1 |
SYMONDS M E. Faculty opinions recommendation of IPCC, 2021: summary for policymakers [R]// Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. 2021.
|
2 |
CHASSIGNET E, le SOMMER J, WALLCRAFT A. General circulation models [M]// COCHRAN K J, BOKUNIEWICZ H J, YAGER P L. Encyclopedia of ocean sciences, 2019, 5: 486-490.
|
3 |
BRYAN K. A numerical method for the study of the circulation of the world ocean[J]. Journal of Computational Physics, 1969, 4(3): 347-376.
|
4 |
GRIFFIES S, STOUFFER R, ADCROFT A, et al. A historical introduction to MOM [EB/OL]. 2015. [2023-11-20]. .
|
5 |
SMITH R D, DUKOWICZ J K, MALONE R C. Parallel ocean general circulation modeling[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/2/3/4): 38-61.
|
6 |
BLECK R. An oceanic general circulation model framed in hybrid isopycnic-cartesian coordinates[J]. Ocean Modelling, 2002, 4(1): 55-88.
|
7 |
MARSLAND S J, HAAK H, JUNGCLAUS J H, et al. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates[J]. Ocean Modelling, 2003, 5(2): 91-127.
|
8 |
GURVAN M, the NEMO team. NEMO ocean engine [M]. Note du Pôle de modélisation de l'Institut Pierre-Simon Laplace No. 27,2017.
|
9 |
MARSHALL J, ADCROFT A, HILL C, et al. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers[J]. Journal of Geophysical Research: Oceans, 1997, 102(C3): 5 753-5 766.
|
10 |
ZHANG X H, LIANG X Z. A numerical world ocean general circulation model[J]. Advances in Atmospheric Sciences, 1989, 6(1): 44-61.
|
11 |
LIU H L, ZHANG X H, LI W, et al. An eddy-permitting oceanic general circulation model and its preliminary evaluation[J]. Advances in Atmospheric Sciences, 2004, 21(5): 675-690.
|
12 |
LI Y W, LIU H L, DING M R, et al. Eddy-resolving simulation of CAS-LICOM3 for phase 2 of the ocean model intercomparison project[J]. Advances in Atmospheric Sciences, 2020, 37(10): 1 067-1 080.
|
13 |
LIN P F, YU Z P, LIU H L, et al. LICOM model datasets for the CMIP6 ocean model intercomparison project[J]. Advances in Atmospheric Sciences, 2020, 37(3): 239-249.
|
14 |
LIU H L, LIN P F, YU Y Q, et al. The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2[J]. Acta Meteorologica Sinica, 2012, 26(3): 318-329.
|
15 |
WANG Pengfei, JIANG Jinrong, LIN Pengfei, et al. The GPU version of LASG/IAP Climate System Ocean Model version 3 (LICOM3) under the Heterogeneous-compute Interface for Portability (HIP) framework and its large-scale application [J]. Geoscientific Model Development, 2021, 14(5): 2 781-2 799.
|
16 |
WEI J L, JIANG J R, LIU H L, et al. LICOM3-CUDA: a GPU version of LASG/IAP climate system ocean model version 3 based on CUDA[J]. The Journal of Supercomputing, 2023, 79(9): 9 604-9 634.
|
17 |
GRIFFIES S M, BIASTOCH A, BÖNING C, et al. Coordinated Ocean-ice Reference Experiments (COREs)[J]. Ocean Modelling, 2009, 26(1): 1-46.
|
18 |
TONANI M, BALMASEDA M, BERTINO L, et al. Status and future of global and regional ocean prediction systems[J]. Journal of Operational Oceanography, 2015, 8(): s201-s220.
|
19 |
LIU Na, WANG Hui, LING Tiejun, et al. Review and prospect of global operational ocean forecasting[J]. Advances in Earth Science, 2018, 33(2): 131-140.
|
|
刘娜, 王辉, 凌铁军, 等. 全球业务化海洋预报进展与展望[J]. 地球科学进展, 2018, 33(2): 131-140.
|
20 |
ZHANG Yongchui, CHEN Shiyao, WANG Ning, et al. Progress of global operational ocean forecasting systems[J]. Advances in Earth Science, 2022, 37(4): 344-357.
|
|
张永垂, 陈诗尧, 王宁, 等. 全球业务化海洋预报系统进展[J]. 地球科学进展, 2022, 37(4): 344-357.
|
21 |
HEWITT H T, ROBERTS M, MATHIOT P, et al. Resolving and parameterising the ocean mesoscale in Earth system models[J]. Current Climate Change Reports, 2020, 6(4): 137-152.
|
22 |
DONG J H, FOX-KEMPER B, ZHANG H, et al. The seasonality of submesoscale energy production, content, and cascade[J]. Geophysical Research Letters, 2020, 47(6). DOI:10.1029/2020GL087388 .
|
23 |
SU Z, WANG J B, KLEIN P, et al. Ocean submesoscales as a key component of the global heat budget[J]. Nature Communications, 2018, 9. DOI:10.1038/s41467-018-02983-w .
|
24 |
RINGLER T, PETERSEN M, HIGDON R L, et al. A multi-resolution approach to global ocean modeling[J]. Ocean Modelling, 2013, 69: 211-232.
|
25 |
DANILOV S, SIDORENKO D, WANG Q, et al. The Finite-volumE Sea ice-Ocean Model (FESOM2) [J]. Geoscientific Model Development, 2017, 10(2): 765-789.
|
26 |
KORN P, BRÜGGEMANN N, JUNGCLAUS J H, et al. ICON-O: the ocean component of the ICON earth system model—global simulation characteristics and local telescoping capability[J]. Journal of Advances in Modeling Earth Systems, 2022, 14(10). DOI:10.1029/2021MS002952 .
|
27 |
ARBIC B K. Incorporating tides and internal gravity waves within global ocean general circulation models: a review[J]. Progress in Oceanography, 2022, 206. DOI:10.7302/4882 .
|
28 |
HÄFNER D, NUTERMAN R, Fast JOCHUM M., cheap, and turbulent—global ocean modeling with GPU acceleration in python [J]. Journal of Advances in Modeling Earth Systems, 2021, 13(12). DOI: 10.1029/2021MS002717 .
|
29 |
SILVESTRI S, WAGNER G, HILL C, et al. Oceananigans. jl: a model that achieves breakthrough resolution, memory and energy efficiency in global ocean simulations [J]. arXiv preprint arXiv: 230906662, 2023. DOI:10.48550/arXiv.2309.06662 .
|
30 |
GRIFFIES S, DANABASOGLU G, DURACK P, et al. OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project[J]. Geoscientific Model Development, 2016, 9(9): 3 231-3 296.
|
31 |
TSUJINO H, URAKAWA L S, GRIFFIES S M, et al. Evaluation of global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2)[J]. Geoscientific Model Development, 2020, 13(8): 3 643-3 708.
|
32 |
CHASSIGNET E P, YEAGER S G, FOX-KEMPER B, et al. Impact of horizontal resolution on global ocean-sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2)[J]. Geoscientific Model Development, 2020, 13(9): 4 595-4 637.
|
33 |
TREGUIER A M, de BOYER M C, BOZEC A, et al. The mixed layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies [J]. EGUsphere, 2023, 16(13): 3 849-3 872.
|
34 |
WANG Q, SHU Q, BOZEC A, et al. Impact of high resolution on Arctic Ocean simulations in Ocean Model Intercomparison Project phase 2 (OMIP-2) [J]. Geoscientific Model Development Discussions, 2023. DOI:10.5194/gmd-2023-123 .
|
35 |
NI Q B, ZHAI X M, WILSON C, et al. Submesoscale eddies in the South China Sea[J]. Geophysical Research Letters, 2021, 48(6). DOI:10.1029/2020GL091555 .
|
36 |
TANG H B, SHU Y Q, WANG D X, et al. Submesoscale processes observed by high-frequency float in the western South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2022, 192(7 550). DOI:10.1016/j.dsr.2022.103896 .
|
37 |
OSCAR V, ROSEMARY M, ISABELLE P M, et al. Global submesoscale diagnosis using along-track satellite altimetry[J]. Ocean Science, 2023, 19(2): 363-379.
|
38 |
LI Jun. Review on current Chinese supercomputing industry[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(6): 617-624.
|
|
历军. 中国超算产业发展现状分析[J]. 中国科学院院刊, 2019, 34(6): 617-624.
|
39 |
MURRAY R J. Explicit generation of orthogonal grids for ocean models[J]. Journal of Computational Physics, 1996, 126(2): 251-273.
|
40 |
KORN P. Formulation of an unstructured grid model for global ocean dynamics[J]. Journal of Computational Physics, 2017, 339: 525-552.
|
41 |
ARAKAWA A, LAMB V R. Computational design of the basic dynamical processes of the UCLA general circulation model[M]// Methods in computational physics: advances in research and applications. Amsterdam: Elsevier, 1977: 173-265.
|
42 |
DUKOWICZ J K. Mesh effects for Rossby waves[J]. Journal of Computational Physics, 1995, 119(1): 188-194.
|
43 |
WAJSOWICZ R C. Free planetary waves in finite-difference numerical models[J]. Journal of Physical Oceanography, 1986, 16(4): 773-789.
|
44 |
BARHAM W, BACHMAN S, GROOMS I. Some effects of horizontal discretization on linear baroclinic and symmetric instabilities[J]. Ocean Modelling, 2018, 125: 106-116.
|
45 |
MCDOUGALL T. Neutral surfaces [J]. Journal of Physical Oceanography, 1987, 17(11): 1 950-1 964.
|
46 |
VERONIS G. The role of models in tracer studies [J]. Numerical Models of Ocean Circulation, 1975: 133-146.
|
47 |
ADCROFT A, HALLBERG R. On methods for solving the oceanic equations of motion in generalized vertical coordinates[J]. Ocean Modelling, 2004, 11(1): 224-233.
|
48 |
FOX-KEMPER B, ADCROFT A, BÖNING C, et al. Challenges and prospects in ocean circulation models [J]. Frontiers in Marine Science, 2019, 6: 65-102.
|
49 |
HALLBERG R. Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects[J]. Ocean Modelling, 2013, 72: 92-103.
|
50 |
SEIN D V, KOLDUNOV N V, DANILOV S, et al. Ocean modeling on a mesh with resolution following the local rossby radius[J]. Journal of Advances in Modeling Earth Systems, 2017, 9(7): 2 601-2 614.
|
51 |
BERGER M J, CALHOUN D A, HELZEL C, et al. Logically rectangular finite volume methods with adaptive refinement on the sphere[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367(1 907): 4 483-4 496.
|
52 |
BLAYO E, DEBREU L. Adaptive mesh refinement for finite-difference ocean models: first experiments [J]. Journal of Physical Oceanography, 1999, 29(6): 1 239-1 250.
|
53 |
KEVLAHAN N K R, DUBOS T, AECHTNER M. Adaptive wavelet simulation of global ocean dynamics using a new Brinkman volume penalization[J]. Geoscientific Model Development, 2015, 8(12): 3 891-3 909.
|
54 |
POPINET S, RICKARD G. A tree-based solver for adaptive ocean modelling[J]. Ocean Modelling, 2006, 16(3): 224-249.
|
55 |
ZHANG Yan, WANG Xuantong, SUN Yuhao, et al. Ocean Modeling with Adaptive REsolution (OMARE, version 1.0)-refactoring NEMO model (version 4.0.1) with the parallel computing framework of JASMIN. Part 1: adaptive grid refinement in an idealized double-gyre case [J]. EGUsphere, 2022. DOI: 10.5194/gmd-16-679-2023 .
|
56 |
BIASTOCH A, SEIN D, DURGADOO J V, et al. Simulating the Agulhas system in global ocean models-nesting vs. multi-resolution unstructured meshes[J]. Ocean Modelling, 2018, 121: 117-131.
|
57 |
DANILOV S, WANG Q. Resolving eddies by local mesh refinement[J]. Ocean Modelling, 2015, 93: 75-83.
|
58 |
ENGWIRDA D. JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere[J]. Geoscientific Model Development, 2017, 10(6): 2 117-2 140.
|
59 |
HOANG T T P, LENG W, JU L L, et al. Conservative explicit local time-stepping schemes for the shallow water equations[J]. Journal of Computational Physics, 2019, 382: 152-176.
|
60 |
LIU Hailong. LASG/IAP climate system ocean model (LICOM 1.0) reference manual[M]. Beijing: Science Press, 2004.
|
|
刘海龙. LASG/IAP气候系统海洋模式(LICOM 1.0)参考手册[M]. 北京: 科学出版社, 2004.
|
61 |
XIE J W, LIU H L, LIN P F. A multifaceted isoneutral eddy transport diagnostic framework and its application in the southern ocean[J]. Journal of Advances in Modeling Earth Systems, 2023, 15(7). DOI:10.1029/2023MS003728 .
|
62 |
WANG Bin, JI Zhongzhen. A new numerical method in atmospheric science and its application[M]. Beijing: Science Press, 2006.
|
|
王斌, 季仲贞. 大气科学中的数值新方法及其应用[M]. 北京: 科学出版社, 2006.
|
63 |
GENT P R, MCWILLIAMS J C. Isopycnal mixing in ocean circulation models[J]. Journal of Physical Oceanography, 1990, 20(1): 150-160.
|
64 |
REDI M H. Oceanic isopycnal mixing by coordinate rotation[J]. Journal of Physical Oceanography, 1982, 12(10): 1 154-1 158.
|
65 |
VISBECK M, MARSHALL J, HAINE T, et al. Specification of eddy transfer coefficients in coarse-resolution ocean circulation models[J]. Journal of Physical Oceanography, 1997, 27(3): 381-402.
|
66 |
BACHMAN S D, FOX-KEMPER B, PEARSON B. A scale-aware subgrid model for quasi-geostrophic turbulence[J]. Journal of Geophysical Research: Oceans, 2017, 122(2): 1 529-1 554.
|
67 |
JANSEN M F, HELD I M. Parameterizing subgrid-scale eddy effects using energetically consistent backscatter[J]. Ocean Modelling, 2014, 80: 36-48.
|
68 |
JANSEN M F, HELD I M, ADCROFT A, et al. Energy budget-based backscatter in an eddy permitting primitive equation model[J]. Ocean Modelling, 2015, 94: 15-26.
|
69 |
BACHMAN S D. The GM+E closure: a framework for coupling backscatter with the Gent and McWilliams parameterization[J]. Ocean Modelling, 2019, 136: 85-106.
|
70 |
FOX-KEMPER B, MENEMENLIS D. Can large eddy simulation techniques improve mesoscale-rich ocean models?[J]. Geophysical Monograph Series, 2008, 177: 319-338.
|
71 |
GRAHAM J P, RINGLER T. A framework for the evaluation of turbulence closures used in mesoscale ocean large-eddy simulations[J]. Ocean Modelling, 2013, 65: 25-39.
|
72 |
LEITH C E. Stochastic models of chaotic systems[J]. Physica D, 1996, 98(2/3/4): 481-491.
|
73 |
KHANI S, DAWSON C N. A gradient based subgrid-scale parameterization for ocean mesoscale eddies[J]. Journal of Advances in Modeling Earth Systems, 2023, 15(2). DOI:10.1029/2022MS003356 .
|
74 |
BOLTON T, ZANNA L. Applications of deep learning to ocean data inference and subgrid parameterization[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(1): 376-399.
|
75 |
GUILLAUMIN A P, ZANNA L. Stochastic-deep learning parameterization of ocean momentum forcing[J]. Journal of Advances in Modeling Earth Systems, 2021, 13(9). DOI:10.1029/2021MS002534 .
|
76 |
FREZAT H, le SOMMER J, FABLET R, et al. A posteriori learning for quasi-geostrophic turbulence parametrization[J]. Journal of Advances in Modeling Earth Systems, 2022, 14(11). DOI: 10.1029/2022MS003124 .
|
77 |
FOX-KEMPER B, DANABASOGLU G, FERRARI R, et al. Parameterization of mixed layer eddies. III: implementation and impact in global ocean climate simulations[J]. Ocean Modelling, 2011, 39(1/2): 61-78.
|
78 |
FOX-KEMPER B, FERRARI R, HALLBERG R. Parameterization of mixed layer eddies. part I: theory and diagnosis[J]. Journal of Physical Oceanography, 2008, 38(6): 1 145-1 165.
|
79 |
ZHANG J C, ZHANG Z W, QIU B. Parameterizing submesoscale vertical buoyancy flux by simultaneously considering baroclinic instability and strain-induced frontogenesis[J]. Geophysical Research Letters, 2023, 50(8). DOI:10.1029/2022GL102292 .
|
80 |
LARGE W G, MCWILLIAMS J C, DONEY S C. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization[J]. Reviews of Geophysics, 1994, 32(4): 363-403.
|
81 |
MELLOR G L, YAMADA T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 1982, 20(4): 851-875.
|
82 |
REICHL B, HALLBERG R. A simplified energetics based Planetary Boundary Layer (ePBL) approach for ocean climate simulations[J]. Environmental Science, Physics, 2018. DOI: DOI:10.1016/J.OCEMOD.2018.10.004 .
|
83 |
BURCHARD H, BOLDING K. Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer[J]. Journal of Physical Oceanography, 2001, 31(8): 1 943-1 968.
|
84 |
GRIFFIES S, LEVY M, ADCROFT A, et al. Theory and numerics of the community ocean vertical mixing (CVMix) project [Z]. Draft from March, 2015.
|
85 |
van ROEKEL L, ADCROFT A J, DANABASOGLU G, et al. The KPP boundary layer scheme for the ocean: revisiting its formulation and benchmarking one-dimensional simulations relative to LES[J]. Journal of Advances in Modeling Earth Systems, 2018, 10(11): 2 647-2 685.
|
86 |
ARBIC B K, ALFORD M H, ANSONG J K, et al. A primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITgcm[M]// New frontiers in operational oceanography. GODAE OceanView, 2018.
|
87 |
LOGEMANN K, LINARDAKIS L, KORN P, et al. Global tide simulations with ICON-O: testing the model performance on highly irregular meshes[J]. Ocean Dynamics, 2021, 71(1): 43-57.
|
88 |
von STORCH J S, HERTWIG E, LÜSCHOW V, et al. Open-ocean tides simulated by ICON-O, version icon-2.6.6[J]. Geoscientific Model Development, 2023, 16(17): 5 179-5 196.
|
89 |
YU Y, LIU H L, LAN J. The influence of explicit tidal forcing in a climate ocean circulation model[J]. Acta Oceanologica Sinica, 2016, 35(9): 42-50.
|
90 |
ROCHA C B, CHERESKIN T K, GILLE S T, et al. Mesoscale to submesoscale wavenumber spectra in drake passage[J]. Journal of Physical Oceanography, 2016, 46(2): 601-620.
|
91 |
ROCHA C, GILLE S, CHERESKIN T, et al. Seasonality of submesoscale dynamics in the Kuroshio Extension[J]. Geophysical Research Letters, 2016, 43(21). DOI:10.1002/2016GL071349 .
|
92 |
MÜLLER M, CHERNIAWSKY J Y, FOREMAN M G G, et al. Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling[J]. Geophysical Research Letters, 2012, 39(19). DOI:10.1029/2012GL053320 .
|
93 |
SONG Pengyang, SIDORENKO Dmitry, SCHOLZ Patrick, et al. The tidal effects in the Finite-volumE Sea ice-Ocean Model (FESOM2.1): a comparison between parameterised tidal mixing and explicit tidal forcing [J]. Geoscientific Model Development, 2023, 16(1): 383-405.
|
94 |
WEI Z X, SUN J C, TENG F, et al. A harmonic analyzed parameterization of tide-induced mixing for ocean models[J]. Acta Oceanologica Sinica, 2018, 37(7): 1-7.
|
95 |
XU S, HUANG X, OEY L Y, et al. POM.gpu-v1.0: a GPU-based princeton ocean model[J]. Geoscientific Model Development, 2015, 8(9): 2 815-2 827.
|
96 |
JIANG J R, LIN P F, WANG J, et al. Porting LASG/IAP climate system ocean model to gpus using OpenAcc[J]. IEEE Access, 2019, 7: 154 490-154 501.
|
97 |
PARK M S, KIM M, LEE M I, et al. Detection of tropical cyclone genesis via quantitative satellite ocean surface wind pattern and intensity analyses using decision trees[J]. Remote Sensing of Environment, 2016, 183: 205-214.
|
98 |
ZHANG W, LEUNG Y, CHAN J C L. The analysis of tropical cyclone tracks in the western North Pacific through data mining. part I: tropical cyclone recurvature[J]. Journal of Applied Meteorology and Climatology, 2013, 52(6): 1 394-1 416.
|
99 |
JIANG G Q, XU J, WEI J. A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models[J]. Geophysical Research Letters, 2018, 45(8): 3 706-3 716.
|
100 |
ZHANG Tao, XIE Feng, XUE Wei, et al. Quantification and optimization of parameter uncertainty in the grid-point atmospheric model GAMIL2[J]. Chinese Journal of Geophysics, 2016, 59(2): 465-475.
|
|
张涛, 谢丰, 薛巍, 等. 格点大气环流模式GAMIL2参数不确定性的量化分析与优化[J]. 地球物理学报, 2016, 59(2): 465-475.
|
101 |
ZHU J C, HU S, ARCUCCI R, et al. Model error correction in data assimilation by integrating neural networks[J]. Big Data Mining and Analytics, 2019, 2(2): 83-91.
|
102 |
BRENOWITZ N D, BRETHERTON C S. Prognostic validation of a neural network unified physics parameterization[J]. Geophysical Research Letters, 2018, 45(12): 6 289-6 298.
|
103 |
WILLIS M J, von STOSCH M. Simultaneous parameter identification and discrimination of the nonparametric structure of hybrid semi-parametric models[J]. Computers and Chemical Engineering, 2017, 104: 366-376.
|
104 |
LIU H L, LIN P F, ZHENG W P, et al. A global eddy-resolving ocean forecast system in China-LICOM Forecast System (LFS)[J]. Journal of Operational Oceanography, 2023, 16(1): 15-27.
|
105 |
ZHENG W P, LIN P F, LIU H L, et al. An assessment of the LICOM Forecast System under the IVTT class 4 framework[J]. Frontiers in Marine Science, 2023, 10. DOI:10.3389/fmars.2023.1112025 .
|
106 |
ZHANG Z W, LIU Y L, QIU B, et al. Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport[J]. Nature Communications, 2023, 14. DOI: 10.1038/s41467-023-36991-2 .
|
107 |
JING Z, WANG S P, WU L X, et al. Maintenance of mid-latitude oceanic fronts by mesoscale eddies[J]. Science Advances, 2020, 6(31). DOI: 10.1126/sciadv.aba7880 .
|
108 |
WANG S P, JING Z, WU L X, et al. El Niño/Southern Oscillation inhibited by submesoscale ocean eddies[J]. Nature Geoscience, 2022, 15: 112-117.
|
109 |
LIN H Y, LIU Z Y, HU J Y, et al. Characterizing meso- to submesoscale features in the South China Sea[J]. Progress in Oceanography, 2020, 188. DOI:10.1016/j.pocean.2020.102420 .
|
110 |
LIU C Y, WANG X W, LIU Z Y, et al. On the formation of a subsurface weakly sheared laminar layer and an upper thermocline strongly sheared turbulent layer in the eastern equatorial Pacific: interplays of multiple-time-scale equatorial waves[J]. Journal of Physical Oceanography, 2020, 50(10): 2 907-2 930.
|
111 |
PENG S Q, LIAO J W, WANG X W, et al. Energetics-based estimation of the diapycnal mixing induced by internal tides in the andaman sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(4). DOI:10.1029/2020JC016521 .
|
112 |
BRYAN F, KAUFFMAN B, LARGE W, et al. NCAR CSM flux coupler. Technical note[Z]. 1996.
|
113 |
BALAJI V. The FMS manual: a developer’s guide to the GFDL Flexible Modeling System [Z]. 2002.
|
114 |
VALCKE S. The OASIS3 coupler: a European climate modelling community software[J]. Geoscientific Model Development, 2013, 6(2): 373-388.
|