地球科学进展 ›› 2024, Vol. 39 ›› Issue (5): 466 -475. doi: 10.11867/j.issn.1001-8166.2024.039

研究论文 上一篇    下一篇

滇西北地区树轮晚材最大密度一阶差数据能更好地揭示温度年际变化
林杨帆 1 , 2( ), 李明启 1 , 2( )   
  1. 1.中国科学院地理科学与资源研究所, 陆地表层格局与模拟重点实验室, 北京 100101
    2.中国科学院大学, 北京 100049
  • 收稿日期:2024-03-03 修回日期:2024-04-16 出版日期:2024-05-10
  • 通讯作者: 李明启 E-mail:linyangfan@whu.edu.cn;limq@igsnrr.ac.cn
  • 基金资助:
    国家自然科学基金项目(41977391)

First-difference Data of Tree-ring Latewood Maximum Density Better Reveals Interannual Temperature Variation in Northwestern Yunnan Province

Yangfan LIN 1 , 2( ), Mingqi LI 1 , 2( )   

  1. 1.Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-03-03 Revised:2024-04-16 Online:2024-05-10 Published:2024-06-03
  • Contact: Mingqi LI E-mail:linyangfan@whu.edu.cn;limq@igsnrr.ac.cn
  • About author:LIN Yangfan, Master student, research area includes the dendroclimatology. E-mail: linyangfan@whu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(41977391)

树轮晚材最大密度是反映当年生长季或者生长季末期温度较好的代用指标。基于采自滇西北地区的油麦吊云杉(Piceabrachytylavar.complanata)树木样芯,利用DENDRO2003树轮密度分析系统获取了树轮晚材最大密度数据,选用步长为67年的样条函数拟合树轮晚材最大密度序列趋势,使用ARSTAN程序建立了1253—2017年的树轮晚材最大密度年表,并将树轮晚材最大密度年表与德钦站气候要素进行了相关分析。结果表明:树轮晚材最大密度年表与9~10月平均最高温的相关系数最高(r=0.495,p<0.01),一阶差序列相关更高(r=0.763,p<0.01),并且31年滑动相关分析结果显示,树轮晚材最大密度年表与9~10月平均最高温之间的滑动相关系数呈下降趋势,而一阶差序列的滑动相关系数较原始序列更高且呈上升趋势。该结果表明树轮晚材最大密度一阶差序列可以更好地揭示温度年际变化。该现象在滇西北地区是否具有普遍性,仍需进一步验证。

Tree-ring latewood maximum density is a well-known proxy for temperature during and at the end of the growing season. Utilizing the DENDRO2003 tree ring density analysis system, density data were obtained from tree increment cores of Picea brachytyla var. complanata, collected from northwestern Yunnan Province. Each tree-ring latewood maximum density series was fitted with a 67-year cubic smoothing spline to remove non-climatic trends, and the latewood maximum density chronology was developed using the ARSTAN program spanning 1253-2017 AD for our study area. Correlation analyses were conducted between the latewood maximum density chronology and climatic elements recorded at Deqin meteorological station. The results indicated that the strongest correlation (r = 0.495, p <0.01) was found between the average September-October maximum temperature and the latewood maximum density chronology, and a stronger correlation (r = 0.763, p <0.01) was found for the first-difference data of the same variables. Furthermore, the results of a 31-year moving correlation analysis indicated that the correlation between maximum density chronology and average September-October maximum temperatures weakened during 1955-2017, whereas it exhibited a stronger correlation and further increased after the first difference during the same period. These results suggest that it would be better if the tree-ring latewood maximum density served as a proxy for inter-annual temperature variation. However, such a conclusion requires further validation for the northwestern Yunnan Province.

中图分类号: 

图1 滇西北采样点及气象站分布
Fig. 1 Distribution of tree-ring sampling site and meteorological stations in northwestern Yunnan Province
图2 德钦气象站和贡山气象站19582019年器测数据
Fig. 2 Variation of Instrumental data in Deqin and Gongshan meteorological station during 1958-2019
图3 滇西北12532017MXD年表
(a)MXD年表指数;(b)样本量;(c)样本间平均相关系数(Rbar)和总体样本信号强度(EPS)曲线;垂直虚线为EPS≥0.85对应的起始年
Fig. 3 MXD chronology from 1253 to 2017 in northwestern Yunnan Province
(a) MXD chronology index;(b)Sample depth; (c) Rbar and Expressed Population Signal (EPS). The vertical dashed line represents the starting year while EPS≥0.85
表1 滇西北标准年表公共区间统计结果
Table 1 Statistical results of the standard chronology in common period in northwestern Yunnan Province
图4 滇西北19552017MXD年表与气象数据相关系数结果
(a)月平均最高温; (b)月降水量; (c)月均温; (d)月平均最低温;水平虚线表示 α=0.05的显著水平; p:前一年, c:当年, 数字表示月份
Fig. 4 Correlation coefficients between the MXD chronology and meteorological data during 1955-2017 in northwestern Yunnan Province
(a) Monthly mean maximum temperature; (b)Monthly total precipitation; (c) Monthly mean temperature; (d) Monthly mean minmum temperature; Horizontal dashed line represents 0.05 significant level; p: previous year; c: current year, the number indicates the month
图5 滇西北195520179~10月平均最高温与MXD年表曲线对比图
Fig. 5 Comparison between the MXD chronology and September-October maximum temperature during 1955-2017 in northwestern Yunnan Province
图6 滇西北MXD年表与9~10月平均最高温原始(a)和一阶差序列(b)的31年滑动相关系数
Fig. 6 Correlation coefficients between the MXD chronology and September-October maximum temperature for the originalaand the first difference databat the 31-year sliding window in northwestern Yunnan Province
表2 滇西北不同年表与 9~10月最高温原始和一阶差序列的相关系数
Table 2 Correlation coefficients between different chronologies and September-October maximum temperature for the original and the first difference data in northwestern Yunnan Province
1 IPCC I. Summary for policymakers in global warming of 1.5 °C—an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty[C]// Sustainable development, and efforts to eradicate poverty. Geneva, Switzerland: World Meteorological Organization, 2018.
2 HONG C P, ZHANG Q, ZHANG Y, et al. Impacts of climate change on future air quality and human health in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(35): 17 193-17 200.
3 CHEN J, SHI X Y, GU L, et al. Impacts of climate warming on global floods and their implication to current flood defense standards[J]. Journal of Hydrology, 2023, 618. DOI:10.1016/j.jhydrol.2023.129236 .
4 DING Yihui, LIU Yanju, XU Ying, et al. Regional responses to global climate change: progress and prospects for trend, causes, and projection of climatic warming-wetting in northwest China[J]. Advances in Earth Science, 2023, 38(6): 551-562.
丁一汇, 柳艳菊, 徐影, 等. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
5 LAN Cuo. Advances and deficiencies in land surface modeling under global warming—hydrology, vegetation, and soil modeling on the Tibetan Plateau[J]. Advances in Earth Science, 2024, 39(1): 46-55.
兰措. 气候变化背景下陆面模式研究进展及不足: 青藏高原的水文、植被和土壤模拟[J]. 地球科学进展, 2024, 39(1): 46-55.
6 TANG Mingxiu, SUN Shao, ZHU Xiufang, et al. CMIP6 assessment of changes in hazard of future rainstorms in China [J]. Advances in Earth Science, 2022, 37(5): 519-534.
唐明秀, 孙劭, 朱秀芳, 等. 基于 CMIP6 的中国未来暴雨危险性变化评估 [J]. 地球科学进展,2022, 37(5): 519-534.
7 ZHU Huanhuan, JIANG Sheng, JIANG Zhihong. Projection of climate extremes over China in response to 1.5/2.0 ℃ global warming based on the reliability ensemble averaging[J]. Advances in Earth Science, 2022, 37(6): 612-626.
朱欢欢, 姜胜, 江志红. 基于可靠性集合平均方法的全球1.5/2.0 ℃变暖下中国极端气候的未来预估[J]. 地球科学进展, 2022, 37(6): 612-626.
8 FENG G L, YANG J, ZHI R, et al. Improved prediction model for flood-season rainfall based on a nonlinear dynamics-statistic combined method[J]. Chaos, Solitons & Fractals, 2020, 140. DOI: 10.1016/j.chaos.2020.110160 .
9 TIERNEY J E, POULSEN C J, MONTAÑEZ I P, et al. Past climates inform our future[J]. Science, 2020, 370(6 517). DOI: 10.1126/science.aay3701 .
10 de ELÍA R, BINER S, FRIGON A. Interannual variability and expected regional climate change over North America[J]. Climate Dynamics, 2013, 41(5): 1 245-1 267.
11 GUO F, DO V, COOPER R, et al. Trends of temperature variability: which variability and what health implications?[J]. The Science of the Total Environment, 2021, 768. DOI: 10.1016/j.scitotenv.2020.144487 .
12 LIU Kai, NIE Gege, ZHANG Sen. Study on the spatiotemporal evolution of temperature and precipitation in China from 1951 to 2018[J]. Advances in Earth Science, 2020, 35(11): 1 113-1 126.
刘凯, 聂格格, 张森. 中国1951—2018年气温和降水的时空演变特征研究[J]. 地球科学进展, 2020, 35(11): 1 113-1 126.
13 JIN Zheng, YOU Qinglong, WU Fangying, et al. Changes of climate and climate extremes in the Three-Rivers Headwaters’ region over the Tibetan Plateau during the past 60 years[J]. Transactions of Atmospheric Sciences, 2020, 43(6): 1 042-1 055.
靳铮, 游庆龙, 吴芳营, 等. 青藏高原三江源地区近60 a气候与极端气候变化特征分析[J]. 大气科学学报, 2020, 43(6): 1 042-1 055.
14 WU Hongyu, GUO Yao, WU Yao. Relationship between the climatic variability of high temperature in Guangdong and the abnormal atmospheric circulation and sst from 1961 to 2018[J]. Journal of Tropical Meteorology, 2020, 36(4): 455-463.
伍红雨, 郭尧, 吴遥. 1961—2018年广东高温的气候变率及其与大气环流和海温异常的关系[J]. 热带气象学报, 2020, 36(4): 455-463.
15 DONG Shaorou, LIN Ailan, DONG Yantong. Analysis of interannual variation of regionally persistent high-temperature events in South China during 1961-2017[J]. Chinese Journal of Atmospheric Sciences, 2023, 47(5): 1 325-1 340.
董少柔, 林爱兰, 董彦彤. 1961—2017年华南区域性持续高温过程年际变化成因分析[J]. 大气科学, 2023, 47(5): 1 325-1 340.
16 SHAO Xuemei, FANG Xiuqi, LIU Hongbin, et al. Dating the 1000-year-old Qilian Juniper in mountains along the eastern margin of the Qaidam Basin[J]. Acta Geographica Sinica, 2003, 58(1): 90-100.
邵雪梅, 方修琦, 刘洪滨, 等. 柴达木东缘山地千年祁连圆柏年轮定年分析[J]. 地理学报, 2003, 58(1): 90-100.
17 LI Mingqi, SHAO Xuemei. Study on the relationship between large volcanic eruptions and temperature variation based on tree-ring data in the eastern Tibetan Plateau during the past millennium[J]. Advances in Earth Science, 2016, 31(6): 634-642.
李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
18 XING P, ZHANG Q B, LV L X. Absence of late-summer warming trend over the past two and half centuries on the eastern Tibetan Plateau[J]. Global and Planetary Change, 2014, 123: 27-35.
19 LIANG H X, LYU L X, WAHAB M. A 382-year reconstruction of August mean minimum temperature from tree-ring maximum latewood density on the southeastern Tibetan Plateau, China[J]. Dendrochronologia, 2016, 37: 1-8.
20 BÜNTGEN U, REINIG F, VERSTEGE A, et al. Recent summer warming over the western Mediterranean region is unprecedented since medieval times[J]. Global and Planetary Change, 2024, 232. DOI:10.1016/j.gloplacha.2023.104336 .
21 CHEN F, YUAN Y J, YU S L, et al. A 391-year summer temperature reconstruction of the Tien Shan, reveals far-reaching summer temperature signals over the midlatitude Eurasian continent[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(22): 11 850-11 862.
22 ANCHUKAITIS K, D’ARRIGO R, ANDREU-HAYLES L, et al. Tree-ring-reconstructed summer temperatures from northwestern North America during the last nine centuries[J]. Journal of Climate, 2013, 26(10): 3 001-3 012.
23 NAGAVCIUC V, ROIBU C C, IONITA M, et al. Different climate response of three tree ring proxies of Pinus sylvestris from the Eastern Carpathians, Romania[J]. Dendrochronologia, 2019, 54: 56-63.
24 LI P, SONG H M, LIU Y, et al. Maximum July-August temperatures for the middle of the southern Tien Shan inferred from tree-ring latewood maximum densities[J]. International Journal of Biometeorology, 2023, 67(2): 321-335.
25 YIN H, LIU H B, LINDERHOLM H W, et al. Tree ring density-based warm-season temperature reconstruction since A.D. 1610 in the eastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 426: 112-120.
26 XU Yuhua. Climate of southwest China[M]. Beijing: China Meteorological Press, 1991.
徐裕华. 西南气候[M]. 北京: 气象出版社, 1991.
27 ZHANG Yun, YIN Dingcai, ZHANG Weiguo. Response of radial growth of Abies georgei to climate change at different altitudes in haba snow mountain, northwestern Yunnan Plateau[J]. Science Technology and Engineering, 2020, 20(17): 6 778-6 783.
张贇, 尹定财, 张卫国. 滇西北哈巴雪山不同海拔长苞冷杉径向生长对气候变化的响应[J]. 科学技术与工程, 2020, 20(17): 6 778-6 783.
28 FAN Z X, BRÄUNING A, CAO K F. Annual temperature reconstruction in the central Hengduan Mountains, China, as deduced from tree rings[J]. Dendrochronologia, 2008, 26(2): 97-107.
29 FAN Z X, BRÄUNING A, YANG B, et al. Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in Southern China[J]. Global and Planetary Change, 2009, 65(1/2): 1-11.
30 LI M Y, WANG L, FAN Z X, et al. Tree-ring density inferred late summer temperature variability over the past three centuries in the Gaoligong Mountains, southeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 422: 57-64.
31 LI M Q, HUANG L, YIN Z Y, et al. Temperature reconstruction and volcanic eruption signal from tree-ring width and maximum latewood density over the past 304 years in the southeastern Tibetan Plateau[J]. International Journal of Biometeorology, 2017, 61(11): 2 021-2 032.
32 DENG G F, LI M Q, HAO Z X, et al. Responses to climate change of maximum latewood density from Larix speciosa Cheng et law and Abies delavayi franch. in the northwest of Yunnan Province, China[J]. Forests, 2022, 13(5). DOI:10.3390/f13050720 .
33 ZHANG Yun, YIN Dingcai, TIAN Kun, et al. Response of radial growth of Larix potaninii var. macrocarpa to climate change at upper distributional limits on northwestern Yunnan Plateau, China[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 2 805-2 812.
张贇, 尹定财, 田昆, 等. 滇西北海拔上限大果红杉径向生长对气候变化的响应[J]. 应用生态学报, 2017, 28(9): 2 805-2 812.
34 HOLMES R L. Computer-assisted quality control in tree-ring dating and measurement[J]. Tree-ring Bulletin, 1983, 43(1):69-78.
35 COOK E R. A time series analysis approach to tree ring standardization (dendrochronology, forestry, dendroclimatology, autoregressive process)[D]. USA: The University of Arizona, 1985.
36 MELVIN T M, BRIFFA K R. A “signal-free” approach to dendroclimatic standardisation[J]. Dendrochronologia, 2008, 26(2): 71-86.
37 FRITTS H C. Tree rings and climate[M]. London: Academic Press, 1976.
38 WIGLEY T M L, BRIFFA K R, JONES P D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology[J]. Journal of Climate and Applied Meteorology, 1984, 23(2): 201-213.
39 BJÖRKLUND J, SEFTIGEN K, SCHWEINGRUBER F, et al. Cell size and wall dimensions drive distinct variability of earlywood and latewood density in northern hemisphere conifers[J]. The New Phytologist, 2017, 216(3): 728-740.
40 CHEN F, WANG H Q, YUAN Y J. Divergent growth response of Qinghai spruce to recent climate warming in the arid northeastern Tibet Plateau[J]. Asian Geographer, 2017, 34(2): 169-181.
41 RÖMER P, HARTL C, SCHNEIDER L, et al. Reduced temperature sensitivity of maximum latewood density formation in high-elevation corsican pines under recent warming[J]. Atmosphere, 2021, 12(7). DOI:10.3390/atmos12070804 .
42 YIN H, SUN Y, LI M Y. Reconstructed temperature change in late summer over the eastern Tibetan Plateau since 1867 CE and the role of anthropogenic forcing[J]. Global and Planetary Change, 2022, 208. DOI:10.1016/j.gloplacha.2021.103715 .
[1] 刘凯,聂格格,张森. 中国 19512018年气温和降水的时空演变特征研究[J]. 地球科学进展, 2020, 35(11): 1113-1126.
[2] 康文敏,蔡芫镔,郑慧祯. 福州城市地表温度时空变化与贡献度研究[J]. 地球科学进展, 2020, 35(1): 88-100.
[3] 李江峰, 蔡晓军, 王文, 李倩文, 雷彦森. 偏最小二乘回归在水汽和地面气温多模式集成预报中的应用研究[J]. 地球科学进展, 2018, 33(4): 404-415.
[4] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[5] 贾佳, 胡泽勇. 中国不同等级高温热浪的时空分布特征及趋势[J]. 地球科学进展, 2017, 32(5): 546-559.
[6] 陈晓龙, 周天军. 使用订正的“空间型标度”法预估1.5 ℃温升阈值下地表气温变化[J]. 地球科学进展, 2017, 32(4): 435-445.
[7] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[8] 王坚红, 丁晓敏, 薛峰, 苗春生. 气温增暖与趋冷变化阶段江淮汛期气旋气候特征对比研究[J]. 地球科学进展, 2017, 32(2): 160-173.
[9] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
[10] 彭志兴, 周纪, 李明松. 基于地面观测的异质性下垫面像元尺度地表温度模拟研究进展[J]. 地球科学进展, 2016, 31(5): 471-480.
[11] 王晓青,刘健,王志远. 过去2000年中国区域温度模拟与重建的对比分析[J]. 地球科学进展, 2015, 30(12): 1318-.
[12] 黄强, 陈子燊. 全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究[J]. 地球科学进展, 2014, 29(8): 956-967.
[13] 徐自为,刘绍民,徐同仁,丁闯. 不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J]. 地球科学进展, 2013, 28(8): 875-889.
[14] 陈修治,陈水森, 李丹, 苏泳娴, 钟若飞. 被动微波遥感反演地表温度研究进展[J]. 地球科学进展, 2010, 25(8): 827-835.
[15] 苗爱梅,武捷,贾利冬. 1958—2008年山西气温变化的特征及趋势研究[J]. 地球科学进展, 2010, 25(3): 264-272.
阅读次数
全文


摘要