地球科学进展 ›› 2023, Vol. 38 ›› Issue (5): 505 -514. doi: 10.11867/j.issn.1001-8166.2023.021

研究论文 上一篇    下一篇

夏威夷群岛背风逆流区涡动能的年际变化及其机制诊断分析
孙秀雯 1 , 2( ), 南峰 2 , 3 , 4 , 5( ), 张瑞坤 1   
  1. 1.青岛科技大学数理学院,山东 青岛 266061
    2.中国科学院海洋环流与波动重点实验室,山东 青岛 266071
    3.中国科学院海洋大科学研究中心,山东 青岛 266071
    4.中国科学院大学地球科学学院,北京 100049
    5.青岛海洋科学与技术试点国家实验室,山东 青岛 266237
  • 收稿日期:2022-10-28 修回日期:2023-02-23 出版日期:2023-05-10
  • 通讯作者: 南峰 E-mail:2386380315@qq.com;nanfeng0515@qdio.ac.cn
  • 基金资助:
    国家自然科学基金面上项目“西北太平洋次表层中尺度涡三维结构及其形成机制”(41676005)

Interannual Variation and Mechanism Diagnostic Analysis of the Eddy Kinetic Energy in the Lee Side of the Hawaiian Islands

Xiuwen SUN 1 , 2( ), Feng NAN 2 , 3 , 4 , 5( ), Ruikun ZHANG 1   

  1. 1.School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
    2.Key Laboratory of Ocean Circulation and Wave Studies, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
    3.Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
    4.College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
    5.Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
  • Received:2022-10-28 Revised:2023-02-23 Online:2023-05-10 Published:2023-05-10
  • Contact: Feng NAN E-mail:2386380315@qq.com;nanfeng0515@qdio.ac.cn
  • About author:SUN Xiuwen (1997-), female, Weifang City, Shandong Province, Master student. Research areas include eddy-current interactions in the Hawaiian Islands. E-mail: 2386380315@qq.com
  • Supported by:
    the National Natural Science Foundation of China “Three-dimensional structure of subsurface mesoscale eddies in the Northwest Pacific Ocean and their formation mechanisms”(41676005)

夏威夷群岛以西背风逆流区流系复杂,是中尺度涡高发区,该海域中尺度涡活动对大尺度环流变化、海气交换以及海洋生物分布等具有重要意义。利用1993—2020年的再分析数据,研究了夏威夷群岛背风逆流区涡动能的年际变化特征及其机制。根据涡动能分布情况,将夏威夷群岛以西背风逆流区分为2个区域(离岛区域和近岛区域)开展研究,主要结论如下: 离岛和近岛区域涡动能均有显著的年际变化,近岛区域超前离岛区域涡动能变化。超前12个月时,与离岛涡动能相关系数最大为0.57。 涡动能的年际变化主要受正压不稳定、斜压不稳定、平流和风应力做功调控。涡动能收支诊断分析发现离岛区域涡动能的年际变化主要受斜压不稳定变化控制,近岛区域涡动能年际变化主要受风应力做功变化控制。 涡动能年际变化受大尺度年际信号调控。离岛区域涡动能年际变化与太平洋年代际振荡信号指数显著相关,超前太平洋年代际振荡信号指数10个月时相关系数最大为0.85。近岛区域涡动能年际变化超前太平洋年代际振荡信号指数2个月时,相关系数最大为0.40。

The Hawaiian Lee Countercurrent region is characterized by high occurrence of mesoscale eddies and complex flows. The activity of mesoscale eddies in this region is critical for the oceanic and atmospheric circulations, sea-air exchange, etc. The interannual variability of the Eddy Kinetic Energy (EKE) and its mechanisms in this region were investigated using reanalysis data from 1993 to 2020. According to the EKE distribution, two regions were selected, namely off-island and near-island. The results showed the following: The interannual variation of the EKE is significant in both the off-island and near-island regions. The EKE variation in the near-island region leads that in the off-island region by 12 months, with a maximum correlation coefficient of 0.57. The interannual variation of the EKE is mainly regulated by baroclinic instability, barotropic instability, transport, and wind stress work. Analysis of the EKE budget revealed that the interannual variation of the EKE in the off-island region is mainly controlled by baroclinic instability variation, whereas that in the near-island region is mainly controlled by wind stress work. Interannual variations of the EKE are modulated by large-scale signals. The interannual variation of the EKE in the off-island (near-island) region is significantly correlated with the PDO index, leading by 10 (2) months, with a maximum correlation coefficient of 0.85 (0.40).

中图分类号: 

图1 19932020年平均风场和流场分布图
(a)北太平洋平均风应力和风应力旋度分布,黑色框所示区域的经纬度范围:160°E~140°W,10°~30°N;(b)夏威夷群岛附近[图(a)中黑色方框区域]平均风应力和风应力旋度分布;(c)海表平均的东西向地转流速,箭头示意性给出主要海流
Fig. 1 The mean surface wind field and currents from 1993 to 2020
(a) Mean sea surface wind stress and wind stress curl in the North Pacific Ocean, the latitude and longitude range of the area shown in the black box in the Fig. (a) (160°E~140°W, 10°~30°N); (b) Mean sea surface wind stress and wind stress curl around the Hawaiian Islands [see box in Fig. (a)]; (c) Mean surface zonal geostrophic current, the main currents are given schematically by arrows
图2 卫星高度计数据和再分析数据计算的海表涡动能对比图
(a)和(b)分别为卫星高度计数据和再分析数据计算的平均(1993—2020年)涡动能分布图; (b)黑色框所示区域的经纬度范围:Box1 (160°E~170°W, 18.0°~20.5°N),Box2 (170°~156°W, 18.0°~20.5°N);涡动能取对数lg(EKE);(c)和(d)分别为Box1和Box2区域内逐月时间序列对比曲线
Fig. 2 Comparison of Eddy Kinetic EnergyEKEcalculated from satellite altimeter data and multi‐observation products data
(a) and (b) are the mean (1993-2020) EKE distributions calculated from satellite altimeter data and multi‐observation products data, respectively. The latitude and longitude range of the area shown in the black box in the Fig.(b): Box1 (160°E~170°W, 18.0°~20.5°N), Box2 (170°~156°W, 18.0°~20.5°N), the EKE are lg(EKE) in Fig. 2; (c) and (d) are monthly variations of EKE in the Box1 and Box2 region, respectively
图3 19932020年平均的涡动能随深度变化图
(a)(160°E~156°W, 18.0°~20.5°N)纬度平均的涡动能随深度变化;(b)区域(160°E~156°W, 18.0°~20.5°N)平均涡动能随深度变化图;(a)和(b)中涡动能都取对数lg(EKE)
Fig. 3 Variations in mean Eddy Kinetic EnergyEKEwith depth during 1993 to 2020
(a) Latitudinally mean (160°E~156°W, 18.0°~20.5°N) EKE variations vs. depth; (b) Mean (160°E~156°W, 18.0°~20.5°N) EKE variations vs. depth. The EKE are lg(EKE) in Fig.(a) and Fig.(b)
图4 涡动能时间序列
曲线分别为Box1和Box2区域内涡动能的区域和深度积分时间序列
Fig. 4 The time series of the Eddy Kinetic EnergyEKE
The curves in the fig. 4 show the regional and depth-integrated time series of the EKE in Box1 and Box2, respectively
图5 公式(3)中变量199320200~200 m平均分布图
公式(3): EKE=( BT+ BC+ T+ W)× Δ t ,(a)~(d)分别是斜压不稳定( BC)、正压不稳定( BT)、平流( T)和风应力做功( W)分布图
Fig. 5 The average1993-20200~200 mdistribution of all terms in the right side of equation3
Formula (3): EKE=( BT+ BC+ T+ W)× Δ t ,(a)~(d) are distributions of baroclinic instability ( BC), barotropic instability ( BT), transport ( T), and wind stress work ( W), respectively
图6 离岛区域(Box1)涡动能与斜压不稳定、正压不稳定、平流和风应力做功的时间序列曲线
(a)涡动能;(b)斜压不稳定、正压不稳定、平流和风应力做功的时间序列;为去除季节变化信号已做13个月滑动平均
Fig. 6 The time series of the Eddy Kinetic EnergyEKEin Box1 region and baroclinic instabilitybarotropic instabilitytransportand wind stress work
(a) The time series of eddy kinetic energy; (b) The time series of the baroclinic instability, barotropic instability, transport, and wind stress work, respectively. To remove the seasonal signal,EKE has been smoothed by 13 months
表1 Box1Box2区域中涡动能与斜压不稳定、正压不稳定、平流和风应力做功的最大相关系数及超前滞后时间
Table 1 The maximum correlation coefficients and lead-lag correlation time between the Eddy Kinetic EnergyEKEand baroclinic instabilitybarotropic instabilitytransportand wind stress work in the Box1 and Box2
图7 近岛Box2区域涡动能与斜压不稳定、正压不稳定、平流和风应力做功的时间序列曲线
(a)涡动能;(b)斜压不稳定、正压不稳定、平流和风应力做功的时间序列;为去除季节变化信号已做13 个月滑动平均
Fig. 7 The time series of the Eddy Kinetic EnergyEKEin Box2 region and baroclinic instabilitybarotropic instabilitytransportand wind stress work
(a) The time series of eddy kinetic energy; (b) The time series of the baroclinic instability, barotropic instability, transport, and wind stress work, respectively. To remove the seasonal signal,EKE has been smoothed by 13 months
图8 太平洋年代际振荡信号与斜压不稳定、风应力做功时间序列
(a)PDO指数的时间序列;(b)分别为Box1区域内斜压不稳定的时间序列和Box2区域内风应力做功的时间序列
Fig. 8 The Pacific Decadel OscillationPDOand baroclinic instabilitywind stress work time series
(a) The time series of the PDO index; (b) The time series of the baroclinic instability in Box1, the time series of the wind stress work in Box2, respectively
图9 涡动能与太平洋年代际振荡信号超前滞后相关
Box1和Box2区域涡动能变化与PDO指数的超前滞后相关;PDO与涡动能都进行了13个月的平滑处理,相关系数在95%的置信水平上具有统计学意义
Fig. 9 Lead-lag correlation between the Eddy Kinetic EnergyEKEand Pacific Decadel OscillationPDOindex
The lead-lag correlations between the EKE changes and the PDO index in Box1 and Box2 regions, respectively. Both PDO and EKE time series have been smoothed for 13 months and correlation coefficients were statistically significant at a 95% confidence level
1 DONG Changming, JIANG Xingliang, XU Guangjun, et al. Automated eddy detection using geometric approach, eddy datasets and their application[J]. Advances in Marine Science, 2017, 35(4):439-453.
董昌明, 蒋星亮, 徐广珺, 等. 海洋涡旋自动探测几何方法、涡旋数据库及其应用[J]. 海洋科学进展, 2017, 35(4):439-453.
2 ZHENG Congcong, YANG Yuxing, WANG Faming. Spatial-temporal features of eddies in the North Pacific[J]. Marine Sciences, 2014, 38(10): 105-112.
郑聪聪, 杨宇星, 王法明. 北太平洋中尺度涡时空特征分析[J]. 海洋科学, 2014, 38(10): 105-112.
3 NAN F, YU F, WEI C J, et al. Observations of an extra-large subsurface anticyclonic eddy in the northwestern Pacific subtropical gyre[J]. Journal of Marine Science: Research & Development, 2017, 7(4). DOI:10.4172/2155-9910.1000234 .
4 QIU B, CHEN S M. Interannual variability of the North Pacific subtropical countercurrent and its associated mesoscale eddy field[J]. Journal of Physical Oceanography, 2010, 40(1): 213-225.
5 GU Xiaoli. Study on low-frequency variation mechanism of sea level in tropical and subtropical northwest Pacific Ocean[D]. Qingdao: Ocean University of China, 2010.
顾小丽. 热带、副热带西北太平洋海平面低频变化机制的研究[D]. 青岛: 中国海洋大学, 2010.
6 Feng NAN, YU Fei, XU Anqi, et al. Progress and prospect of subsurface-intensified eddies in the northwestern Pacific Ocean[J]. Advances in Earth Science, 2022, 37(11): 1 115-1 126.
南峰, 于非, 徐安琪, 等. 西北太平洋次表层中尺度涡研究进展和展望[J]. 地球科学进展, 2022, 37(11): 1 115-1 126.
7 XU Lixiao, LIU Qinyu. Mesoscale eddy effects on subduction and transport of the North Pacific subtropical mode water[J]. Advances in Earth Science, 2021, 36(9): 883-898.
许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9): 883-898.
8 HE Zhongjie. Study on mesoscale vorticity in the subtropical counter-current region of the northwest Pacific Ocean and its adjacent seas[D]. Qingdao: Ocean University of China, 2007.
何忠杰. 西北太平洋副热带逆流区及其邻近海域中尺度涡研究[D]. 青岛: 中国海洋大学, 2007.
9 YANG Guang. Study on mesoscale vortex in northwest Pacific Ocean[D]. Beijing: University of Chinese Academy of Sciences, 2013.
杨光. 西北太平洋中尺度涡旋研究[D]. 北京: 中国科学院大学, 2013.
10 CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15). DOI:10.1029/2007GL030812 .
11 RICHARDSON P L. Eddy kinetic energy in the North Atlantic from surface drifters[J]. Journal of Geophysical Research: Oceans, 1983, 88(C7): 4 355-4 367.
12 CHEN S M, QIU B. Mesoscale eddies northeast of the Hawaiian archipelago from satellite altimeter observations[J]. Journal of Geophysical Research, 2010, 115(C3). DOI:10.1029/2009JC005698 .
13 CALIL P H R, RICHARDS K J, JIA Y L, et al. Eddy activity in the lee of the Hawaiian Islands[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2008, 55(10/11/12/13): 1 179-1 194.
14 LIU Q Y. On the formation of subtropical countercurrent to the west of the Hawaiian Islands[J]. Journal of Geophysical Research, 2003, 108(C5). DOI:10.1029/2002JC001366 .
15 XIE S P, LIU W T, LIU Q, et al. Far-reaching effects of the Hawaiian Islands on the Pacific Ocean-atmosphere system[J]. Science, 2001, 292(5 524): 2 057-2 060.
16 JIA Y, CALIL P H R, CHASSIGNET E P, et al. Generation of mesoscale eddies in the lee of the Hawaiian Islands[J]. Journal of Geophysical Research: Oceans, 2011, 116(C11). DOI:10.1029/2011JC007305 .
17 LIU Y, DONG C M, GUAN Y P, et al. Eddy analysis in the subtropical zonal band of the North Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 68: 54-67.
18 LUMPKIN R, FLAMANT P. Extent and energetics of the Hawaiian Lee Countercurrent[J]. Oceanography, 2013, 26(1): 58-65.
19 LOBEL P S, ROBINSON A R. Transport and entrapment of fish larvae by ocean mesoscale eddies and currents in Hawaiian waters[J]. Deep Sea Research Part A: Oceanographic Research Papers, 1986, 33(4): 483-500.
20 QIU B, KOH D, LUMPKIN C, et al. Existence and formation mechanism of the North Hawaiian ridge current[J]. Journal of Physical Oceanography, 1997, 27: 431-444.
21 NAN F, XUE H J, YU F, et al. Strengthening and lengthening of the Hawaiian lee countercurrent driven by the Pacific trade wind acceleration[J]. Journal of Geophysical Research: Oceans, 2020, 125(7). DOI:10.1029/2020JC016058 .
22 KOBASHI F. Seasonal variation and instability nature of the North Pacific subtropical countercurrent and the Hawaiian Lee countercurrent[J]. Journal of Geophysical Research, 2002, 107(C11). DOI:10.1029/2001JC001225 .
23 LI Hongjie, XU Yongsheng. Seasonal variation in eddy kinetic energy spectrum and its mechanism in the North Pacific subtropical countercurrent[J]. Oceanologia et Limnologia Sinica, 2017, 48(5):932-943.
李宏杰, 徐永生. 北太平洋副热带逆流区涡旋动能谱的季节性变化及其机制[J]. 海洋与湖沼, 2017, 48(5):932-943.
24 ZHANG Wanlun, LIU Zhiliang, WANG Shihong. Seasonal variations of eddy kinetic energy and its spectral characteristics in the southern Yellow Sea[J]. Marine Sciences, 2017, 41(3):130-137.
张菀伦, 刘志亮, 王世红. 南黄海涡动能及其谱特征的季节性变化[J]. 海洋科学, 2017, 41(3):130-137.
25 MITCHUM G T. The source of 90‐day oscillations at Wake Island[J]. Journal of Geophysical Research: Oceans, 1995, 100(C2): 2 459-2 475.
26 YOSHIDA S, QIU B, HACKER P. Wind-generated eddy characteristics in the lee of the island of Hawaii[J]. Journal of Geophysical Research Oceans, 2010, 115(3). DOI:10.1029/2009JC005417 .
27 YOSHIDA S, QIU B, HACKER P. Low-frequency eddy modulations in the Hawaiian Lee Countercurrent: observations and connection to the Pacific Decadal Oscillation[J]. Journal of Geophysical Research, 2011, 116(C12). DOI:10.1029/2011JC007286 .
28 GUINEHUT S, DHOMPS A L, LARNICOL G, et al. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations[J]. Ocean Science, 2012, 8(5): 845-857.
29 ZHAN P, SUBRAMANIAN A C, YAO F C, et al. The eddy kinetic energy budget in the Red Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(7): 4 732-4 747.
30 YANG Q X, NIKURASHIN M, SASAKI H, et al. Dissipation of mesoscale eddies and its contribution to mixing in the northern South China Sea[J]. Scientific Reports, 2019, 9(1): 1-9.
31 EDEN C, BÖNING C. Sources of eddy kinetic energy in the Labrador Sea[J]. Journal of Physical Oceanography, 2002, 32(12): 3 346-3 363.
32 SHORE J, STACEY M W, WRIGHT D G. Sources of eddy energy simulated by a model of the northeast Pacific Ocean[J]. Journal of Physical Oceanography, 2008, 38(10): 2 283-2 293.
33 HUI Y C, ZHANG L L, WANG Z X, et al. Interannual modulation of subthermocline eddy kinetic energy east of the Philippines[J]. Journal of Geophysical Research: Oceans, 2022, 127(5). DOI: DOI:10.1029/2022JC018452 .
34 GREENE C A, THIRUMALAI K, KEARNEY K A, et al. The climate data toolbox for MATLAB[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(7): 3 774-3 781.
35 XU Anqi. Study on the characteristics and dynamic mechanism of subsurface mesoscale vortex in the northwest Pacific Ocean[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2021.
徐安琪. 西北太平洋次表层中尺度涡特征及其动力机制研究[D]. 青岛:中国科学院海洋研究所, 2021.
36 YAN X M, KANG D J, PANG C G, et al. Energetics analysis of the eddy-Kuroshio interaction east of Taiwan [J]. Journal of Physical Oceanography, 2022, 52(4): 647-664.
37 ZHANG Mingjun, ZHENG Fei, ZHU Keyun. Analysis on the spatial and temporal distribution of the PDO and its relationship with ENSO[J]. Plateau and Mountain Meteorology Research, 2017, 37(2): 40-44.
张明俊, 郑飞, 朱克云. PDO的时空分布特征及其与ENSO的关系[J]. 高原山地气象研究, 2017, 37(2): 40-44.
[1] 邵勰, 黄平, 黄荣辉. 南海夏季风爆发的研究进展[J]. 地球科学进展, 2014, 29(10): 1126-1137.
[2] 薛亮,于卫东,宁春林,王辉武. 海表层二氧化碳分压之时间序列研究进展[J]. 地球科学进展, 2013, 28(8): 859-865.
[3] 史久新,赵进平. 北冰洋盐跃层研究进展[J]. 地球科学进展, 2003, 18(3): 351-357.
阅读次数
全文


摘要