1 |
DONG Changming, JIANG Xingliang, XU Guangjun, et al. Automated eddy detection using geometric approach, eddy datasets and their application[J]. Advances in Marine Science, 2017, 35(4):439-453.
|
|
董昌明, 蒋星亮, 徐广珺, 等. 海洋涡旋自动探测几何方法、涡旋数据库及其应用[J]. 海洋科学进展, 2017, 35(4):439-453.
|
2 |
ZHENG Congcong, YANG Yuxing, WANG Faming. Spatial-temporal features of eddies in the North Pacific[J]. Marine Sciences, 2014, 38(10): 105-112.
|
|
郑聪聪, 杨宇星, 王法明. 北太平洋中尺度涡时空特征分析[J]. 海洋科学, 2014, 38(10): 105-112.
|
3 |
NAN F, YU F, WEI C J, et al. Observations of an extra-large subsurface anticyclonic eddy in the northwestern Pacific subtropical gyre[J]. Journal of Marine Science: Research & Development, 2017, 7(4). DOI:10.4172/2155-9910.1000234 .
|
4 |
QIU B, CHEN S M. Interannual variability of the North Pacific subtropical countercurrent and its associated mesoscale eddy field[J]. Journal of Physical Oceanography, 2010, 40(1): 213-225.
|
5 |
GU Xiaoli. Study on low-frequency variation mechanism of sea level in tropical and subtropical northwest Pacific Ocean[D]. Qingdao: Ocean University of China, 2010.
|
|
顾小丽. 热带、副热带西北太平洋海平面低频变化机制的研究[D]. 青岛: 中国海洋大学, 2010.
|
6 |
Feng NAN, YU Fei, XU Anqi, et al. Progress and prospect of subsurface-intensified eddies in the northwestern Pacific Ocean[J]. Advances in Earth Science, 2022, 37(11): 1 115-1 126.
|
|
南峰, 于非, 徐安琪, 等. 西北太平洋次表层中尺度涡研究进展和展望[J]. 地球科学进展, 2022, 37(11): 1 115-1 126.
|
7 |
XU Lixiao, LIU Qinyu. Mesoscale eddy effects on subduction and transport of the North Pacific subtropical mode water[J]. Advances in Earth Science, 2021, 36(9): 883-898.
|
|
许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9): 883-898.
|
8 |
HE Zhongjie. Study on mesoscale vorticity in the subtropical counter-current region of the northwest Pacific Ocean and its adjacent seas[D]. Qingdao: Ocean University of China, 2007.
|
|
何忠杰. 西北太平洋副热带逆流区及其邻近海域中尺度涡研究[D]. 青岛: 中国海洋大学, 2007.
|
9 |
YANG Guang. Study on mesoscale vortex in northwest Pacific Ocean[D]. Beijing: University of Chinese Academy of Sciences, 2013.
|
|
杨光. 西北太平洋中尺度涡旋研究[D]. 北京: 中国科学院大学, 2013.
|
10 |
CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15). DOI:10.1029/2007GL030812 .
|
11 |
RICHARDSON P L. Eddy kinetic energy in the North Atlantic from surface drifters[J]. Journal of Geophysical Research: Oceans, 1983, 88(C7): 4 355-4 367.
|
12 |
CHEN S M, QIU B. Mesoscale eddies northeast of the Hawaiian archipelago from satellite altimeter observations[J]. Journal of Geophysical Research, 2010, 115(C3). DOI:10.1029/2009JC005698 .
|
13 |
CALIL P H R, RICHARDS K J, JIA Y L, et al. Eddy activity in the lee of the Hawaiian Islands[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2008, 55(10/11/12/13): 1 179-1 194.
|
14 |
LIU Q Y. On the formation of subtropical countercurrent to the west of the Hawaiian Islands[J]. Journal of Geophysical Research, 2003, 108(C5). DOI:10.1029/2002JC001366 .
|
15 |
XIE S P, LIU W T, LIU Q, et al. Far-reaching effects of the Hawaiian Islands on the Pacific Ocean-atmosphere system[J]. Science, 2001, 292(5 524): 2 057-2 060.
|
16 |
JIA Y, CALIL P H R, CHASSIGNET E P, et al. Generation of mesoscale eddies in the lee of the Hawaiian Islands[J]. Journal of Geophysical Research: Oceans, 2011, 116(C11). DOI:10.1029/2011JC007305 .
|
17 |
LIU Y, DONG C M, GUAN Y P, et al. Eddy analysis in the subtropical zonal band of the North Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 68: 54-67.
|
18 |
LUMPKIN R, FLAMANT P. Extent and energetics of the Hawaiian Lee Countercurrent[J]. Oceanography, 2013, 26(1): 58-65.
|
19 |
LOBEL P S, ROBINSON A R. Transport and entrapment of fish larvae by ocean mesoscale eddies and currents in Hawaiian waters[J]. Deep Sea Research Part A: Oceanographic Research Papers, 1986, 33(4): 483-500.
|
20 |
QIU B, KOH D, LUMPKIN C, et al. Existence and formation mechanism of the North Hawaiian ridge current[J]. Journal of Physical Oceanography, 1997, 27: 431-444.
|
21 |
NAN F, XUE H J, YU F, et al. Strengthening and lengthening of the Hawaiian lee countercurrent driven by the Pacific trade wind acceleration[J]. Journal of Geophysical Research: Oceans, 2020, 125(7). DOI:10.1029/2020JC016058 .
|
22 |
KOBASHI F. Seasonal variation and instability nature of the North Pacific subtropical countercurrent and the Hawaiian Lee countercurrent[J]. Journal of Geophysical Research, 2002, 107(C11). DOI:10.1029/2001JC001225 .
|
23 |
LI Hongjie, XU Yongsheng. Seasonal variation in eddy kinetic energy spectrum and its mechanism in the North Pacific subtropical countercurrent[J]. Oceanologia et Limnologia Sinica, 2017, 48(5):932-943.
|
|
李宏杰, 徐永生. 北太平洋副热带逆流区涡旋动能谱的季节性变化及其机制[J]. 海洋与湖沼, 2017, 48(5):932-943.
|
24 |
ZHANG Wanlun, LIU Zhiliang, WANG Shihong. Seasonal variations of eddy kinetic energy and its spectral characteristics in the southern Yellow Sea[J]. Marine Sciences, 2017, 41(3):130-137.
|
|
张菀伦, 刘志亮, 王世红. 南黄海涡动能及其谱特征的季节性变化[J]. 海洋科学, 2017, 41(3):130-137.
|
25 |
MITCHUM G T. The source of 90‐day oscillations at Wake Island[J]. Journal of Geophysical Research: Oceans, 1995, 100(C2): 2 459-2 475.
|
26 |
YOSHIDA S, QIU B, HACKER P. Wind-generated eddy characteristics in the lee of the island of Hawaii[J]. Journal of Geophysical Research Oceans, 2010, 115(3). DOI:10.1029/2009JC005417 .
|
27 |
YOSHIDA S, QIU B, HACKER P. Low-frequency eddy modulations in the Hawaiian Lee Countercurrent: observations and connection to the Pacific Decadal Oscillation[J]. Journal of Geophysical Research, 2011, 116(C12). DOI:10.1029/2011JC007286 .
|
28 |
GUINEHUT S, DHOMPS A L, LARNICOL G, et al. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations[J]. Ocean Science, 2012, 8(5): 845-857.
|
29 |
ZHAN P, SUBRAMANIAN A C, YAO F C, et al. The eddy kinetic energy budget in the Red Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(7): 4 732-4 747.
|
30 |
YANG Q X, NIKURASHIN M, SASAKI H, et al. Dissipation of mesoscale eddies and its contribution to mixing in the northern South China Sea[J]. Scientific Reports, 2019, 9(1): 1-9.
|
31 |
EDEN C, BÖNING C. Sources of eddy kinetic energy in the Labrador Sea[J]. Journal of Physical Oceanography, 2002, 32(12): 3 346-3 363.
|
32 |
SHORE J, STACEY M W, WRIGHT D G. Sources of eddy energy simulated by a model of the northeast Pacific Ocean[J]. Journal of Physical Oceanography, 2008, 38(10): 2 283-2 293.
|
33 |
HUI Y C, ZHANG L L, WANG Z X, et al. Interannual modulation of subthermocline eddy kinetic energy east of the Philippines[J]. Journal of Geophysical Research: Oceans, 2022, 127(5). DOI: DOI:10.1029/2022JC018452 .
|
34 |
GREENE C A, THIRUMALAI K, KEARNEY K A, et al. The climate data toolbox for MATLAB[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(7): 3 774-3 781.
|
35 |
XU Anqi. Study on the characteristics and dynamic mechanism of subsurface mesoscale vortex in the northwest Pacific Ocean[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2021.
|
|
徐安琪. 西北太平洋次表层中尺度涡特征及其动力机制研究[D]. 青岛:中国科学院海洋研究所, 2021.
|
36 |
YAN X M, KANG D J, PANG C G, et al. Energetics analysis of the eddy-Kuroshio interaction east of Taiwan [J]. Journal of Physical Oceanography, 2022, 52(4): 647-664.
|
37 |
ZHANG Mingjun, ZHENG Fei, ZHU Keyun. Analysis on the spatial and temporal distribution of the PDO and its relationship with ENSO[J]. Plateau and Mountain Meteorology Research, 2017, 37(2): 40-44.
|
|
张明俊, 郑飞, 朱克云. PDO的时空分布特征及其与ENSO的关系[J]. 高原山地气象研究, 2017, 37(2): 40-44.
|