地球科学进展 ›› 2024, Vol. 39 ›› Issue (5): 476 -488. doi: 10.11867/j.issn.1001-8166.2024.036

研究论文 上一篇    下一篇

基于深度学习的页岩黄铁矿扫描电镜图像分割及环境指示意义:以四川盆地泸州 Ι区为例
邓乃尔 1( ), 徐浩 2( ), 周文 2, 唐小川 3, 陈雨露 1, 刘永旸 4, 刘绍军 4, 张益 5, 蒋柯 1, 刘瑞崟 6, 宋威国 1   
  1. 1.成都理工大学 能源学院(页岩气现代产业学院),四川 成都 610059
    2.成都理工大学 油气藏地质及 开发工程全国重点实验室,四川 成都 610059
    3.成都理工大学 计算机与网络安全学院(示范性软件学院),四川 成都 610059
    4.中国石油西南油气田公司 页岩气研究院,四川 成都 610051
    5.四川大学 电子信息学院,四川 成都 610065
    6.贵州省地质调查院,贵州 贵阳 550081
  • 收稿日期:2024-01-24 修回日期:2024-04-29 出版日期:2024-05-10
  • 通讯作者: 徐浩 E-mail:2516101958@qq.com;xuhao19@cdut.edu.cn
  • 基金资助:
    国家自然科学基金项目(42202189);四川省自然科学基金项目(24NSFSC4997)

Deep Learning SEM Image Segmentation of Shale Pyrite and Environmental Indications: A Study of Luzhou Block, Sichuan Basin

Naier DENG 1( ), Hao XU 2( ), Wen ZHOU 2, Xiaochuan TANG 3, Yulu CHEN 1, Yongyang LIU 4, Shaojun LIU 4, Yi ZHANG 5, Ke JIANG 1, Ruiyin LIU 6, Weiguo SONG 1   

  1. 1.College of Energy (College of Modern Shale Gas Industry), Chengdu University of Technology, Chengdu 610059, China
    2.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
    3.College of Computer Science and Cyber Security(Demonstrative Software College), Chengdu University of Technology, Chengdu 610059, China
    4.Research Institute of Shale Gas, PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China
    5.College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
    6.Guizhou Geological Survery, Guiyang 550081, China
  • Received:2024-01-24 Revised:2024-04-29 Online:2024-05-10 Published:2024-06-03
  • Contact: Hao XU E-mail:2516101958@qq.com;xuhao19@cdut.edu.cn
  • About author:DENG Naier, Master student, research area includes unconventional reservoir fine evaluation. E-mail: 2516101958@qq.com
  • Supported by:
    the National Natural Science Foundation of China(42202189);The Natural Science Foundation of Sichuan Province(24NSFSC4997)

黄铁矿作为页岩体系中最具代表性的重矿物之一,对其进行微观特征识别对于页岩沉积环境研究具有重要意义。以四川盆地泸州Ι区五峰组—龙一1亚段为例,通过岩心矿物实验、扫描电镜观测、网络模型优化和特征参数统计,构建了适用于黄铁矿扫描电镜图像分割的网络模型,实现了基于草莓状黄铁矿参数对研究区沉积环境的判断。结果表明: 优化后的UNet-Im模型对草莓状黄铁矿扫描电镜图像的分割精度可达0.863,证明了改进措施的优越性; 对比黄铁矿含量,龙一 1 1 ~ 3 小层黄铁矿含量最高,为2.95%,随后降低至龙一 1 4 小层的2.03%以及五峰组的0.83%; 基于草莓状黄铁矿特征参数,推断出黄铁矿沉积环境为深水硫化环境、深水强还原环境、深水强—弱还原环境以及深水还原—次氧化环境。实现了黄铁矿扫描电镜图像的精准化分割,对于提升行业勘探开发智能化具有借鉴意义。

Pyrite, a significant heavy mineral in shale, aids in the comprehension of shale depositional environments. Referencing the Wufeng-Long1 subsection Formation of the Luzhou Block in Sichuan Basin, a network model for pyrite SEM image segmentation was established via core mineral experiments, SEM observations, network model refinement, and feature parameter analysis. The model assesses the sedimentary environment of the study block using pyrite framboid parameters. Our findings indicated that enhancement of the UNet-Im model for pyrite framboid SEM images resulted in a segmentation precision of 0.863, demonstrating the effectiveness of the enhancement measures. Pyrite content varied from 2.95% in the Long 1 1 ~ 3 minor layer to 0.83% in the Wufeng Formation, with the Long 1 4 minor layer at 2.03%. Pyrite depositional environments are deduced as deep-water sulfide environments, strong reducing environments, strong-weak reduction environments, and reductive-suboxidative environments based on pyrite framboid characteristics. This study accurately segmented pyrite SEM images to enhance the exploration and development of intelligence in this industry.

中图分类号: 

1 CHANG Huajin, CHU Xuelei. Pyrite framboids and palaeo-ocean redox condition reconstruction[J]. Advances in Earth Science, 2011, 26(5): 475-481.
常华进, 储雪蕾. 草莓状黄铁矿与古海洋环境恢复[J]. 地球科学进展, 2011, 26(5): 475-481.
2 CAO Taotao, DENG Mo, SONG Zhiguang, et al. Study on the effect of pyrite on the accumulation of shale oil and gas[J]. Natural Gas Geoscience, 2018, 29(3): 404-414.
曹涛涛, 邓模, 宋之光, 等. 黄铁矿对页岩油气富集成藏影响研究[J]. 天然气地球科学, 2018, 29(3): 404-414.
3 QIN Xiaoyan, WANG Zhenliang, YU Hongyan, et al. A new shale brittleness evaluation method based on rock physics and mineral compositions[J]. Natural Gas Geoscience, 2016, 27(10): 1 924-1 932, 1 941.
秦晓艳, 王震亮, 于红岩, 等. 基于岩石物理与矿物组成的页岩脆性评价新方法[J]. 天然气地球科学, 2016, 27(10): 1 924-1 932, 1 941.
4 ZHOU Shangwen, XUE Huaqing, GUO Wei. A mineral analysis method for shale based on SEM and X-ray EDS[J]. China Petroleum Exploration, 2017, 22(6): 27-33.
周尚文, 薛华庆, 郭伟. 基于扫描电镜和X射线能谱的页岩矿物分析方法[J]. 中国石油勘探, 2017, 22(6): 27-33.
5 LIU Xuefeng, ZHANG Xiaowei, ZENG Xin, et al. Pore structure characterization of shales using SEM and machine learning-based segmentation method[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(1): 23-33.
刘学锋, 张晓伟, 曾鑫, 等. 采用机器学习分割算法和扫描电镜分析页岩微观孔隙结构[J]. 中国石油大学学报(自然科学版), 2022, 46(1): 23-33.
6 LIU Jiangyan, LI Shixiang, LI Zhen, et al. Characteristics and geological significance of pyrite in Chang 73 sub-member in the Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1 830-1 838.
刘江艳, 李士祥, 李桢, 等. 鄂尔多斯盆地长73亚段泥页岩黄铁矿发育特征及其地质意义[J]. 天然气地球科学, 2021, 32(12): 1 830-1 838.
7 SONG Hui, SHAO Deyong, LUO Huan, et al. SEM image characteristics and paleoenvironmental significance of framboidal pyrite from the Lower Cambrian Shuijingtuo Formation in Yichang area, western Hubei Province, Southern China: a case study of well EYY1[J]. Earth Science Frontiers, 2023, 30(3): 195-207.
宋辉, 邵德勇, 罗欢, 等. 鄂西宜昌地区下寒武统水井沱组草莓状黄铁矿SEM图像特征及古环境指示意义:以鄂阳页1井为例[J]. 地学前缘, 2023, 30(3): 195-207.
8 LUO H, ZHANG T W, YAN J P, et al. Rare Earth elements and Yttrium (REY) distribution pattern of lower Cambrian organic-rich shale in Yichang area, Western Hubei Province, South China, and source of carbonate minerals[J]. Applied Geochemistry, 2022, 136. DOI:10.1016/j.apgeochem.2021.105173 .
9 CHEN Zongming, TANG Xuan, LIANG Guodong, et al. Identification and comparison of organic matter-hosted pores in shale by SEM image analysis—a deep learning-based approach[J]. Earth Science Frontiers, 2023, 30(3): 208-220.
陈宗铭, 唐玄, 梁国栋, 等. 基于深度学习的页岩扫描电镜图像有机质孔隙识别与比较[J]. 地学前缘, 2023, 30(3): 208-220.
10 RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// International conference on medical image computing and computer-assisted intervention. Cham: Springer, 2015: 234-241.
11 HUANG Peng, ZHENG Qi, LIANG Chao. Overview of image segmentation methods[J]. Journal of Wuhan University (Natural Science Edition), 2020, 66(6): 519-531.
黄鹏, 郑淇, 梁超. 图像分割方法综述[J]. 武汉大学学报(理学版), 2020, 66(6): 519-531.
12 QIAO Fengjuan, GUO Hongli, LI Wei, et al. Research on deep learning classification based on SVM: a review[J]. Journal of Qilu University of Technology, 2018, 32(5): 39-44.
乔风娟, 郭红利, 李伟, 等. 基于SVM的深度学习分类研究综述[J]. 齐鲁工业大学学报, 2018, 32(5): 39-44.
13 LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444.
14 LI Yimin, TAN Zhenyu, YANG Chen, et al. Extraction of algal blooms in Dianchi Lake based on multi-source satellites using machine learning algorithms[J]. Advances in Earth Science, 2022, 37(11): 1 141-1 156.
李一民, 谭振宇, 杨辰, 等. 基于多源卫星的滇池藻华提取机器学习算法研究[J]. 地球科学进展, 2022, 37(11): 1 141-1 156.
15 LI Xiaoxin, LIANG Ronghua. A review for face recognition with occlusion: from subspace regression to deep learning[J]. Chinese Journal of Computers, 2018, 41(1): 177-207.
李小薪, 梁荣华. 有遮挡人脸识别综述: 从子空间回归到深度学习[J]. 计算机学报, 2018, 41(1): 177-207.
16 ZHOU Yongzhang, WANG Jun, ZUO Renguang, et al. Machine learning, deep learning and Python language in field of geology[J]. Acta Petrologica Sinica, 2018, 34(11): 3 173-3 178.
周永章, 王俊, 左仁广, 等. 地质领域机器学习、深度学习及实现语言[J]. 岩石学报, 2018, 34(11): 3 173-3 178.
17 ALIGHOLI S, KHAJAVI R, RAZMARA M. Automated mineral identification algorithm using optical properties of crystals[J]. Computers & Geosciences, 2015, 85: 175-183.
18 CHEN Yan, LI Zhicheng, CHENG Chao, et al. FLU-net: a deep fully convolutional neural network for shale reservoir micro-pore characterization[J]. Marine Geology Frontiers, 2021, 37(8): 34-43.
陈雁, 李祉呈, 程超, 等. FLU-net:用于表征页岩储层微观孔隙的深度全卷积网络[J]. 海洋地质前沿, 2021, 37(8): 34-43.
19 LIU Shaojun, LIU Yong, ZHAO Shengxian, et al. Distribution characteristics and pattern of deep shale present geostress field in northern Luzhou[J]. Advances in Earth Science, 2023, 38(12): 1 271-1 284.
刘绍军, 刘勇, 赵圣贤, 等. 泸州北区深层页岩现今地应力场分布特征及扰动规律[J]. 地球科学进展, 2023, 38(12): 1 271-1 284.
20 YANG Hongzhi, ZHAO Shengxian, LIU Yong, et al. Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou Block, southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(11): 55-63.
杨洪志, 赵圣贤, 刘勇, 等. 泸州区块深层页岩气富集高产主控因素[J]. 天然气工业, 2019, 39(11): 55-63.
21 WANG Yuman, DONG Dazhong, LI Xinjing, et al. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas[J]. Natural Gas Industry, 2015, 35(3): 12-21.
王玉满, 董大忠, 李新景, 等. 四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J]. 天然气工业, 2015, 35(3): 12-21.
22 SHEN Cheng, XIE Jun, ZHAO Jinzhou, et al. Evolution difference of fracability of marine shale gas reservoir in Luzhou and West Chongqing Block, Sichuan Basin[J]. Journal of China University of Mining & Technology, 2020, 49(4): 742-754.
沈骋, 谢军, 赵金洲, 等. 泸州—渝西区块海相页岩可压性演化差异[J]. 中国矿业大学学报, 2020, 49(4): 742-754.
23 ZHAO Shengxian, YANG Yueming, ZHANG Jian, et al. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2016, 27(3): 470-487.
赵圣贤, 杨跃明, 张鉴, 等. 四川盆地下志留统龙马溪组页岩小层划分与储层精细对比[J]. 天然气地球科学, 2016, 27(3): 470-487.
24 ZHONG Sihua, GUO Xingming, ZHENG Yineng. Improved U-Net network for lung nodule segmentation[J]. Computer Engineering and Applications, 2020, 56(17): 203-209.
钟思华, 郭兴明, 郑伊能. 改进U-Net网络的肺结节分割方法[J]. 计算机工程与应用, 2020, 56(17): 203-209.
25 YAO Jiaqi, XU Zhengguo, YAN Jikun, et al. WPLoss: weighted pairwise loss for class-imbalanced datasets[J]. Application Research of Computers, 2021, 38(3): 702-704, 709.
姚佳奇, 徐正国, 燕继坤, 等. WPLoss:面向类别不平衡数据的加权成对损失[J]. 计算机应用研究, 2021, 38(3): 702-704, 709.
26 LI X Y, SUN X F, MENG Y X, et al. Dice loss for data-imbalanced NLP tasks[C]// Proceedings of the 58th annual meeting of the association for computational linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2020.
[1] 张企盈, 苗晓明, 常鑫, 孔凡兴, 谷玉, 刘喜停. 自生黄铁矿指示海底甲烷渗漏[J]. 地球科学进展, 2024, 39(6): 589-601.
[2] 吴亚妮, 陈旸, 王野, 莫朋军, 高伟斌. 210Pb同位素在人类世沉积物定年中的应用[J]. 地球科学进展, 2024, 39(1): 71-81.
[3] 黄春林, 侯金亮, 李维德, 顾娟, 张莹, 韩伟孝, 王维真, 温小虎, 朱高峰. 深度学习融合遥感大数据的陆地水文数据同化:进展与关键科学问题[J]. 地球科学进展, 2023, 38(5): 441-452.
[4] 张立杨. 硅质岩的成因与沉积环境及其在重建洋板块地层中的应用[J]. 地球科学进展, 2023, 38(5): 453-469.
[5] 王晓宁, 岳大鹏, 赵景波. 榆林西南部下白垩统砂岩粒度组成与成因分析[J]. 地球科学进展, 2022, 37(10): 1088-1100.
[6] 孙华山,杨辉. 远喷口型 SEDEX铅锌矿床最新研究进展及发展趋势[J]. 地球科学进展, 2021, 36(7): 663-670.
[7] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[8] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[9] 关秀宇, 郭杰, 陈海燕, 修迪, 张运强. 冀北承德盆地奥陶纪冶里组叠层石的发现及沉积环境[J]. 地球科学进展, 2018, 33(5): 545-553.
[10] 沈传波, 刘泽阳, 肖凡, 胡迪, 杜嘉祎. 石油系统Re-Os同位素体系封闭性研究进展[J]. 地球科学进展, 2015, 30(2): 187-195.
[11] 秦松, 孙传敏, 杨继友, 张伟, 尼玛次仁. 冈底斯东段色日绒地区冈瓦纳相冰海杂砾岩特征及其意义[J]. 地球科学进展, 2015, 30(11): 1239-1249.
[12] 张文媛, 王翠芝, 魏晓灿, 范明森, 陈丽华. 紫金山金铜矿黄铁矿化学成分标型特征及其意义[J]. 地球科学进展, 2014, 29(8): 974-984.
[13] 马会珍, 王雪华. 黔东北志留纪晚期小溪组沉积环境研究[J]. 地球科学进展, 2014, 29(7): 859-864.
[14] 常玉光, 白万备, 齐永安, 孙凤余, 王敏. 豫西寒武纪叠层石微生物化石组合及其沉积环境[J]. 地球科学进展, 2014, 29(4): 456-463.
[15] 王新娥, 许东晖, 孙之夫, 孙宗峰, 罗景美. 山东黄金资源钻探井测井资料分析方法与应用[J]. 地球科学进展, 2014, 29(3): 397-403.
阅读次数
全文


摘要