验,助力业务部门获得了宝贵资料。从减小模式误差或外强迫不确定性的角度,将非线性强迫奇异向量方法应用于探讨热带气旋强度预报的敏感性,揭示了模式误差的敏感气象要素和敏感区,以及海表温度强迫的敏感区;用集合扰动的思路识别了热带气旋快速增强过程预报的行星边界层的模式误差敏感区。讨论了目前热带气旋目标观测研究存在的问题以及可能的解决方法,展望了未来热带气旋目标观测研究应努力的前沿方向,及其在实际预报中的应用前景。

The authors review the major progresses in the targeting observations and field campaigns for Tropical Cyclones (TCs) using their proposed nonlinear optimal perturbation methods. They used condition nonlinear optimal perturbation, which aims at reducing the initial errors for numerical models, to identify the sensitive regions for TC track and intensity forecasts. This guides both FY-4 satellite and dropsonde in the field campaigns to effectively collect valuable observation data. Furthermore, they investigated the sensitivity of TC intensity forecast to model errors using nonlinear forcing singular vector, which indicates both the sensitive regions and variables in troposphere and the sensitive regions of sea surface temperature. Simultaneously, they also identified the sensitive regions and variables in the boundary layer during a rapid intensification process of a TC using ensemble perturbation method. In final the unresolved problems, possible solutions, and future recommendations in the targeting observations for TCs are discussed.

中图分类号: 

图1 CNOP方法计算的热带气旋(a)海高斯、(b)浪卡、(c)沙德尔和(d)艾莎尼的目标观测敏感区(填色区域) 17
红色和黑色线分别为观测(BEST)和预报(CTRL)的热带气旋移动路径,蓝色点代表下投探空仪的投放位置(DROP)
Fig. 1 Sensitive regionsshadedidentified by CNOP for TC casesaHigos, (bNangka, (cSaudelanddAtsani 17
Red and black lines respectively denote the tracks in observation (BEST) and control forecast (CTRL), blue dots denote the dropping sites of dropsondes(DROP) 17
图2 9个热带气旋个例强度(最低海平面中心气压:MSLP)的观测(红线)、控制预报(黑线)以及敏感模式误差被矫正后的预报(蓝线) 30
校正后的预报更大程度逼近观测,表明了NFSV方法识别的模式误差敏感性的合理性
Fig. 2 The Minimum Sea Level PressureMSLPin best-track datared), CTRLblack), and with the correction itembluefor nine Tropical cyslones 30
The simulated MSLPs after correction are closer to the best-track data, indicating the reasonability of the model error sensitivity identified by the NFSV
图3 12个热带气旋个例强度预报的NFSVSST强迫误差(单位:K;填色区域)的空间分布 31
主要误差沿着热带气旋移动路径(彩色粗线代表路径)分布,主要位于热带气旋的快速增强阶段的区域,该区域和时段代表了热带气旋强度预报的目标观测敏感区和最优观测时段
Fig. 3 Patterns NFSV-type SST forcing errorsshadedunitKfor 12 TC cases 31
NFSV-type SST forcing errors often locate along the TC tracks (color dots) but concentrate in a particular region which tends to occur during the intensification phase of TCs. These region and period represent the optimal region and period for targeting observation associated with TC intensity forecasts
图4 热带气旋杜鹃(201521)集合模拟的强度误差和离散度的时间演变
Exp-RT、-GL和-IC分别代表热带气旋边缘区、大风区和内核区边界层方案(YSU)扰动试验;Exp-UV、-T和-Q,以及Exp-TQ、-UVQ和-UVT分别表示大风区YSU水平风场、位温、水汽混合比,以及它们的两两组合的扰动试验。离散度越大,表明热带气旋强度模拟对扰动越敏感
Fig. 4 Time series of intensity errors and spread for the tropical cyclone case Dujuan201521
Exp-RT, -GL, and -IC respectively denote the experiments with the perturbations superimposed on the YSU over the outer, gale, and inner-core area of the tropical cyclone. The Exp-UV, -T, -Q, as well as -TQ, -UVQ, and -UVT, respectively represent the experiments with perturbations superimposed on YSU over the gale area of the tropical cyclone for horizontal wind, potential temperature, water vapor mixing ration and the combinations of any two among them. The larger the spread, the more sensitive of the simulated intensity to the perturbations is
1 ZHANG Q, WU L, LIU Q. Tropical cyclone damages in China 1983-2006[J]. Bulletin of the American Meteorological Society, 2009, 90: 489-495.
2 BURPEE R W, FRANKLIN J L, LORD S J, et al. The impact of Omega dropwindsondes on operational hurricane track forecast models[J]. Bulletin of the American Meteorological Society, 1996, 77: 925-933.
3 WU C C, LIN P H, ABERSON S D, et al. Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): an overview[J]. Bulletin of the American Meteorological Society, 2005, 86: 787-790.
4 ABERSON S D. Ten years of hurricane synoptic surveillance (1997-2006) [J]. Monthly Weather Review, 2010, 138: 1 536-1 549.
5 BRAUN S A, NEWMAN P A, HEYMSFIELD G M. NASA's Hurricane and Severe Storm Sentinel (HS3) investigation[J]. Bulletin of the American Meteorological Society, 2016, 97: 2 085-2 102.
6 BLACK P G, HARRISON L, BEAUBIEN M, et al. High Definition Sounding System (HDSS) for atmospheric profiling[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34: 777-796.
7 FENG J, WANG X G. Impact of assimilating upper-level dropsonde observations collected during the TCI field campaign on the prediction of intensity and structure of hurricane patricia (2015)[J]. Monthly Weather Review, 2019, 147: 3 069-3 088.
8 SNYDER C. Summary of an informal workshop on adaptive observations and FASTEX[J]. Bulletin of the American Meteorological Society, 1996, 77: 953-961.
9 BUIZZA R, PALMER T N. The singular-vector structure of the atmospheric global circulation[J]. Journal of Atmospheric and Oceanic Technology, 1995, 52: 1 434-1 456.
10 MAJUMDAR S J, BISHOP C H, BUIZZA R, et al. A comparison of ensemble-transform Kalman-filter targeting guidance with ECMWF and NRL total-energy singular-vector guidance[J]. Quarterly Journal of the Royal Meteorological, 2002, 128: 2 527-2 549.
11 WU C C, CHOU K H, LIN P H, et al. The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR[J]. Weather Forecasting, 2007, 22: 1 157- 1 176.
12 WEISSMANN M, HARNISCH F, WU C C,et al. The influence of assimilating dropsonde data on typhoon track and mid-latitude forecasts[J]. Monthly Weather Review, 2011, 139: 908-920.
13 MU M, ZHOU F F, WANG H L. A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: conditional nonlinear optimal perturbation[J]. Monthly Weather Review, 2009, 137: 1 623-1 639.
14 MU M, DUAN W S, WNAG B. Conditional nonlinear optimal perturbation and its applications[J]. Nonlinear Processes Geophysics, 2003, 10: 493-501.
15 QIN X H, MU M. Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts[J]. Quarterly Journal of the Royal Meteorological, 2011, 138: 185-197.
16 CHEN B Y, MU M, QIN X H. The impact of assimilating dropwindsonde data deployed at different sites on typhoon track forecasts[J]. Monthly Weather Review, 2013, 141: 2 669-2 682.
17 QIN X H, DUAN W S, CHAN P W, et al. Effects of dropsonde data in field campaigns on forecasts of tropical cyclones over the western North Pacific in 2020 and role of CNOP sensitivity[J]. Advances in Atmospheric Sciences, 2022, in revision.
18 DEMARIA M, SAMPSON C R, KNAFF J A, et al. Is tropical cyclone intensity guidance improving? [J]. Bulletin of the American Meteorological Society, 2014, 95: 387-398.
19 EMANUEL K, ZHANG F Q. On the predictability and error sources of tropical cyclone intensity forecasts[J]. Journal of the Atmospheric Sciences, 2016, 73: 3 739-3 747.
20 EMANUEL K, ZHANG F Q. The role of inner-core moisture in tropical cyclone predictability and practical forecast skill[J]. Journal of the Atmospheric Sciences, 2017, 74: 2 315-2 324.
21 GENTRY M S, LACKMANN G M. Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution[J]. Monthly Weather Review, 2010, 138: 688-704.
22 GREEN B W, ZHANG F Q. Impacts of air-sea flux parameterizations on the intensity and structure of tropical cyclones[J]. Monthly Weather Review, 2013, 141: 2 303-2 324.
23 TORN R D. Evaluation of atmosphere and ocean initial condition uncertainty and stochastic exchange coefficients on ensemble tropical cyclone intensity forecasts[J]. Monthly Weather Review, 2016, 144: 3 487-3 506.
24 LEUTBECHER M, LOCK S J, OLLINAHO P, et al. Stochastic representations of model uncertainties at ECMWF: state of the art and future vision[J]. Quarterly Journal of the Royal Meteorological, 2017, 143: 2 315-2 339.
25 DUAN W S, ZHOU F F. Nonlinear forcing singular vector of a two-dimensional quasi-geostrophic model[J]. Tellus A, 2013, 65: 18452.
26 BUIZZA R, MILLEER M, PALMER T N. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system[J]. Quarterly Journal of the Royal Meteorological, 1999, 125: 2 887-2 908.
27 BERNER J, SHUTTS GJ, LEUTBECHER M, et al. A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system[J]. Journal of the Atmospheric Sciences, 2009, 66: 603-626.
28 BARKMEIJER J, IVERSEN T, PALMER T N. Forcing singular vectors and other sensitive model structures[J]. Quarterly Journal of the Royal Meteorological, 2003, 129: 2 401-2 423.
29 DUAN W S, ZHAO P. Revealing the most disturbing tendency error of Zebiak-Cane model associated with El Niño predictions by nonlinear forcing singular vector approach[J]. Climate Dynamics, 2015, 44(9): 2 351-2 367.
30 QIN X H, DUAN W S, XU H. Sensitivity to tendency perturbations of tropical cyclone short-range intensity forecasts generated by WRF[J]. Advances in Atmospheric Sciences, 2020, 37(3): 291-306.
31 YAO J W, DUAN W S, QIN X H. Which features of the SST forcing error most likely disturb the simulation of tropical cyclone intensity?[J]. Advances in Atmospheric Sciences, 2021, 38(4): 581-602.
32 DUAN W S, LI X Q, TIAN B. Towards optimal observational array for dealing with challenges of El Niño-Southern Oscillation predictions due to diversities of El Niño[J]. Climate Dynamics, 2018. DOI:10.1007/s00382-018-4082-x .
33 GRAY W M. Tropical cyclone genesis and intensification[M]// Bengtsson L, Lighthill J. Intense atmospheric vortices. Springer-Verlag, 1982:3-20.
34 SCHADE L R, EMANUEL K. The ocean's effect on the intensity of tropical cyclones: results from a simple coupled atmosphere-ocean model[J]. Journal of the Atmospheric Sciences, 1999, 56: 642-651.
35 HONG X, CHANG S W, RAMAN S, et al. The interaction between Hurricane Opal (1995) and a warm core ring in the Culf of Mexico[J]. Monthly Weather Review, 2000, 128: 1 347-1 365.
36 SCHADE L R. Tropical cyclone intensity and sea surface temperature[J]. Journal of the Atmospheric Sciences, 2000, 57: 3 122-3 130.
37 KILIC C, RAIBLE C C. Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF[J]. Meteorologische Zeitschrift, 2014, 22: 685-698.
38 MA Z H, FEI J F, LIU L, et al. An investigation of the influences of mesoscale ocean eddies on tropical cyclone intensities[J]. Monthly Weather Review, 2017, 145: 1 181-1 201.
39 YAO Jiawei, DUAN Wansuo. Target observation of sea surface temperature for tropical cyclone intensity simulation [J]. Chinese Journal of Atmospheric Sciences, 2022, 46(1): 1-16.
姚佳伟, 段晚锁. 台风强度模拟的海温目标观测研究[J]. 大气科学, 2022, 46(1): 1-16.
40 SMITH R K, MONTGOMERY M T, SANG N VAN. Tropical cyclone spin-up revisited[J]. Quarterly Journal of the Royal Meteorological, 2009, 135: 1 321-1 335.
41 HUANG Y H, MONTGOMERY M T, WU C C. Concentric eyewall formation in typhoon Sinlaku (2008). Part II: axisymmetric dynamical processes[J]. Journal of the Atmospheric Sciences, 2012, 69: 662-674.
42 SCHMIDT C J, SMITH R K. Tropical cyclone evolution in a minmal axisymmetric model revisited[J]. Quarterly Journal of the Royal Meteorological, 2016, 142: 1 505-1 516.
43 MONTGOMERY M T, SMITH R K. Recent developments in the fluid dynamics of tropical cyclones[J]. Annual Review of Fluid Mechanics, 2017, 49: 541-574.
44 HENG J, WANG Y, ZHOU W. Revisiting the balanced and unbalanced aspects of tropical intensification[J]. Journal of the Atmospheric Sciences, 2017, 74: 2 575-2 791.
45 LI Y L, WANG Y Q, LIN Y L. How much does the upward advectionof the supergradient component of boundary layer wind contribute to tropical cyclone intensification and maximum intensity?[J]. Journal of the Atmospheric Sciences, 2020, 77: 2 649-2 664.
46 FEI R, WANG Y Q, LI Y L. Contribution of vertical advection to supergradient wind in tropical cyclone boundary layer: a numerical study[J]. Journal of the Atmospheric Sciences, 2021, 78: 1 057-1 073.
47 ZHANG J A, ROGERS R F. Effects of parameterized boundary layer structure on hurricane rapid intensification in shear[J]. Monthly Weather Review, 2019, 147: 853-870.
48 CHEN X M, XUE M, ZHOU B W, et al. Effects of scale-aware planetary boundary layer schemes on tropical cyclone intensification and structural changes in the gray zone[J]. Monthly Weather Review, 2021, 149: 2 079-2 095.
49 QIN X H, DUAN W S. Forecast uncertainty of rapid intensification of typhoon dujuan (201521) induced by uncertainty in the boundary layer[J]. Atmosphere, 2020, 11(1 263): 1-17.
50 HONG SY, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134: 2 318-2 341.
51 LANGLAND R H, TOTH Z, RELARO R, et al. The North Pacific Experiment (NORPEX-98): targeted observations for improved North American weather forecasts[J]. Bulletin of the American Meteorological Society, 1999, 80: 1 363-1 384.
52 MU M. Methods, current status, and prospect of targeted observation[J]. Science China: Earth Sciences, 2013, 56(12): 1 997-2 005.
53 DUAN W S, HUO Z H. An approach to generating mutually independent initial perturbations for ensemble forecasts: orthogonal conditional nonlinear optimal perturbations[J]. Journal of the Atmospheric Sciences, 2016, 73(3): 997-1 014.
54 HUO Z H, DUAN W S. The application of the orthogonal conditional nonlinear optimal perturbations method to typhoon track ensemble forecasts[J]. Science China: Earth Sciences, 2018. DOI:10.1007/s11430-018-9248-9 .
55 HUO Z H, DUAN W S, ZHOU F F. Ensemble forecasts of tropical cyclone track with orthogonal conditional nonlinear optimal perturbations[J]. Advances in Atmospheric Sciences, 2019, 36(2): 231-247.
56 WANG Ye, DUAN Wansuo. Influences of initial perturbation amplitudes and ensemble sizes on the ensemble forecasts made by CNOPs method [J]. Chinese Journal of Atmospheric Sciences, 2019, 43(4): 919-933.
汪叶,段晚锁. 初始扰动振幅和集合样本数对CNOPs集合预报的影响[J]. 大气科学,2019,43(4):919-933.
57 BAUER P, THORPE A, BRUNET G. The quiet revolution of numerical weather prediction[J]. Nature, 2015, 525: 47-55.
58 TAO L J, DUAN W S. Using a nonlinear forcing singular vector approach to reduce model error effects in ENSO forecasting[J]. Weather and Forecasting, 2019, 34:1 321-1 342.
[1] 刘德强,冯杰,丁瑞强,李建平. 台风目标观测研究进展回顾[J]. 地球科学进展, 2021, 36(6): 564-578.
[2] 高丽,陈静,郑嘉雯,陈权亮. 极端天气的数值模式集合预报研究进展[J]. 地球科学进展, 2019, 34(7): 706-716.
[3] 朱月佳,邢蕊,朱明佳,王东勇,邱学兴. 联合概率方法在安徽强对流潜势预报中的应用和检验[J]. 地球科学进展, 2019, 34(7): 731-746.
[4] 杨慧,任福民,杨明仁. 不同强度热带气旋对中国降水变化的影响[J]. 地球科学进展, 2019, 34(7): 747-756.
[5] 范峥,李宏,刘向文,徐芳华. 基于局地集合变换卡尔曼滤波的全球海洋资料同化系统设计及算法加速[J]. 地球科学进展, 2019, 34(5): 531-539.
[6] 窦芳丽,陆其峰,郭杨. 全天候卫星微波观测资料变分同化研究进展[J]. 地球科学进展, 2019, 34(11): 1120-1130.
[7] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[8] 王辉, 万莉颖, 秦英豪, 王毅, 杨学联, 刘洋, 邢建勇, 陈莉, 王彰贵, 仉天宇, 刘桂梅, 杨清华, 吴湘玉, 刘钦燕, 王东晓. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10): 1090-1104.
[9] 杨秋明. 10~30 d延伸期天气预报方法研究进展与展望[J]. 地球科学进展, 2015, 30(9): 970-984.
[10] 韩成鸣, 李耀东, 史小康. 云分析预报方法研究进展[J]. 地球科学进展, 2015, 30(4): 505-516.
[11] 潘留杰, 张宏芳, 王建鹏. 数值天气预报检验方法研究进展[J]. 地球科学进展, 2014, 29(3): 327-335.
[12] 熊春晖,张立凤,关吉平,陶恒锐,苏佳佳. 集合—变分数据同化方法的发展与应用[J]. 地球科学进展, 2013, 28(6): 648-656.
[13] 方伟华,石先武. 面向灾害风险评估的热带气旋路径及强度随机模拟综述[J]. 地球科学进展, 2012, 27(8): 866-875.
[14] 徐过冬,范代读,Kam-biuLiu. 古风暴学研究进展[J]. 地球科学进展, 2007, 22(12): 1274-1280.
[15] 白晓平,李红,方栋,胡非,FrancescaCostabile,王芬娟. 资料同化在空气质量预报中的应用[J]. 地球科学进展, 2007, 22(1): 66-73.
阅读次数
全文


摘要