| 1 | 
																						 
											 ZHANG Q, WU L, LIU Q. Tropical cyclone damages in China 1983-2006[J]. Bulletin of the American Meteorological Society, 2009, 90: 489-495.
											 											 | 
										
																													
																						| 2 | 
																						 
											 BURPEE R W, FRANKLIN J L, LORD S J, et al. The impact of Omega dropwindsondes on operational hurricane track forecast models[J]. Bulletin of the American Meteorological Society, 1996, 77: 925-933.
											 											 | 
										
																													
																						| 3 | 
																						 
											 WU C C, LIN P H, ABERSON S D, et al. Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): an overview[J]. Bulletin of the American Meteorological Society, 2005, 86: 787-790.
											 											 | 
										
																													
																						| 4 | 
																						 
											 ABERSON S D. Ten years of hurricane synoptic surveillance (1997-2006) [J]. Monthly Weather Review, 2010, 138: 1 536-1 549.
											 											 | 
										
																													
																						| 5 | 
																						 
											 BRAUN S A, NEWMAN P A, HEYMSFIELD G M. NASA's Hurricane and Severe Storm Sentinel (HS3) investigation[J]. Bulletin of the American Meteorological Society, 2016, 97: 2 085-2 102.
											 											 | 
										
																													
																						| 6 | 
																						 
											 BLACK P G, HARRISON L, BEAUBIEN M, et al. High Definition Sounding System (HDSS) for atmospheric profiling[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34: 777-796.
											 											 | 
										
																													
																						| 7 | 
																						 
											 FENG J, WANG X G. Impact of assimilating upper-level dropsonde observations collected during the TCI field campaign on the prediction of intensity and structure of hurricane patricia (2015)[J]. Monthly Weather Review, 2019, 147: 3 069-3 088.
											 											 | 
										
																													
																						| 8 | 
																						 
											 SNYDER C. Summary of an informal workshop on adaptive observations and FASTEX[J]. Bulletin of the American Meteorological Society, 1996, 77: 953-961.
											 											 | 
										
																													
																						| 9 | 
																						 
											 BUIZZA R, PALMER T N. The singular-vector structure of the atmospheric global circulation[J]. Journal of Atmospheric and Oceanic Technology, 1995, 52: 1 434-1 456.
											 											 | 
										
																													
																						| 10 | 
																						 
											 MAJUMDAR S J, BISHOP C H, BUIZZA R, et al. A comparison of ensemble-transform Kalman-filter targeting guidance with ECMWF and NRL total-energy singular-vector guidance[J]. Quarterly Journal of the Royal Meteorological, 2002, 128: 2 527-2 549.
											 											 | 
										
																													
																						| 11 | 
																						 
											 WU C C, CHOU K H, LIN P H, et al. The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR[J]. Weather Forecasting, 2007, 22: 1 157- 1 176.
											 											 | 
										
																													
																						| 12 | 
																						 
											 WEISSMANN M, HARNISCH F, WU C C,et al. The influence of assimilating dropsonde data on typhoon track and mid-latitude forecasts[J]. Monthly Weather Review, 2011, 139: 908-920.
											 											 | 
										
																													
																						| 13 | 
																						 
											 MU M, ZHOU F F, WANG H L. A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: conditional nonlinear optimal perturbation[J]. Monthly Weather Review, 2009, 137: 1 623-1 639.
											 											 | 
										
																													
																						| 14 | 
																						 
											 MU M, DUAN W S, WNAG B. Conditional nonlinear optimal perturbation and its applications[J]. Nonlinear Processes Geophysics, 2003, 10: 493-501.
											 											 | 
										
																													
																						| 15 | 
																						 
											 QIN X H, MU M. Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts[J]. Quarterly Journal of the Royal Meteorological, 2011, 138: 185-197.
											 											 | 
										
																													
																						| 16 | 
																						 
											 CHEN B Y, MU M, QIN X H. The impact of assimilating dropwindsonde data deployed at different sites on typhoon track forecasts[J]. Monthly Weather Review, 2013, 141: 2 669-2 682.
											 											 | 
										
																													
																						| 17 | 
																						 
											 QIN X H, DUAN W S, CHAN P W, et al. Effects of dropsonde data in field campaigns on forecasts of tropical cyclones over the western North Pacific in 2020 and role of CNOP sensitivity[J]. Advances in Atmospheric Sciences, 2022, in revision.
											 											 | 
										
																													
																						| 18 | 
																						 
											 DEMARIA M, SAMPSON C R, KNAFF J A, et al. Is tropical cyclone intensity guidance improving? [J]. Bulletin of the American Meteorological Society, 2014, 95: 387-398.
											 											 | 
										
																													
																						| 19 | 
																						 
											 EMANUEL K, ZHANG F Q. On the predictability and error sources of tropical cyclone intensity forecasts[J]. Journal of the Atmospheric Sciences, 2016, 73: 3 739-3 747.
											 											 | 
										
																													
																						| 20 | 
																						 
											 EMANUEL K, ZHANG F Q. The role of inner-core moisture in tropical cyclone predictability and practical forecast skill[J]. Journal of the Atmospheric Sciences, 2017, 74: 2 315-2 324.
											 											 | 
										
																													
																						| 21 | 
																						 
											 GENTRY M S, LACKMANN G M. Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution[J]. Monthly Weather Review, 2010, 138: 688-704.
											 											 | 
										
																													
																						| 22 | 
																						 
											 GREEN B W, ZHANG F Q. Impacts of air-sea flux parameterizations on the intensity and structure of tropical cyclones[J]. Monthly Weather Review, 2013, 141: 2 303-2 324.
											 											 | 
										
																													
																						| 23 | 
																						 
											 TORN R D. Evaluation of atmosphere and ocean initial condition uncertainty and stochastic exchange coefficients on ensemble tropical cyclone intensity forecasts[J]. Monthly Weather Review, 2016, 144: 3 487-3 506.
											 											 | 
										
																													
																						| 24 | 
																						 
											 LEUTBECHER M, LOCK S J, OLLINAHO P, et al. Stochastic representations of model uncertainties at ECMWF: state of the art and future vision[J]. Quarterly Journal of the Royal Meteorological, 2017, 143: 2 315-2 339.
											 											 | 
										
																													
																						| 25 | 
																						 
											 DUAN W S, ZHOU F F. Nonlinear forcing singular vector of a two-dimensional quasi-geostrophic model[J]. Tellus A, 2013, 65: 18452.
											 											 | 
										
																													
																						| 26 | 
																						 
											 BUIZZA R, MILLEER M, PALMER T N. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system[J]. Quarterly Journal of the Royal Meteorological, 1999, 125: 2 887-2 908.
											 											 | 
										
																													
																						| 27 | 
																						 
											 BERNER J, SHUTTS GJ, LEUTBECHER M, et al. A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system[J]. Journal of the Atmospheric Sciences, 2009, 66: 603-626.
											 											 | 
										
																													
																						| 28 | 
																						 
											 BARKMEIJER J, IVERSEN T, PALMER T N. Forcing singular vectors and other sensitive model structures[J]. Quarterly Journal of the Royal Meteorological, 2003, 129: 2 401-2 423.
											 											 | 
										
																													
																						| 29 | 
																						 
											 DUAN W S, ZHAO P. Revealing the most disturbing tendency error of Zebiak-Cane model associated with El Niño predictions by nonlinear forcing singular vector approach[J]. Climate Dynamics, 2015, 44(9): 2 351-2 367.
											 											 | 
										
																													
																						| 30 | 
																						 
											 QIN X H, DUAN W S, XU H. Sensitivity to tendency perturbations of tropical cyclone short-range intensity forecasts generated by WRF[J]. Advances in Atmospheric Sciences, 2020, 37(3): 291-306.
											 											 | 
										
																													
																						| 31 | 
																						 
											 YAO J W, DUAN W S, QIN X H. Which features of the SST forcing error most likely disturb the simulation of tropical cyclone intensity?[J]. Advances in Atmospheric Sciences, 2021, 38(4): 581-602.
											 											 | 
										
																													
																						| 32 | 
																						 
											 DUAN W S, LI X Q, TIAN B. Towards optimal observational array for dealing with challenges of El Niño-Southern Oscillation predictions due to diversities of El Niño[J]. Climate Dynamics, 2018. DOI:10.1007/s00382-018-4082-x .
											 											 | 
										
																													
																						| 33 | 
																						 
											 GRAY W M. Tropical cyclone genesis and intensification[M]// Bengtsson L, Lighthill J. Intense atmospheric vortices. Springer-Verlag, 1982:3-20.
											 											 | 
										
																													
																						| 34 | 
																						 
											 SCHADE L R, EMANUEL K. The ocean's effect on the intensity of tropical cyclones: results from a simple coupled atmosphere-ocean model[J]. Journal of the Atmospheric Sciences, 1999, 56: 642-651.
											 											 | 
										
																													
																						| 35 | 
																						 
											 HONG X, CHANG S W, RAMAN S, et al. The interaction between Hurricane Opal (1995) and a warm core ring in the Culf of Mexico[J]. Monthly Weather Review, 2000, 128: 1 347-1 365.
											 											 | 
										
																													
																						| 36 | 
																						 
											 SCHADE L R. Tropical cyclone intensity and sea surface temperature[J]. Journal of the Atmospheric Sciences, 2000, 57: 3 122-3 130.
											 											 | 
										
																													
																						| 37 | 
																						 
											 KILIC C, RAIBLE C C. Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF[J]. Meteorologische Zeitschrift, 2014, 22: 685-698.
											 											 | 
										
																													
																						| 38 | 
																						 
											 MA Z H, FEI J F, LIU L, et al. An investigation of the influences of mesoscale ocean eddies on tropical cyclone intensities[J]. Monthly Weather Review, 2017, 145: 1 181-1 201.
											 											 | 
										
																													
																						| 39 | 
																						 
											 YAO Jiawei, DUAN Wansuo. Target observation of sea surface temperature for tropical cyclone intensity simulation [J]. Chinese Journal of Atmospheric Sciences, 2022, 46(1): 1-16.
											 											 | 
										
																													
																						 | 
																						 
											 姚佳伟, 段晚锁. 台风强度模拟的海温目标观测研究[J]. 大气科学, 2022, 46(1): 1-16.
											 											 | 
										
																													
																						| 40 | 
																						 
											 SMITH R K, MONTGOMERY M T, SANG N VAN. Tropical cyclone spin-up revisited[J]. Quarterly Journal of the Royal Meteorological, 2009, 135: 1 321-1 335.
											 											 | 
										
																													
																						| 41 | 
																						 
											 HUANG Y H, MONTGOMERY M T, WU C C. Concentric eyewall formation in typhoon Sinlaku (2008). Part II: axisymmetric dynamical processes[J]. Journal of the Atmospheric Sciences, 2012, 69: 662-674.
											 											 | 
										
																													
																						| 42 | 
																						 
											 SCHMIDT C J, SMITH R K. Tropical cyclone evolution in a minmal axisymmetric model revisited[J]. Quarterly Journal of the Royal Meteorological, 2016, 142: 1 505-1 516.
											 											 | 
										
																													
																						| 43 | 
																						 
											 MONTGOMERY M T, SMITH R K. Recent developments in the fluid dynamics of tropical cyclones[J]. Annual Review of Fluid Mechanics, 2017, 49: 541-574.
											 											 | 
										
																													
																						| 44 | 
																						 
											 HENG J, WANG Y, ZHOU W. Revisiting the balanced and unbalanced aspects of tropical intensification[J]. Journal of the Atmospheric Sciences, 2017, 74: 2 575-2 791.
											 											 | 
										
																													
																						| 45 | 
																						 
											 LI Y L, WANG Y Q, LIN Y L. How much does the upward advectionof the supergradient component of boundary layer wind contribute to tropical cyclone intensification and maximum intensity?[J]. Journal of the Atmospheric Sciences, 2020, 77: 2 649-2 664.
											 											 | 
										
																													
																						| 46 | 
																						 
											 FEI R, WANG Y Q, LI Y L. Contribution of vertical advection to supergradient wind in tropical cyclone boundary layer: a numerical study[J]. Journal of the Atmospheric Sciences, 2021, 78: 1 057-1 073.
											 											 | 
										
																													
																						| 47 | 
																						 
											 ZHANG J A, ROGERS R F. Effects of parameterized boundary layer structure on hurricane rapid intensification in shear[J]. Monthly Weather Review, 2019, 147: 853-870.
											 											 | 
										
																													
																						| 48 | 
																						 
											 CHEN X M, XUE M, ZHOU B W, et al. Effects of scale-aware planetary boundary layer schemes on tropical cyclone intensification and structural changes in the gray zone[J]. Monthly Weather Review, 2021, 149: 2 079-2 095.
											 											 | 
										
																													
																						| 49 | 
																						 
											 QIN X H, DUAN W S. Forecast uncertainty of rapid intensification of typhoon dujuan (201521) induced by uncertainty in the boundary layer[J]. Atmosphere, 2020, 11(1 263): 1-17.
											 											 | 
										
																													
																						| 50 | 
																						 
											 HONG SY, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134: 2 318-2 341.
											 											 | 
										
																													
																						| 51 | 
																						 
											 LANGLAND R H, TOTH Z, RELARO R, et al. The North Pacific Experiment (NORPEX-98): targeted observations for improved North American weather forecasts[J]. Bulletin of the American Meteorological Society, 1999, 80: 1 363-1 384.
											 											 | 
										
																													
																						| 52 | 
																						 
											 MU M. Methods, current status, and prospect of targeted observation[J]. Science China: Earth Sciences, 2013, 56(12): 1 997-2 005.
											 											 | 
										
																													
																						| 53 | 
																						 
											 DUAN W S, HUO Z H. An approach to generating mutually independent initial perturbations for ensemble forecasts: orthogonal conditional nonlinear optimal perturbations[J]. Journal of the Atmospheric Sciences, 2016, 73(3): 997-1 014.
											 											 | 
										
																													
																						| 54 | 
																						 
											 HUO Z H, DUAN W S. The application of the orthogonal conditional nonlinear optimal perturbations method to typhoon track ensemble forecasts[J]. Science China: Earth Sciences, 2018. DOI:10.1007/s11430-018-9248-9 .
											 											 | 
										
																													
																						| 55 | 
																						 
											 HUO Z H, DUAN W S, ZHOU F F. Ensemble forecasts of tropical cyclone track with orthogonal conditional nonlinear optimal perturbations[J]. Advances in Atmospheric Sciences, 2019, 36(2): 231-247.
											 											 | 
										
																													
																						| 56 | 
																						 
											 WANG Ye, DUAN Wansuo. Influences of initial perturbation amplitudes and ensemble sizes on the ensemble forecasts made by CNOPs method [J]. Chinese Journal of Atmospheric Sciences, 2019, 43(4): 919-933.
											 											 | 
										
																													
																						 | 
																						 
											 汪叶,段晚锁. 初始扰动振幅和集合样本数对CNOPs集合预报的影响[J]. 大气科学,2019,43(4):919-933.
											 											 | 
										
																													
																						| 57 | 
																						 
											 BAUER P, THORPE A, BRUNET G. The quiet revolution of numerical weather prediction[J]. Nature, 2015, 525: 47-55.
											 											 | 
										
																													
																						| 58 | 
																						 
											 TAO L J, DUAN W S. Using a nonlinear forcing singular vector approach to reduce model error effects in ENSO forecasting[J]. Weather and Forecasting, 2019, 34:1 321-1 342.
											 											 |