1 |
CHANG Huajin, CHU Xuelei. Pyrite framboids and palaeo-ocean redox condition reconstruction[J]. Advances in Earth Science, 2011, 26(5): 475-481.
|
|
常华进, 储雪蕾. 草莓状黄铁矿与古海洋环境恢复[J]. 地球科学进展, 2011, 26(5): 475-481.
|
2 |
CAO Taotao, DENG Mo, SONG Zhiguang, et al. Study on the effect of pyrite on the accumulation of shale oil and gas[J]. Natural Gas Geoscience, 2018, 29(3): 404-414.
|
|
曹涛涛, 邓模, 宋之光, 等. 黄铁矿对页岩油气富集成藏影响研究[J]. 天然气地球科学, 2018, 29(3): 404-414.
|
3 |
QIN Xiaoyan, WANG Zhenliang, YU Hongyan, et al. A new shale brittleness evaluation method based on rock physics and mineral compositions[J]. Natural Gas Geoscience, 2016, 27(10): 1 924-1 932, 1 941.
|
|
秦晓艳, 王震亮, 于红岩, 等. 基于岩石物理与矿物组成的页岩脆性评价新方法[J]. 天然气地球科学, 2016, 27(10): 1 924-1 932, 1 941.
|
4 |
ZHOU Shangwen, XUE Huaqing, GUO Wei. A mineral analysis method for shale based on SEM and X-ray EDS[J]. China Petroleum Exploration, 2017, 22(6): 27-33.
|
|
周尚文, 薛华庆, 郭伟. 基于扫描电镜和X射线能谱的页岩矿物分析方法[J]. 中国石油勘探, 2017, 22(6): 27-33.
|
5 |
LIU Xuefeng, ZHANG Xiaowei, ZENG Xin, et al. Pore structure characterization of shales using SEM and machine learning-based segmentation method[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(1): 23-33.
|
|
刘学锋, 张晓伟, 曾鑫, 等. 采用机器学习分割算法和扫描电镜分析页岩微观孔隙结构[J]. 中国石油大学学报(自然科学版), 2022, 46(1): 23-33.
|
6 |
LIU Jiangyan, LI Shixiang, LI Zhen, et al. Characteristics and geological significance of pyrite in Chang 73 sub-member in the Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1 830-1 838.
|
|
刘江艳, 李士祥, 李桢, 等. 鄂尔多斯盆地长73亚段泥页岩黄铁矿发育特征及其地质意义[J]. 天然气地球科学, 2021, 32(12): 1 830-1 838.
|
7 |
SONG Hui, SHAO Deyong, LUO Huan, et al. SEM image characteristics and paleoenvironmental significance of framboidal pyrite from the Lower Cambrian Shuijingtuo Formation in Yichang area, western Hubei Province, Southern China: a case study of well EYY1[J]. Earth Science Frontiers, 2023, 30(3): 195-207.
|
|
宋辉, 邵德勇, 罗欢, 等. 鄂西宜昌地区下寒武统水井沱组草莓状黄铁矿SEM图像特征及古环境指示意义:以鄂阳页1井为例[J]. 地学前缘, 2023, 30(3): 195-207.
|
8 |
LUO H, ZHANG T W, YAN J P, et al. Rare Earth elements and Yttrium (REY) distribution pattern of lower Cambrian organic-rich shale in Yichang area, Western Hubei Province, South China, and source of carbonate minerals[J]. Applied Geochemistry, 2022, 136. DOI:10.1016/j.apgeochem.2021.105173 .
|
9 |
CHEN Zongming, TANG Xuan, LIANG Guodong, et al. Identification and comparison of organic matter-hosted pores in shale by SEM image analysis—a deep learning-based approach[J]. Earth Science Frontiers, 2023, 30(3): 208-220.
|
|
陈宗铭, 唐玄, 梁国栋, 等. 基于深度学习的页岩扫描电镜图像有机质孔隙识别与比较[J]. 地学前缘, 2023, 30(3): 208-220.
|
10 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// International conference on medical image computing and computer-assisted intervention. Cham: Springer, 2015: 234-241.
|
11 |
HUANG Peng, ZHENG Qi, LIANG Chao. Overview of image segmentation methods[J]. Journal of Wuhan University (Natural Science Edition), 2020, 66(6): 519-531.
|
|
黄鹏, 郑淇, 梁超. 图像分割方法综述[J]. 武汉大学学报(理学版), 2020, 66(6): 519-531.
|
12 |
QIAO Fengjuan, GUO Hongli, LI Wei, et al. Research on deep learning classification based on SVM: a review[J]. Journal of Qilu University of Technology, 2018, 32(5): 39-44.
|
|
乔风娟, 郭红利, 李伟, 等. 基于SVM的深度学习分类研究综述[J]. 齐鲁工业大学学报, 2018, 32(5): 39-44.
|
13 |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444.
|
14 |
LI Yimin, TAN Zhenyu, YANG Chen, et al. Extraction of algal blooms in Dianchi Lake based on multi-source satellites using machine learning algorithms[J]. Advances in Earth Science, 2022, 37(11): 1 141-1 156.
|
|
李一民, 谭振宇, 杨辰, 等. 基于多源卫星的滇池藻华提取机器学习算法研究[J]. 地球科学进展, 2022, 37(11): 1 141-1 156.
|
15 |
LI Xiaoxin, LIANG Ronghua. A review for face recognition with occlusion: from subspace regression to deep learning[J]. Chinese Journal of Computers, 2018, 41(1): 177-207.
|
|
李小薪, 梁荣华. 有遮挡人脸识别综述: 从子空间回归到深度学习[J]. 计算机学报, 2018, 41(1): 177-207.
|
16 |
ZHOU Yongzhang, WANG Jun, ZUO Renguang, et al. Machine learning, deep learning and Python language in field of geology[J]. Acta Petrologica Sinica, 2018, 34(11): 3 173-3 178.
|
|
周永章, 王俊, 左仁广, 等. 地质领域机器学习、深度学习及实现语言[J]. 岩石学报, 2018, 34(11): 3 173-3 178.
|
17 |
ALIGHOLI S, KHAJAVI R, RAZMARA M. Automated mineral identification algorithm using optical properties of crystals[J]. Computers & Geosciences, 2015, 85: 175-183.
|
18 |
CHEN Yan, LI Zhicheng, CHENG Chao, et al. FLU-net: a deep fully convolutional neural network for shale reservoir micro-pore characterization[J]. Marine Geology Frontiers, 2021, 37(8): 34-43.
|
|
陈雁, 李祉呈, 程超, 等. FLU-net:用于表征页岩储层微观孔隙的深度全卷积网络[J]. 海洋地质前沿, 2021, 37(8): 34-43.
|
19 |
LIU Shaojun, LIU Yong, ZHAO Shengxian, et al. Distribution characteristics and pattern of deep shale present geostress field in northern Luzhou[J]. Advances in Earth Science, 2023, 38(12): 1 271-1 284.
|
|
刘绍军, 刘勇, 赵圣贤, 等. 泸州北区深层页岩现今地应力场分布特征及扰动规律[J]. 地球科学进展, 2023, 38(12): 1 271-1 284.
|
20 |
YANG Hongzhi, ZHAO Shengxian, LIU Yong, et al. Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou Block, southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(11): 55-63.
|
|
杨洪志, 赵圣贤, 刘勇, 等. 泸州区块深层页岩气富集高产主控因素[J]. 天然气工业, 2019, 39(11): 55-63.
|
21 |
WANG Yuman, DONG Dazhong, LI Xinjing, et al. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas[J]. Natural Gas Industry, 2015, 35(3): 12-21.
|
|
王玉满, 董大忠, 李新景, 等. 四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J]. 天然气工业, 2015, 35(3): 12-21.
|
22 |
SHEN Cheng, XIE Jun, ZHAO Jinzhou, et al. Evolution difference of fracability of marine shale gas reservoir in Luzhou and West Chongqing Block, Sichuan Basin[J]. Journal of China University of Mining & Technology, 2020, 49(4): 742-754.
|
|
沈骋, 谢军, 赵金洲, 等. 泸州—渝西区块海相页岩可压性演化差异[J]. 中国矿业大学学报, 2020, 49(4): 742-754.
|
23 |
ZHAO Shengxian, YANG Yueming, ZHANG Jian, et al. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2016, 27(3): 470-487.
|
|
赵圣贤, 杨跃明, 张鉴, 等. 四川盆地下志留统龙马溪组页岩小层划分与储层精细对比[J]. 天然气地球科学, 2016, 27(3): 470-487.
|
24 |
ZHONG Sihua, GUO Xingming, ZHENG Yineng. Improved U-Net network for lung nodule segmentation[J]. Computer Engineering and Applications, 2020, 56(17): 203-209.
|
|
钟思华, 郭兴明, 郑伊能. 改进U-Net网络的肺结节分割方法[J]. 计算机工程与应用, 2020, 56(17): 203-209.
|
25 |
YAO Jiaqi, XU Zhengguo, YAN Jikun, et al. WPLoss: weighted pairwise loss for class-imbalanced datasets[J]. Application Research of Computers, 2021, 38(3): 702-704, 709.
|
|
姚佳奇, 徐正国, 燕继坤, 等. WPLoss:面向类别不平衡数据的加权成对损失[J]. 计算机应用研究, 2021, 38(3): 702-704, 709.
|
26 |
LI X Y, SUN X F, MENG Y X, et al. Dice loss for data-imbalanced NLP tasks[C]// Proceedings of the 58th annual meeting of the association for computational linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2020.
|