地球科学进展 ›› 2024, Vol. 39 ›› Issue (5): 489 -503. doi: 10.11867/j.issn.1001-8166.2024.034

全新世:人类世的历史背景 上一篇    下一篇

粪生菌孢现代过程及其古生态应用研究进展与展望
张军 1( ), 罗德锐 1, 李春杰 2, 王涛 1, 朱泽州 1, 黄小忠 1   
  1. 1.兰州大学 资源环境学院/兰州大学 西部环境教育部重点实验室,甘肃 兰州 730000
    2.兰州大学 草地农业科技学院/兰州大学 草地农业生态系统国家重点实验室/兰州大学 草地农业教育部工程研究中心/ 兰州大学甘肃省西部草业技术创新中心/兰州大学 草地微生物研究中心,甘肃 兰州 730020
  • 收稿日期:2024-03-01 修回日期:2024-04-29 出版日期:2024-05-10
  • 基金资助:
    国家自然科学基金项目(42301170);兰州大学中央高校基本科研业务费专项基金项目(lzujbky-2022-pd06)

Advances and Prospects of Modern Processes of Coprophilous Fungal Spores: Applications in Paleoecological Studies

Jun ZHANG 1( ), Derui LUO 1, Chunjie LI 2, Tao WANG 1, Zezhou ZHU 1, Xiaozhong HUANG 1   

  1. 1.College of Earth and Environmental Sciences / Key Laboratory of Western China’s Environmental Systems (Ministry of Education), Lanzhou University, Lanzhou 730000, China
    2.College of Pastoral Agricultural Science and Technology / State Key Laboratory of Grassland Agro-Ecosystems / Engineering Research Center of Grassland Industry, Ministry of Education / Gansu Tech Innovation Center of Western China Grassland Industry / Center for Grassland Microbiome, Lanzhou University, Lanzhou 730020, China
  • Received:2024-03-01 Revised:2024-04-29 Online:2024-05-10 Published:2024-06-03
  • About author:ZHANG Jun, Postdoctoral, research areas include palynology, environmental change and human activities. E-mail: zhjun@lzu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(42301170);The Fundamental Research Funds for the Central Universities(lzujbky-2022-pd06)

粪生菌孢是沉积物孢粉分析中“非花粉型”的重要组成部分,主要被用来指示大型食草动物种群数量变化以及重建早期牧业活动强度变化等。通过系统总结国内外粪生菌孢现代过程与古生态应用的研究实例发现:在现代过程研究方面,国外研究重点主要集中在粪生菌孢多样性、影响因子以及其传播、搬运和沉积过程,并发现Sporormiella-type、Sordaria spp.和Podospora sp.对食草动物活动指示性最好,尤其是Sporormiella-type被广泛应用于不同的研究区域;国内研究主要在青藏高原东北部,发现粪生菌孢与放牧活动强度之间具有较好的相关性。在古生态应用研究方面,国外研究发现Sporormiella-type很好地指示了大型食草动物的灭绝和放牧活动强度的变化;国内研究发现了早中全新世人类狩猎活动对食草动物的抑制以及以下主要变化时段:约5.6 ka牧业活动开始、约4.0 ka以后增强、在历史时期显著增强等。在未来研究中,应加强粪生菌孢现代过程调查,更深入地理解粪生菌孢的产生、传播、沉积和保存过程及其机制,探讨粪生菌孢与食草动物数量、植被状态、沉积环境和搬运动力之间的关系,结合多指标和跨学科的证据,更好地解译沉积地层粪生菌孢记录的古生态意义。粪生菌孢将在探究中晚全新世牧业起源和传播过程、驱动机理及生态影响等方面发挥不可替代的作用。

Coprophilous fungal spores, “Non-Pollen Palynomorph” parts of pollen analysis, are mainly used to reconstruct past changes in the population sizes of herbivores and intensity of pastoral activities. By systematically summarizing research examples of modern processes and paleoecological applications of coprophilous fungal spores at home and abroad, this study identified that foreign research has focused on the diversity, influencing factors, and dissemination, transportation, and deposition processes of coprophilous fungal spores. Sporormiella-type, Sordaria spp., and Podospora sp. have emerged as reliable indicators of herbivore activity; in particular Sporormiella-type coprophilous fungal spores have found widespread applications in different study areas. A strong correlation between coprophilous fungal spores and grazing activity has been found in the northeastern Qinghai-Tibetan Plateau. International paleoecological studies have demonstrated that Sporormiella-type fungal spores effectively indicate the extinction of large herbivores and fluctuations in grazing intensity. Domestic studies have identified the suppression of human hunting activities by herbivores during the Early and Middle Holocene. Key transitional periods were identified, such as the beginning of grazing activity about 5.6 ka, an increase after approximately 4.0 ka, and a significant increase during the historical period. In future research, it will be necessary to enhance the modern processes of coprophilous fungal spores investigation to understand the production, transmission, deposition, and preservation of coprophilous fungal spores and the mechanisms involved. Additionally, to explore the relationship between coprophilous fungal spores and herbivore population sizes, vegetation status, sedimentary environment, and transport dynamics to provide valuable information for the accurate interpretation of fossil coprophilous fungal spore records of natural sedimentary strata by combining multiple indicators and employing interdisciplinary evidence. Therefore, further research regarding the modern processes and applications of coprophilous fungal spores is of great significance in understanding the histories of past human activities and their interactions with environmental changes.

中图分类号: 

图1 最近50多年粪生菌孢相关论文发表数量和被引频次(数据源自Web of Science检索结果)
(a)以“ Sporormiella”或“dung fungal spore”或“coprophilous fungal spore”或“dung-related fungal spore”为主题的检索结果;(b)以“ Sporormiella”或“dung fungal spore”或“coprophilous fungal spore”或“dung-related fungal spore”和“palaeo* or paleo*”为主题的检索结果
Fig. 1 Number and citation frequency of published articles on coprophilous fungal spores in the past 50 yearsdata from the Web of Science
(a) Search results with the theme of “ Sporormiella” or “dung fungal spore” or “coprophilous fungal spore” or “dung-related fungal spore”; (b) Search results with the theme of “ Sporormiella” or “dung fungal spore” or “coprophilous fungal spore” or “dung-related fungal spore” and “palaeo* or paleo*”
图2 常见的粪生菌孢图版 50
Fig. 2 Photomicrographs of common coprophilous fungal spores 50
图3 美洲地区 Sporormiella-type粪生菌孢相关记录(据参考文献[ 104 - 107 ]修改)
Fig. 3 Sporormiella-type percentage of total pollen assemblage from South and North Americamodified after references104-107])
图4 2 000年来格陵兰岛西南部Igaliku湖沉积物中胆汁酸和小荚孢腔菌属粪生菌孢通量变化
Fig. 4 Evolution of Deoxycholic acid and Sporormiella-type coprophilous fungal spores flux throughout the last 2 000 years in sediments from Lake Igaliku in southwest Greenland
图5 青藏高原东北部及中国北方地区主要粪生菌孢研究点(a)及长时间序列结果(b
Fig. 5 Study sitesaand long-term sequence recordsbof coprophilous fungal spores in the northeastern Qinghai-Tibetan Plateau and northern China
1 WICKLOW D T. The coprophilous fungal community: a mycological system for examining ecological ideas [M]// WICKLOW D T, CARROLL G C. The fungal community: its organization and role in the ecosystem. New York: Marcel Dekker, Inc., 1981: 47-76.
2 PERROTTI A G, van ASPEREN E. Dung fungi as a proxy for megaherbivores: opportunities and limitations for archaeological applications[J]. Vegetation History and Archaeobotany, 2019, 28(1): 93-104.
3 LEE C M, van GEEL B, GOSLING W D. On the use of spores of coprophilous fungi preserved in sediments to indicate past herbivore presence[J]. Quaternary, 2022, 5(3). DOI:10.3390/quat5030030 .
4 van GEEL B. A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals[J]. Review of Palaeobotany and Palynology, 1978, 25(1). DOI:10.1016/0034-6667(78)90040-4 .
5 van GEEL B. Non-pollen palynomorphs[M]// SMOL J P, BIRKS H J B, LAST W M, et al. Tracking environmental change using lake sediments. Dordrecht: Springer Netherlands, 2002: 99-119.
6 SHUMILOVSKIKH L S, van GEEL B. Non-pollen palynomorphs[M]// HENRY A G. Handbook for the analysis of micro-particles in archaeological samples. Cham: Springer, 2020: 65-94.
7 BAKER A G, BHAGWAT S A, WILLIS K J. Do dung fungal spores make a good proxy for past distribution of large herbivores?[J]. Quaternary Science Reviews, 2013, 62(430): 21-31.
8 GILL J L, MCLAUCHLAN K K, SKIBBE A M, et al. Linking abundances of the dung fungus Sporormiella to the density of bison: implications for assessing grazing by megaherbivores in palaeorecords[J]. Journal of Ecology, 2013, 101(5): 1 125-1 136.
9 DAVIS O K, SHAFER D S. Sporormiella fungal spores, a palynological means of detecting herbivore density[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237(1): 40-50.
10 WOOD J R, WILMSHURST J M. Accumulation rates or percentages? How to quantify Sporormiella and other coprophilous fungal spores to detect late Quaternary megafaunal extinction events[J]. Quaternary Science Reviews, 2013, 77: 1-3.
11 CARRIÓN J S, SCOTT L, HUFFMAN T, et al. Pollen analysis of Iron Age cow dung in southern Africa[J]. Vegetation History and Archaeobotany, 2000, 9(4): 239-249.
12 CHERUIYOT V C, GEBREGIORGIS D, OPIYO B, et al. Revisiting the palaeoenvironmental and climatic history of the Cherangani Hills using fungal spores[J]. Journal of Quaternary Science, 2020, 35(6): 737-742.
13 GRAF M T, CHMURA G L. Development of modern analogues for natural, mowed and grazed grasslands using pollen assemblages and coprophilous fungi[J]. Review of Palaeobotany and Palynology, 2006, 141(1/2): 139-149.
14 LOUGHLIN N J D, MAYLE F E, NUÑEZ OTAÑO N B, et al. Insights into past land-use and vegetation change in the Llanos de Moxos (Bolivia) using fungal non-pollen palynomorphs[J]. Journal of Archaeological Science, 2021, 130. DOI:10.1016/j.jas.2021.105382 .
15 van GEEL B, GUTHRIE R D, ALTMANN J G, et al. Mycological evidence of coprophagy from the feces of an Alaskan Late Glacial mammoth[J]. Quaternary Science Reviews, 2011, 30(17/18): 2 289-2 303.
16 BUURMAN J, van GEEL B, van REENEN G B A. Palaeoecological investigations of a Late Bronze Age watering-place at Bovenkarspel, the Netherlands[J]. Neogene and Quaternary Geology of North-West Europe, 1995, 52: 249-270.
17 BENFIELD A J, IVORY S J, HODELKA B N, et al. Terrestrial ecosystem transformations in response to rapid climate change during the last deglaciation around Mono Lake, California, USA[J]. Quaternary Research, 2023, 113: 87-104.
18 ZHANG Yunan, WU Xiaohong, SUN Guoping. The application of non-pollen palynomorph analysis in archaeological studies: a case study of Jingtoushan site, Zhejiang[J]. Quaternary Sciences, 2023, 43(5): 1 396-1 403.
张予南, 吴小红, 孙国平. 非花粉类遗存(Non-Pollen Palynomorphs)分析在考古学中的应用——以浙江井头山遗址为例[J]. 第四纪研究, 2023, 43(5): 1 396-1 403.
19 INNES J B, ZONG Y Q, CHEN Z Y, et al. Environmental history, palaeoecology and human activity at the early Neolithic forager/cultivator site at Kuahuqiao, Hangzhou, eastern China[J]. Quaternary Science Reviews, 2009, 28(23/24): 2 277-2 294.
20 MIEHE S, MIEHE G, van LEEUWEN J F N, et al. Persistence of Artemisia steppe in the Tangra Yumco Basin, west-central Tibet, China: despite or in consequence of Holocene Lake-level changes?[J]. Journal of Paleolimnology, 2014, 51(2): 267-285.
21 SONG Changqing, SUN Xiangjun. Advances in studies of Quaternary Palynology in China[J]. Advances in Earth Science, 1999, 14(4): 401-406.
宋长青, 孙湘君. 中国第四纪孢粉学研究进展[J]. 地球科学进展, 1999, 14(4): 401-406.
22 ZHOU Weijian, ZHAO Xue, CHEN Ning. New progress in the Anthropocene science in China[J]. Advances in Earth Science,2024, 39(1): 1-11.
周卫健, 赵雪, 陈宁. 中国人类世科学研究新进展[J]. 地球科学进展, 2024, 39(1): 1-11.
23 van GEEL B, APTROOT A. Fossil ascomycetes in Quaternary deposits[J]. Nova Hedwigia, 2006, 82(3/4): 313-329.
24 van GEEL B, BUURMAN J, BRINKKEMPER O, et al. Environmental reconstruction of a Roman Period settlement site in Uitgeest (the Netherlands), with special reference to coprophilous fungi[J]. Journal of Archaeological Science, 2003, 30(7): 873-883.
25 HAO Xiudong, WENG Chengyu. The indicative significance of spores of coprophilous fungi in palaeoecological research[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 175-184.
郝秀东, 翁成郁. 粪生真菌孢子在古生态学研究中的指示意义[J]. 海洋地质与第四纪地质, 2015, 35(1): 175-184.
26 DAVIS O K, KOLVA D A, MEHRINGER P J. Pollen analysis of Wildcat Lake, Whitman County, Washington: the last 1000 years[J]. Northwest Science, 1977, 51: 13-30.
27 van GEEL B, COOPE G R, van der HAMMEN T. Palaeoecology and stratigraphy of the lateglacial type section at Usselo (the Netherlands)[J]. Review of Palaeobotany and Palynology, 1989, 60(1/2): 25-129.
28 ARENAL F, PLATAS G, PELAEZ F. Variability of spore length in some species of the genus Preussia (Sporormiella)[J]. Mycotaxon, 2004, 89(1): 137-151.
29 RAPER D, BUSH M. A test of Sporormiella representation as a predictor of megaherbivore presence and abundance[J]. Quaternary Research, 2009, 71(3): 490-496.
30 GHOSH R, PARUYA D K, ACHARYA K, et al. How reliable are non-pollen palynomorphs in tracing vegetation changes and grazing activities? Study from the Darjeeling Himalaya, India[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 475: 23-40.
31 van ASPEREN E N, PERROTTI A, BAKER A. Coprophilous fungal spores: non-pollen palynomorphs for the study of past megaherbivores[J]. Geological Society, London, Special Publications, 2021, 511(1): 245-267.
32 DOVERI F, SARROCCO S. Sporormiella octomegaspora, a new hairy species with eight-celled ascospores from Spain[J]. Mycotaxon, 2013, 123(1): 129-140.
33 SUN J Q, GUO L D, ZANG W, et al. Endophytic fungi IV. two new records of the genus Sporormiella in China[J]. Mycosystema, 2006, 25(4): 688-690.
34 DODSON J, FIELD J H. What does the occurrence of SporormiellaPreussia) spores mean in Australian fossil sequences?[J]. Journal of Quaternary Science, 2018, 33(4): 380-392.
35 JOHNSON C N, RULE S S, HABERLE S G, et al. Using dung fungi to interpret decline and extinction of megaherbivores: problems and solutions[J]. Quaternary Science Reviews, 2015, 110: 107-113.
36 WU Naiqin, Houyuan LÜ, XU Heling, et al. Identification of fungus spores in loess deposits and its paleoenvironmental significance[J]. Geological Review, 1993, 39(6): 564-567, 576.
吴乃琴, 吕厚远, 徐和聆, 等. 黄土地层中真菌孢子的发现及古环境意义[J]. 地质论评, 1993, 39(6): 564-567, 576.
37 MIEHE G, MIEHE S, KAISER K, et al. How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276(1/2/3/4): 130-147.
38 ZONG Y, CHEN Z, INNES J B, et al. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China[J]. Nature, 2007, 449(7 161): 459-463.
39 GOU H T, WEI H C, DUAN R L, et al. Spatial distribution of modern pollen and fungal spores and their ecological indication in Qinghai Lake on northeastern Tibetan Plateau, China[J]. Ecological Indicators, 2022, 144. DOI:10.1016/j.ecolind.2022.109474 .
40 WEI H C, DUAN R L, XU Q H, et al. Fungal spore indicators of vegetation and highland pastoralism in modern topsoil and dung, eastern Tibetan Plateau[J]. Catena, 2021, 202. DOI:10.1016/j.catena.2021.105231 .
41 WEI H C, HOU G L, FAN Q S, et al. Using coprophilous fungi to reconstruct the history of pastoralism in the Qinghai Lake Basin, northeastern Qinghai-Tibetan Plateau[J]. Progress in Physical Geography: Earth and Environment, 2020, 44(1): 70-93.
42 ZHANG Yaping, ZHAO Keliang, ZHOU Xinying, et al. A study of pollen and fungal spores extracted from the feces of domestic herbivores in China and their implications for human behavior[J]. Acta Anthropologica Sinica, 2021, 40(5): 879-887.
张雅平, 赵克良, 周新郢, 等. 家养食草动物粪便中的花粉及菌孢子类型及其对人类活动的指示意义[J]. 人类学学报, 2021, 40(5): 879-887.
43 DUAN Ronglei. Characteristics of modern pollen-fungal spore assemblage and its paleo-environmental implications in the northeastern Tibetan Plateau[D]. Xining: Qinghai Normal University, 2021.
段荣蕾. 青藏高原东北部现代花粉—真菌孢子组合特征及其古环境指示意义[D]. 西宁: 青海师范大学, 2021.
44 ZHAO Xueqin, LI Yiyin, YANG Liu. Fungal spores in herbiverous dung-coprophilous fungi and their implication in quaternary environmental research[J]. Quaternary Sciences, 2013, 33(3): 613-614.
赵雪琴, 李宜垠, 杨柳. 食草动物粪便中的真菌孢子—粪壳菌及其在第四纪环境研究中的意义[J]. 第四纪研究, 2013, 33(3): 613-614.
45 ZHANG Min. The indicative significance of fungal spores for human grazing in the central and western regions of the Inner Mongolia Plateau[D].Hohhot: Inner Mongolia University, 2023.
张敏. 内蒙古高原中西部地区真菌孢子对人类畜牧活动的指示意义[D]. 呼和浩特: 内蒙古大学, 2023.
46 HUANG X Z, ZHANG J, REN L L, et al. Intensification and driving forces of pastoralism in Northern China 5.7 ka ago[J]. Geophysical Research Letters, 2021, 48(7). DOI:10.1029/2020GL092288 .
47 HUANG X Z, ZHANG J, STOROZUM M, et al. Long-term herbivore population dynamics in the northeastern Qinghai-Tibetan Plateau and its implications for early human impacts[J]. Review of Palaeobotany and Palynology, 2020, 275. DOI:10.1016/j.revpalbo.2020.104171 .
48 ZHANG J, HUANG X Z, ZHANG S R, et al. Cycles of grazing and agricultural activity during the historical period and its relationship with climatic and societal changes in northern China[J]. Land Degradation & Development, 2021, 32(11): 3 315-3 325.
49 ZHANG J, HUANG X Z, WANG J L, et al. An inverse relationship between moisture and grazing intensity in an arid mountain-basin system[J]. Progress in Physical Geography: Earth and Environment, 2022, 46(2): 310-322.
50 ZHANG Jun. Coprophilous fungal spores in lake sediments recorded Holocene pastoralism development history in North China and its driving factors[D]. Lanzhou: Lanzhou University, 2021.
张军. 湖泊沉积粪生菌孢记录的中国北方全新世牧业发展及其驱动因素[D]. 兰州: 兰州大学, 2021.
51 GAO J Y, HOU G L, WEI H C, et al. Prehistoric human activity and its environmental background in Lake Donggi Cona Basin, northeastern Tibetan Plateau[J]. Holocene, 2020, 30(5): 657-671.
52 WEI H C, E C Y, DUAN R L, et al. Fungal spore record of pastoralism on the NE Qinghai-Tibetan Plateau since the middle Holocene[J]. Science China Earth Sciences, 2021, 64(8): 1 318-1 331.
53 FAEGRI K, KALAND P E, KRZYWINSKI K. Textbook of pollen analysis (4th edition) [M]. London: John Wiley & Sons Inc., 1989.
54 van ASPEREN E N, KIRBY J R, HUNT C O. The effect of preparation methods on dung fungal spores: implications for recognition of megafaunal populations[J]. Review of Palaeobotany and Palynology, 2016, 229: 1-8.
55 BASUMATARY S K, McDONALD H G. Coprophilous fungi from dung of the Greater One-Horned Rhino in Kaziranga National Park, India and its implication to paleoherbivory and paleoecology[J]. Quaternary Research, 2017, 88(1): 14-22.
56 CUGNY C, MAZIER F, GALOP D. Modern and fossil non-pollen palynomorphs from the Basque Mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity[J]. Vegetation History and Archaeobotany, 2010, 19(5): 391-408.
57 EJARQUE A, ANDERSON R S, SIMMS A R, et al. Prehistoric fires and the shaping of colonial transported landscapes in southern California: a paleoenvironmental study at Dune Pond, Santa Barbara County[J]. Quaternary Science Reviews, 2015, 112: 181-196.
58 MUSOTTO L L, BIANCHINOTTI M V, BORROMEI A M. Pollen and fungal remains as environmental indicators in surface sediments of Isla Grande de Tierra del Fuego, southernmost Patagonia[J]. Palynology, 2012, 36(2): 162-179.
59 van GEEL B, GELORINI V, LYARUU A, et al. Diversity and ecology of tropical African fungal spores from a 25, 000-year palaeoenvironmental record in southeastern Kenya[J]. Review of Palaeobotany and Palynology, 2011, 164(3/4): 174-190.
60 GELORINI V, VERBEKEN A, van GEEL B, et al. Modern non-pollen palynomorphs from East African Lake sediments[J]. Review of Palaeobotany and Palynology, 2011, 164(3/4): 143-173.
61 BLACKFORD J J, INNES J B. Linking current environments and processes to fungal spore assemblages: surface NPM data from woodland environments[J]. Review of Palaeobotany and Palynology, 2006, 141(1/2): 179-187.
62 ETIENNE D, JOUFFROY-BAPICOT I. Optimal counting limit for fungal spore abundance estimation using Sporormiella as a case study[J]. Vegetation History and Archaeobotany, 2014, 23(6): 743-749.
63 BAKER A G, CORNELISSEN P, BHAGWAT S A, et al. Quantification of population sizes of large herbivores and their long-term functional role in ecosystems using dung fungal spores[J]. Methods in Ecology and Evolution, 2016, 7(11): 1 273-1 281.
64 ETIENNE D, WILHELM B, SABATIER P, et al. Influence of sample location and livestock numbers on Sporormiella concentrations and accumulation rates in surface sediments of Lake Allos, French Alps[J]. Journal of Paleolimnology, 2013, 49(2): 117-127.
65 RICHARDSON M J. Coprophilous ascomycetes on different dung types[J]. Transactions of the British Mycological Society, 1972, 58(1): 37-48.
66 WICKLOW D T, ANGEL K, LUSSENHOP J. Fungal community expression in lagomorph versus ruminant feces[J]. Mycologia, 1980, 72(5): 1 015-1 021.
67 PIONTELLI E, SANTA-MARIA M A T, CARETTA G. Coprophilous fungi of the horse[J]. Mycopathologia, 1981, 74(2): 89-105.
68 WEBSTER J. Presidential address coprophilous fungi[J]. Transactions of the British Mycological Society, 1970, 54(2): 161-180.
69 PARKER A D. Associations between coprophilous ascomycetes and fecal substrates in Illinois[J]. Mycologia, 1979, 71(6): 1 206-1 214.
70 CARETTA G, PIONTELLI E, SAVINO E, et al. Some coprophilous fungi from Kenya[J]. Mycopathologia, 1998, 142(3): 125-134.
71 RICHARDSON M J. Diversity and occurrence of coprophilous fungi[J]. Mycological Research, 2001, 105(4): 387-402.
72 BASUMATARY S K, SINGH H, van ASPEREN E N, et al. Coprophilous and non-coprophilous fungal spores of Bos mutus modern dung from the Indian Himalaya: implications to temperate paleoherbivory and paleoecological analysis[J]. Review of Palaeobotany and Palynology, 2020, 277. DOI: 10.1016/j.revpalbo.2020.104208 .
73 van ASPEREN E N. Fungal diversity on dung of tropical animals in temperate environments: implications for reconstructing past megafaunal populations[J]. Fungal Ecology, 2017, 28: 25-32.
74 HOU Yilin, WEI Haicheng, Chongyi E, et al. Pollen and fungal spore assemblages in plateau Pika(Ochotona curzoniae) dung and their ecological significance in the Qinghai Lake watershed[J]. Acta Micropalaeontologica Sinica, 2024. DOI:10.16087/j.cnki.1000-0674.20240219.001 .
侯艺林, 魏海成, 鄂崇毅, 等. 青海湖流域高原鼠兔(Ochotona curzoniae)粪花粉和真菌孢子组合及其生态指示意义[J]. 微体古生物学报, 2024. DOI:10.16087/j.cnki.1000-0674.20240219.001 .
75 GOETHALS L, VERSCHUREN D. Tracing ancient animal husbandry in tropical Africa using the fossil spore assemblages of coprophilous fungi: a validation study in western Uganda[J]. Vegetation History and Archaeobotany, 2020, 29(5): 509-526.
76 van der KAARS S, MILLER G H, TURNEY C S M, et al. Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia[J]. Nature Communications, 2017, 8. DOI:10.1038/ncomms14142 .
77 van GEEL B, ZAZULA G D, SCHWEGER C E. Spores of coprophilous fungi from under the Dawson tephra (25,300 14Cyears BP), Yukon Territory, northwestern Canada[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(3/4): 481-485.
78 KRUG J C, BENNY G L, KELLER H W. Coprophilous fungi[M]// Biodiversity of fungi. Amsterdam: Elsevier, 2004: 467-499.
79 GELORINI V, SSEMMANDA I, VERSCHUREN D. Validation of non-pollen palynomorphs as paleoenvironmental indicators in tropical Africa: contrasting ~200-year paleolimnological records of climate change and human impact[J]. Review of Palaeobotany and Palynology, 2012, 186: 90-101.
80 RAZANATSOA E, GILLSON L, VIRAH-SAWMY M, et al. Synergy between climate and human land-use maintained open vegetation in southwest Madagascar over the last millennium[J]. The Holocene, 2022, 32(1/2): 57-69.
81 BELL A. An illustrated guide to the coprophilous Ascomycetes of Australia [M]. Utrecht: APS Press, 2005.
82 DOYEN E, ETIENNE D. Ecological and human land-use indicator value of fungal spore morphotypes and assemblages[J]. Vegetation History and Archaeobotany, 2017, 26(4): 357-367.
83 AINSWORTH A M, LIIMATAINEN K. Urocystis bolboschoeni and U. fischeri: two names for a single smut fungus found on a range of sedges (Cyperaceae)?[J]. Field Mycology, 2020, 21(2): 71-73.
84 van ASPEREN E N, KIRBY J R, SHAW H E. Relating dung fungal spore influx rates to animal density in a temperate environment: implications for palaeoecological studies[J]. The Holocene, 2020, 30(2): 218-232.
85 MASUNGA G S, ANDRESEN Ø, TAYLOR J E, et al. Elephant dung decomposition and coprophilous fungi in two habitats of semi-arid Botswana[J]. Mycological Research, 2006, 110(Pt 10): 1 214-1 226.
86 KUTHUBUTHEEN A J, WEBSTER J. Water availability and the coprophilous fungus succession[J]. Transactions of the British Mycological Society, 1986, 86(1): 63-76.
87 WICKLOW D T, MOORE V. Effect of incubation temperature on the coprophilous fungal succession[J]. Transactions of the British Mycological Society, 1974, 62(2): 411-415.
88 KRUYS Å, ERICSON L. Species richness of coprophilous ascomycetes in relation to variable food intake by herbivores[J]. Fungal Diversity, 2008, 30: 73-81.
89 ANGEL S K, WLCKLOW D T. Coprophilous fungal communities in semiarid to mesic grasslands[J]. Canadian Journal of Botany, 1983, 61(2): 594-602.
90 LUSSENHOP J, KUMAR R, WICKLOW D T, et al. Insect effects on bacteria and fungi in cattle dung[J]. Oikos, 1980, 34: 54-58.
91 RACZKA M F, BUSH M B, FOLCIK A M, et al. Sporormiella as a tool for detecting the presence of large herbivores in the Neotropics[J]. Biota Neotropica, 2016, 16(1). DOI: 10.1590/1676-0611-BN-2015-0090 .
92 PARKER N E, WILLIAMS J W. Influences of climate, cattle density, and lake morphology on Sporormiella abundances in modern lake sediments in the US Great Plains[J]. The Holocene, 2012, 22(4): 475-483.
93 ORBAY-CERRATO M E, OSWALD W W, DOUGHTY E D, et al. Historic grazing in southern New England, USA, recorded by fungal spores in lake sediments[J]. Vegetation History and Archaeobotany, 2017, 26(2): 159-165.
94 ASNER G P, ELMORE A J, OLANDER L P, et al. Grazing systems, ecosystem responses, and global change[J]. Annual Review of Environment and Resources, 2004, 29: 261-299.
95 CHEPSTOW-LUSTY A J, FROGLEY M R, BAKER A S. Comparison of Sporormiella dung fungal spores and oribatid mites as indicators of large herbivore presence: evidence from the Cuzco region of Peru[J]. Journal of Archaeological Science, 2019, 102: 61-70.
96 ONETO D L, GOLAN J, MAZZINO A, et al. Timing of fungal spore release dictates survival during atmospheric transport[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(10): 5 134-5 143.
97 DAVIS O K. Spores of the dung fungus Sporormiella: increased abundance in historic sediments and before Pleistocene megafaunal extinction[J]. Quaternary Research, 1987, 28(2): 290-294.
98 EKBLOM A, GILLSON L. Dung fungi as indicators of past herbivore abundance, Kruger and Limpopo National Park[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296(1/2): 14-27.
99 FERANEC R S, MILLER N G, LOTHROP J C, et al. The Sporormiella proxy and end-Pleistocene megafaunal extinction: a perspective[J]. Quaternary International, 2011, 245(2): 333-338.
100 IVORY S J, RUSSELL J. Climate, herbivory, and fire controls on tropical African forest for the last 60ka[J]. Quaternary Science Reviews, 2016, 148: 101-114.
101 CONROY K J, BAKER A G, JONES V J, et al. Tracking late-Quaternary extinctions in interior Alaska using megaherbivore bone remains and dung fungal spores[J]. Quaternary Research, 2020, 97: 99-110.
102 HORISK K E, IVORY S J, MCCORRISTON J, et al. Vegetation dynamics in Dhofar, Oman, from the Late Holocene to present inferred from rock hyrax middens[J]. Quaternary Research, 2023, 116: 12-29.
103 MIEHE G, HASSON S U, GLASER B, et al. Föhn, fire and grazing in southern Tibet? A 20,000-year multi-proxy record in an alpine ecotonal ecosystem[J]. Quaternary Science Reviews, 2021, 256. DOI:10.1016/j.quascirev.2021.106817 .
104 GILL J L, WILLIAMS J W, JACKSON S T, et al. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America[J]. Science, 2009, 326(5 956): 1 100-1 103.
105 PERROTTI A G. Pollen and Sporormiella evidence for terminal Pleistocene vegetation change and megafaunal extinction at Page-Ladson, Florida[J]. Quaternary International, 2018, 466: 256-268.
106 HALLIGAN J J, WATERS M R, PERROTTI A, et al. Pre-Clovis occupation 14,550 years ago at the Page-Ladson site, Florida, and the peopling of the Americas[J]. Science Advances, 2016, 2(5). DOI:10.1126/sciadv.1600375 .
107 RACZKA M F, MOSBLECH N A, GIOSAN L, et al. A human role in Andean megafaunal extinction?[J]. Quaternary Science Reviews, 2019, 205: 154-165.
108 WOOD J R, WILMSHURST J M. Wetland soil moisture complicates the use of Sporormiella to trace past herbivore populations[J]. Journal of Quaternary Science, 2012, 27(3): 254-259.
109 RULE S S, BROOK B W, HABERLE S G, et al. The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia[J]. Science, 2012, 335(6 075): 1 483-1 486.
110 BURNEY D A, ROBINSON G S, BURNEY L P. Sporormiella and the late Holocene extinctions in Madagascar[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(19): 10 800-10 805.
111 BISERNI G, van GEEL B. Reconstruction of Holocene palaeoenvironment and sedimentation history of the Ombrone alluvial plain (South Tuscany, Italy)[J]. Review of Palaeobotany and Palynology, 2005, 136(1/2): 16-28.
112 CASTILLA-BELTRÁN A, HOOGHIEMSTRA H, HOOGLAND M L P, et al. Columbus’ footprint in Hispaniola: a paleoenvironmental record of indigenous and colonial impacts on the landscape of the central Cibao Valley, northern Dominican Republic[J]. Anthropocene, 2018, 22: 66-80.
113 GUILLEMOT T, ZOCATELLI R, BICHET V, et al. Evolution of pastoralism in southern Greenland during the last two millennia reconstructed from bile acids and coprophilous fungal spores in lacustrine sediments[J]. Organic Geochemistry, 2015, 81: 40-44.
114 MAZIER F, GALOP D, BRUN C, et al. Modern pollen assemblages from grazedvegetation in the western Pyrenees, France: a numerical tool for more precise reconstruction of past cultural landscapes[J]. The Holocene, 2006, 16(1): 91-103.
115 HUANG X Z, LIU S S, DONG G H, et al. Early human impacts on vegetation on the northeastern Qinghai-Tibetan Plateau during the middle to late Holocene[J]. Progress in Physical Geography: Earth and Environment, 2017, 41(3): 286-301.
116 D’ANJOU R M, BRADLEY R S, BALASCIO N L, et al. Climate impacts on human settlement and agricultural activities in northern Norway revealed through sediment biogeochemistry[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(50): 20 332-20 337.
117 SEERSHOLM F V, WERNDLY D J, GREALY A, et al. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change[J]. Nature Communications, 2020, 11. DOI: 10.1038/s41467-020-16502-3 .
118 INNES J B, ZONG Y Q. History of Mid- and Late Holocene Palaeofloods in the Yangtze Coastal Lowlands, East China: evaluation of non-pollen palynomorph evidence, review and synthesis[J]. Quaternary, 2021, 4(3). DOI:10.3390/Quat4030021 .
119 FEESER I, O’CONNELL M. Late Holocene land-use and vegetation dynamics in an upland Karst region based on pollen and coprophilous fungal spore analyses: an example from the Burren, western Ireland[J]. Vegetation History and Archaeobotany, 2010, 19(5): 409-426.
120 EDDUDÓTTIR S D, ERLENDSSON E, GÍSLADÓTTIR G. Landscape change in the Icelandic highland: a long-term record of the impacts of land use, climate and volcanism[J]. Quaternary Science Reviews, 2020, 240. DOI:10.1016/j.quascirev.2020.106363 .
121 UNKELBACH J, DULAMSUREN C, BEHLING H. Late Holocene climate and land-use history in the Mongolian Altai Mountains: combined evidence from palynological, macro-charcoal and tree-ring analyses[J]. Trees, Forests and People, 2021, 4. DOI:10.1016/J.Tfp.2021.100073 .
122 REY F, BRUGGER S O, GOBET E, et al. 14, 500 years of vegetation and land use history in the upper continental montane zone at Lac de Champex (Valais, Switzerland)[J]. Vegetation History and Archaeobotany, 2022, 31(4): 377-393.
123 ROWNEY F M, FYFE R M, BAKER L, et al. Historical anthropogenic disturbances explain long-term moorland vegetation dynamics[J]. Ecology and Evolution, 2023, 13(3). DOI: 10.1002/Ece3.9876 .
[1] 李孝泽,屈建军,傅天阳,王学芳,董光荣. 六盘山北部寺口子砂岩研究现状、问题及意义[J]. 地球科学进展, 2012, 27(6): 644-650.
阅读次数
全文


摘要