地球科学进展 ›› 2024, Vol. 39 ›› Issue (5): 532 -548. doi: 10.11867/j.issn.1001-8166.2024.037

层序地层学 上一篇    

珠江口盆地白云凹陷碎屑岩—碳酸盐岩混源型深水峡谷体系特征与控制因素
柳保军 1 , 2( ), 张向涛 1 , 2, 颜晖 1 , 2, 吴宇翔 1 , 2, 谢世文 1 , 2, 石宁 1 , 2, 陈淑慧 1 , 2, 向绪洪 1 , 2   
  1. 1.中海石油深海开发有限公司,广东 深圳 518054
    2.中海石油(中国)有限公司 深圳分公司,广东 深圳 518054
  • 收稿日期:2024-03-07 修回日期:2024-04-23 出版日期:2024-05-10
  • 基金资助:
    国家重大科技专项(2016ZX05026-003-003);中海石油深海开发有限公司承担“十四五”重大科技项目(KJGG2022-0102)

Characteristics and Controlling Factors of a Mixed-source Deep-water Canyon System of Clastic and Carbonate Rocks in the Baiyun Depression, Pearl River Mouth Basin

Baojun LIU 1 , 2( ), Xiangtao ZHANG 1 , 2, Hui YAN 1 , 2, Yuxiang WU 1 , 2, Shiwen XIE 1 , 2, Ning SHI 1 , 2, Shuhui CHEN 1 , 2, Xuhong XIANG 1 , 2   

  1. 1.China National Offshore Oil Corporation Deepwater Development Ltd. , Shenzhen Guangdong 518054, China
    2.Shenzhen Brach of China National Offshore Oil Corporation China Ltd. , Shenzhen Guangdong 518054, China
  • Received:2024-03-07 Revised:2024-04-23 Online:2024-05-10 Published:2024-06-03
  • About author:LIU Baojun, Senior engineer, research areas include petroleum reservoir prediction and comprehensive research on deepwater exploration. E-mail: liubj2@cnooc.com.cn
  • Supported by:
    the National Major Science and Technology Project(2016ZX05026-003-003);The CNOOC Deep Sea Development Co., Ltd. Undertook the 14th Five Year Plan Major Science and Technology Project(KJGG2022-0102)

珠江口盆地白云凹陷中新世珠江组SQ21.0层序发育与混源型深水峡谷体系有关的规模深水扇砂岩岩性油气藏。基于钻井约束下的三维高精度层序地层分析,系统解剖白云凹陷中新世SQ21.0层序碎屑岩—碳酸盐岩混源型深水峡谷体系的形态、充填演化与主控因素。研究显示该混源型深水峡谷体系自陆架坡折带向南部陆坡延伸超150 km,呈SN向展布于白云凹陷东区;该峡谷体系呈现上陆坡峡谷体系头部、中陆坡白云东洼区和下陆坡云荔低隆起—荔湾凹陷区等三段式发育特征,剖面形态由上陆坡的“V”型演变为中下陆坡的“U”型—“W”型,平面上由多条发散状峡谷水道演变为一条大型深水峡谷体系。受古珠江三角洲—东沙陆隆起台地双物源演化、相对海平面变化、陆架坡折和限制性陆坡地貌等共同控制,在强制海退期—低位期发育古珠江三角洲和东沙隆起滨岸体系供源的富砂型峡谷水道体系,而在相对海平面上升的海侵期—高位期发育大规模泥质/碳酸盐岩台地供源的峡谷水道体系,强烈下切侵蚀出现在限制性强的陡坡区,充填物相对富泥或富灰质。近SN向分布的泥/灰质水道峡谷体系切过近EW向展布的鼻状构造带和下覆早期富砂深水扇体形成大规模的岩性圈闭群,为近期深水区岩性圈闭勘探的重点突破领域。

The Miocene SQ21.0 sequence of the Zhujiang Formation in the Baiyun Depression, Pearl River Mouth Basin, developed large-scale deep-water fan sandstone stratigraphic reservoirs related to a mixed-source deep-water canyon system. Based on the 3-dimensional high-resolution sequence stratigraphy method constrained by drilling data, this study details the morphology, filling evolution, and main controlling factors of a mixed-source deep-water canyon system of clastic and carbonate rocks in the SQ21.0 sequence during the Miocene in the Baiyun Depression, Pearl River Mouth Basin. Our findings show that the mixed-source canyon system extends >150 km from the continental shelf break to the southern slope and is distributed in a SN direction in the eastern area of the Baiyun Depression, which presents a characteristic three-segment pattern, such as the head of the upper slope canyon system, Baiyun East Depression on the middle slope, and Yunli Low Uplift Liwan Depression on the lower slope. The profile topology has evolved from a V-shaped upper slope to a U-W-shaped middle and lower slope, and in the plane, it has evolved from multiple divergent canyons into a large canyon system. The development and distribution of the mixed-source canyon system of the Zhujiang Formation were controlled by the evolution of the dual source of the Paleo-Pearl River Delta-Dongsha Uplift platform, relative sea-level changes, shelf breaks, and restricted slope landforms. During the early forced regression of relative sea-level decline, a sand-rich canyon channel system supplied by the coastline system of the Paleo-Pearl River Delta and Dongsha Uplift developed, with significant erosion to the shelf-break-outer shelf and restricted slope change areas. Conversely, during transgression to the highstand period of relative sea level rise, with the retreat of the Paleo-Pearl River Delta source and rapid growth of reefs on the Dongsha Uplift platform, a large-scale canyon channel system supplied by argillaceous/carbonate detritus developed, with intense incision erosion occurring in the upper-middle section of the strongly restricted steep slope filled with relatively rich mud or lime debris. Canyon channel systems were filled with mud or lime debris, with a near-NS-oriented distribution, cutting across the nose-shaped structural belts and underlying early deep-water sand fan bodies in the near EW direction, forming large-scale stratigraphic trap groups which serve as key breakthrough areas for the recent exploration of stratigraphic traps in Baiyun deep-water areas.

中图分类号: 

图1 白云深水区古珠江三角洲与东沙隆起台地供源下的陆架边缘—峡谷体系响应特征图
Fig. 1 Response characteristics of shelf margin-canyon system supplied by the paleo Pearl River Delta and the Dongsha Uplift in the Baiyun deep-water area
图2 珠江口盆地白云深水区新生代地层充填序列图
Fig. 2 Cenozoic stratigraphic filling sequence of the Baiyun deep-water area in the Pearl River Mouth Basin
图3 白云凹陷古珠江三角洲—东沙隆起双物源供给下的层序结构特征
(a)白云凹陷古珠江三角洲供源下的层序结构特征;(b)东沙隆起台地供源下的层序结构特征;(c)典型井揭示的岩性组合特征;剖面位置见图1AA 和BB
Fig. 3 Sequence architecture characteristics of Baiyun Sag under the dual source supply of the ancient the Pearl River Delta and Dongsha Uplift
(a) Sequence architecture characteristics of Baiyun sag under the source supply of the ancient the Pearl River Delta; (b) The sequence architecture characteristics under the source of the Dongsha Uplift platform; (c) The lithological combination characteristics revealed by typical wells; The sectional positions are shown in Fig. 1 AA and BB
图4 白云深水区混源型峡谷体系典型特征
Fig. 4 Typical characteristics of mixed source canyon system in the Baiyun deep-water area
图5 碎屑岩物源主控陆坡峡谷体系形态与充填特征
Fig. 5 Morphology and filling characteristics of the slope canyon system dominated by clastics sources
图6 混源型峡谷体系地震剖面沉积结构特征
(a)上陆坡峡谷体系结构特征剖面;(b)中陆坡峡谷体系特征剖面;(c)和(d)下陆坡峡谷体系结构特征剖面,位置见图5和图7
Fig. 6 Seismic sedimentary architecture characteristics of mixed source canyon systems
(a) The architectural characteristic profile of the upper slope canyon system; (b) The architectural characteristic profile of the middle slope canyon system; (c) and (d) The architectural characteristic profile of the lower slope canyon system, see Fig. 5 and Fig. 7 for profile locations
图7 碳酸盐岩物源主控陆坡峡谷体系形态与充填特征
Fig. 7 Morphology and filling characteristics of the slope canyon system dominated by carbonate rock sources
表1 陆坡峡谷体系整体特征
Table 1 Overall characteristics of the continental slope canyon system
图8 白云凹陷珠江组下段重矿物组合特征
Fig. 8 Heavy mineral assemblage characteristics of the lower Zhujiang Formation in Baiyun depression
图9 白云凹陷珠江组下段沉积年代与岩石物质组成特征
(a)H1综合柱状图;(b)H5井综合柱状图;(c)H1井1 419 m藻黏微晶藻屑灰岩,藻屑(RH)和有孔虫(FO)分布在造礁骨架之间(-);(d)H5井2 176.1 m有孔虫和藻屑(-),孔隙发育较差,连通性差;(e)H5井2 217.5 m生屑灰岩和钙质砂岩,生屑以有孔虫为主,见少量藻屑(-);(f)H5井2 217.5 m处见有孔虫、红藻碎片和碎屑颗粒紧密接触(+);(g)H5井2 218.5 m细长石岩屑砂岩,孔隙发育好,连通性中等(-);(h)H5井2 218.5 m有孔虫及少量白云石分布在碎屑颗粒之间(-)
Fig. 9 Sedimentary age and rock material composition characteristics of the lower Zhujiang Formation in Baiyun depression
(a) The comprehensive chart of H1; (b) The comprehensive chart of Well H5; (c) The 1 419 m algal sticky microcrystalline algal debris limestone of Well H1, with a large amount of algal debris (RH) and foraminifera (FO) (-);(d) 2 176.1 m foraminifera and algal debris (-) in Well H5, with poor pore development and poor connectivity; (e) A 2 217.5 m bioclastic limestone and calcareous sandstone from Well H5, with foraminifera as the main bioclastic and a small amount of algal debris (-) observed; (f) The close contact (+) between foraminifera, red algae fragments, and debris particles was observed at 2 217.5 m in Well H5; (g) The 2 218.5 m slender lithic sandstone of Well H5, with well-developed pores and moderate connectivity (-); (h) The foraminifera and a small amount of dolomite are mainly found at 2 218.5 m in Well H5 (-)
图10 SQ21.0古地貌特征图与主要沉积单元叠合图
Fig. 10 SQ21.0 sequence sedimentary paleogeomorphology and main sedimentary units overlay map
图11 碳酸盐岩生物礁及灰岩峡谷水道发育特征图
(a)灰质峡谷充填源汇响应特征图; (b)灰岩峡谷体系内部地震反射结构特征
Fig. 11 Development characteristics comparison of carbonate reefs and limestone canyon system
(a) The response characteristics of filling source and sink in Limestone Canyon; (b)The seismic reflection architecture characteristics inside the Limestone Canyon system
图12 白云东区储层及岩性圈闭发育模式图
Fig. 12 Development model of reservoir and lithological traps in the Baiyun east area
1 WEIMER P, SLATT R M. Introduction to the petroleum geology of deep water settings[M]// AAPG studies in geology 57. Tulsa: AAPG/Datapages, 2007.
2 CHEN Changmin, SHI Hesheng, XU Shice, et al. The conditions of hydrocarbon accumulation of the tertiary petroleum system in the Pearl River Mouth Basin[M]. Beijing: Science Press,2003.
陈长民, 施和生, 许仕策, 等.珠江口盆地(东部)第三系油气藏形成条件[M]. 北京:科学出版社,2003.
3 GONG Zaisheng, LI Sitian, XIE Taijun,et al. Continental margin basin analysis and hydrocarbon accumulation of the north South China Sea[M]. Beijing: Science Press, 1997.
龚再升,李思田,谢泰俊,等.南海北部大陆边缘盆地分布与油气聚集[M].北京:科学出版社,1997.
4 WANG Zhenfeng. Important deepwater hydrocarbon reservoirs: the central canyon system in the Qiongdongnan Basin[J]. Acta Sedimentologica Sinica, 2012, 30(4): 646-653.
王振峰. 深水重要油气储层: 琼东南盆地中央峡谷体系[J]. 沉积学报, 2012, 30(4): 646-653.
5 SHI Hesheng, LIU Baojun, YAN Chengzhi, et al. Hydrocarbon accumulation conditions and exploration potential in Baiyun-Liwan deepwater area, Pearl River Month Basin[J]. China Offshore Oil and Gas, 2010, 22(6): 369-374.
施和生, 柳保军, 颜承志, 等. 珠江口盆地白云—荔湾深水区油气成藏条件与勘探潜力[J]. 中国海上油气, 2010, 22(6): 369-374.
6 JIANG Shu, WANG Hua, PAUL Weimer. Sequence stratigraphy characteristics and sedimentary elements in deepwater[J]. Earth Science, 2008, 33(6): 825-833.
蒋恕, 王华, PAUL Weimer. 深水沉积层序特点及构成要素[J]. 地球科学, 2008, 33(6): 825-833.
7 XIE Xinong, CHEN Zhihong, SUN Zhipeng, et al. Depositional architecture characteristics of deepwater depositional systems on the continental margins of northwestern South China Sea[J]. Earth Science, 2012, 37(4): 627-634.
解习农, 陈志宏, 孙志鹏, 等. 南海西北陆缘深水沉积体系内部构成特征[J]. 地球科学, 2012, 37(4): 627-634.
8 LIU Xinying, YU Shui, TAO Weixiang, et al. Filling architecture and evolution of upper Miocene deep-water channel in Congo fan basin[J]. Earth Science, 2012, 37(1): 105-112.
刘新颖, 于水, 陶维祥, 等. 刚果扇盆地上中新世深水水道充填结构及演化特征[J]. 地球科学, 2012, 37(1): 105-112.
9 SU Ming, ZHANG Cheng, XIE Xinong, et al. Analysis of controlling factors of deep-water canyon system: a case study of central canyon system in Qiongdongnan Basin, northern South China Sea[J]. Science China: Earth Sciences, 2014, 44(8): 1 807-1 820.
苏明, 张成, 解习农, 等. 深水峡谷体系控制因素分析: 以南海北部琼东南盆地中央峡谷体系为例[J]. 中国科学: 地球科学, 2014, 44(8): 1 807-1 820.
10 HARRIS P T, WHITEWAY T. Global distribution of large submarine canyons: geomorphic differences between active and passive continental margins[J]. Marine Geology, 2011, 285(1/2/3/4): 69-86.
11 ANTOBREH A A, Morphology KRASTEL S., seismic characteristics and development of Cap Timiris Canyon, Mauritania offshore : a newly discovered canyon preserved-off a major arid climatic region[J]. Marine and Petroleum Geology, 2006, 23(1): 37-59.
12 BABONNEAU N, SAVOYE B, CREMER M, et al. Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan[J]. Marine and Petroleum Geology, 2002, 19(4): 445-467.
13 CLARK J D, PICKERING K T. Architectural elements and growth pattern of submarine channels: application to hydrocarbon exploration[J]. AAPG Bulletin,1996,80: 194-221.
14 FARRE J A, MECGREGOR B A, RYAN W B, et al. Breaching the shelf break: passage from youthful to mature phase in submarine canyon evolution[M]// STANLEY D J, MOORE T G. The shelf break: critical interface on continental margins. Tulsa: Society for Sedimentary Geology, 1983: 25-39.
15 GINGELE F X, de DECKKER P, HILLENBRAND C D. Late Quaternary terrigenous sediments from the Murray Canyons area, offshore South Australia and their implications for sea level change, palaeoclimate and palaeodrainage of the Murray-Darling Basin[J]. Marine Geology, 2004, 212(1/2/3/4): 183-197.
16 LAURSEN J, NORMARK W R. Late Quaternary evolution of the San Antonio Submarine Canyon in the central Chile forearc (∼33°S)[J]. Marine Geology, 2002, 188(3/4): 365-390.
17 MAYALL M, JONES E, CASEY M. Turbidite channel reservoirs—key elements in facies prediction and effective development[J]. Marine and Petroleum Geology, 2006, 23(8): 821-841.
18 POPESCU I, LERICOLAIS G, PANIN N, et al. The Danube submarine canyon (Black Sea): morphology and sedimentary processes[J]. Marine Geology, 2004, 206(1/2/3/4): 249-265.
19 MAYALL M J, YEILDING C A, OLDROYD J D, et al. Facies in a shelf-edge delta: an example from the gulf of mexico, middle pliocene, mississippi Canyon, block 109[J]. AAPG Bulletin,1992, 76(4):435-448.
20 XIE X N, MÜLLER R D, REN J Y, et al. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology, 2008, 247(3/4): 129-144.
21 FISHER W L, GALLOWAY W E, STEEL R J, et al. Deep-water depositional systems supplied by shelf-incising submarine canyons: recognition and significance in the geologic record[J]. Earth-Science Reviews, 2021, 214. DOI:10.1016/j.earscirev.2021.103531 .
22 CHEN Liang, PANG Xiong, LIU Jun, et al. Characteristics and identification of high quality deep-water gravity flow sandstone reservoirs in Baiyun Sag, Pearl River Mouth Basin, South China Sea[J]. Petroleum Exploration and Development, 2015, 42(4): 463-471.
陈亮, 庞雄, 刘军, 等. 珠江口盆地白云凹陷深水重力流优质砂岩储集层特征及识别方法[J]. 石油勘探与开发, 2015, 42(4): 463-471.
23 SHI Ning, LIU Jun, YAN Chengzhi, et al. Apply various methods to comprehensively explore the deep-water sedimentary lithological traps’ boundary in Baiyun depression[J]. Geoscience, 2014, 28(6): 1 289-1 296.
石宁, 刘军, 颜承志, 等. 多种方法综合探讨白云凹陷深水沉积岩性圈闭边界[J]. 现代地质, 2014, 28(6): 1 289-1 296.
24 CHEN Liang, PANG Xiong, HAN Jinyang, et al. Structural-lithologic hydrocarbon reservoir characterization and accumulation patterns in the Baiyun deep-water area of the Pearl River mouth basin[J]. Special Oil & Gas Reservoirs, 2019, 26(1): 30-36.
陈亮, 庞雄, 韩晋阳, 等. 珠江口盆地白云深水区构造—岩性油气藏特征及成藏模式[J]. 特种油气藏, 2019, 26(1): 30-36.
25 LIAO Jihua, XU Qiang, CHEN Ying, et al. Sedimentary characteristics and genesis of the deepwater channel system in Zhujiang formation of Baiyun-Liwan sag[J]. Earth Science, 2016, 41(6): 1 041-1 054.
廖计华, 徐强, 陈莹, 等. 白云—荔湾凹陷珠江组大型深水水道体系沉积特征及成因机制[J]. 地球科学, 2016, 41(6): 1 041-1 054.
26 ZENG Qingbo, WU Jingfu, ZHAO Zhigang, et al. Discovery and exploration significance of large-scale waterway system of Zhujiang Formation in Baiyun-Liwan deepwater area of Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2013, 34(): 48-56.
曾清波, 吴景富, 赵志刚, 等. 珠江口盆地白云—荔湾深水区珠江组大型水道体系的发现与勘探意义[J]. 石油学报, 2013, 34(): 48-56.
27 LIN Changsong, XIA Qinglong, SHI Hesheng, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20.
林畅松, 夏庆龙, 施和生, 等. 地貌演化、源—汇过程与盆地分析[J]. 地学前缘, 2015, 22(1): 9-20.
28 LIU Baojun, PANG Xiong, YAN Chengzhi, et al. Evolution of the Oligocene-Miocene shelf slope-break zone in the Baiyun deep-water area of the Pearl River Mouth Basin and its significance in oil-gas exploration[J]. Acta Petrolei Sinica, 2011, 32(2): 234-242.
柳保军, 庞雄, 颜承志, 等. 珠江口盆地白云深水区渐新世—中新世陆架坡折带演化及油气勘探意义[J]. 石油学报, 2011, 32(2): 234-242.
29 PANG Xiong, CHEN Changmin, PENG Dajun, et al. Basic geology of Baiyun deep-water area in the northern South China Sea[J]. China Offshore Oil and Gas, 2008, 20(4): 215-222.
庞雄, 陈长民, 彭大钧, 等. 南海北部白云深水区之基础地质[J]. 中国海上油气, 2008, 20(4): 215-222.
30 HAQ B U, HARDENBOL J, VAIL P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4 793): 1 156-1 167.
31 LIU Baojun, PANG Xiong, WANG Jiahao, et al. Response process of sedimentary system under the background of crustal thinning of extended continental margin in deep water area of Pearl River Mouth Basin and its significance for oil and gas exploration[J]. Acta Petrolei Sinica, 2019, 40(): 124-138.
柳保军, 庞雄, 王家豪, 等. 珠江口盆地深水区伸展陆缘地壳减薄背景下的沉积体系响应过程及油气勘探意义[J]. 石油学报, 2019, 40(): 124-138.
32 LIU Baojun, PANG Xiong, XIE Shiwen, et al. Control effect of crust-mantle detachment fault activity on deep large delta sedimentary system in Baiyun Sag, Pearl River mouth basin[J]. Earth Science, 2022, 47(7): 2 354-2 373.
柳保军, 庞雄, 谢世文, 等. 珠江口盆地白云凹陷壳幔拆离断裂活动对深层大型三角洲沉积体系的控制作用[J]. 地球科学, 2022, 47(7): 2 354-2 373.
33 WANG Jiahao, PANG Xiong, WANG Hua, et al. Tide current-reworked sandy submarine fan deposits in Miocene Zhujiang formation, Baiyun Sag of Pearl River mouth basin[J]. Earth Science, 2024, 49(1): 71-83.
王家豪, 庞雄, 王华, 等. 珠江口盆地白云凹陷中新统珠江组潮流改造的砂质海底扇沉积[J]. 地球科学, 2024, 49(1): 71-83.
34 CATUNEANU O. Principles of sequence stratigraphy[M]. Amsterdam: Elsevier, 2006.
35 XU Xiaoyong, ZHANG Ying, LU Yintao, et al. Scale and evolution of the Pleistocene aggradational channels in the bangle fan[J]. Advances in Earth Science, 2022, 37(3): 268-276.
许小勇, 张颖, 鲁银涛, 等. 孟加拉扇更新统加积型深水水道规模和演化[J]. 地球科学进展, 2022, 37(3): 268-276.
36 WANG Dawei, ZENG Fanchang, WANG Weiwei, et al. Submarine gullies: the capillary of deep-water sediment transport system[J]. Advances in Earth Science, 2022, 37(4): 331-343.
王大伟, 曾凡长, 王微微, 等. 海底冲沟: 深水沉积输运系统的“毛细血管”[J]. 地球科学进展, 2022, 37(4): 331-343.
37 ZHANG Yunfan, SUN Zhen, PANG Xiong. Relationship between lower crustal extension and shelf slope break in Baiyun Sag, Pearl River Mouth Basin[J]. Science China: Earth Sciences, 2014, 44(3): 488-496.
张云帆, 孙珍, 庞雄. 珠江口盆地白云凹陷下地壳伸展与陆架坡折的关系[J]. 中国科学: 地球科学, 2014, 44(3): 488-496.
38 HOU Yuanli, SHAO Lei, QIAO Peijun, et al. Provenance of the Eocene-Miocene sediments in the Baiyun Sag, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2020, 40(2): 19-28.
侯元立, 邵磊, 乔培军, 等. 珠江口盆地白云凹陷始新世: 中新世沉积物物源研究[J]. 海洋地质与第四纪地质, 2020, 40(2): 19-28.
39 LI Xiaoping, SHI Hesheng, DU Jiayuan, et al. Capability of Dongsha massif as provenance during Zhuhai-Zhujiang formations[J]. Acta Sedimentologica Sinica, 2014, 32(4): 654-662.
李小平, 施和生, 杜家元, 等. 珠海组—珠江组时期东沙隆起物源提供能力探讨[J]. 沉积学报, 2014, 32(4): 654-662.
40 HOU Mingcai, DENG Min, SHI Hesheng, et al. The process of growth, development and extinction of the Early Miocene carbonate rocks and controlling factors in the Pearl River Mouth Basin[J]. Acta Petrologica Sinica, 2017, 33(4): 1 257-1 271.
侯明才, 邓敏, 施和生, 等. 珠江口盆地早中新世碳酸盐岩生长发育、消亡的历程与受控因素[J]. 岩石学报, 2017, 33(4): 1 257-1 271.
41 ZHANG Cuimei, ZHAO Zhongxian, SUN Zhen, et al. Tectonic evolution of Dongsha 25 uplift in the Baiyun Sag, Pearl River mouth basin[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(1): 57-66.
张翠梅, 赵中贤, 孙珍, 等. 珠江口盆地白云凹陷东沙25凸起构造演化[J]. 吉林大学学报(地球科学版), 2013, 43(1): 57-66.
[1] 孙运宝, 赵铁虎, 秦柯. 南海北部白云凹陷沉积压实作用对浅水流超压演化影响数值模拟[J]. 地球科学进展, 2014, 29(9): 1055-1064.
[2] 周蒂,孙珍,陈汉宗. 世界著名深水油气盆地的构造特征及对我国南海北部深水油气勘探的启示[J]. 地球科学进展, 2007, 22(6): 561-572.
[3] 庞雄,陈长民,吴梦霜,何敏,吴湘杰. 珠江深水扇系统沉积和周边重要地质事件[J]. 地球科学进展, 2006, 21(8): 793-799.
阅读次数
全文


摘要