地球科学进展 ›› 2024, Vol. 39 ›› Issue (5): 454 -465. doi: 10.11867/j.issn.1001-8166.2024.040

综述与评述 上一篇    下一篇

全球海洋环流模式研究进展
谢经纬 1 , 4( ), 刘海龙 1 , 2( ), 郑伟鹏 1 , 4, 林鹏飞 1 , 4, 马金峰 1, 李逸文 3, 于子棚 1, 于江风 1 , 4, 白佳慧 1 , 4   
  1. 1.中国科学院大气物理研究所 大气科学和地球流体力学数值模拟国家重点实验室, 北京 100029
    2.崂山实验室, 山东 青岛 266237
    3.中国地质大学(北京), 北京 100830
    4.中国科学院大学 地球与行星科学学院, 北京 100049
  • 收稿日期:2024-01-17 修回日期:2024-04-10 出版日期:2024-05-10
  • 通讯作者: 刘海龙 E-mail:xiejw23@mail3.sysu.edu.cn;hlliu2@qnlm.ac
  • 基金资助:
    国家自然科学基金项目(42242018)

Advances in Global Ocean General Circulation Models

Jingwei XIE 1 , 4( ), Hailong LIU 1 , 2( ), Weipeng ZHENG 1 , 4, Pengfei LIN 1 , 4, Jinfeng MA 1, Yiwen LI 3, Zipeng YU 1, Jiangfeng YU 1 , 4, Jiahui BAI 1 , 4   

  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    2.Laoshan Laboratory, Qingdao 266237, China
    3.China University of Geosciences (Beijing), Beijing 100830, China
    4.College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-01-17 Revised:2024-04-10 Online:2024-05-10 Published:2024-06-03
  • Contact: Hailong LIU E-mail:xiejw23@mail3.sysu.edu.cn;hlliu2@qnlm.ac
  • About author:XIE Jingwei, Ph.D student, research areas include ocean circulation models and physical parameterization. E-mail: xiejw23@mail3.sysu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(42242018)

全球海洋环流模式是地球系统数值模拟的关键组成部分,在气候预估和海洋环境预报中扮演着至关重要的角色。系统回顾了全球海洋环流模式的发展历程,并综述了该领域近年来的重要科技进展,涵盖了动力框架、物理过程参数化以及软硬件环境配置三大核心内容。在动力框架方面,主要探讨了水平离散方法、垂直坐标方案以及变分辨率技术的最新发展;在物理过程方面,重点关注了中尺度、亚中尺度和边界层混合参数化的进展;在软硬件配置方面,讨论了异构计算架构和人工智能在该领域的应用现状与前景。特别介绍了我国自主研发的全球海洋环流模式LICOM的进展。基于该领域的发展趋势,为我国全面推进完全自主的全球海洋环流模式的研发战略和长远规划提出了建议。

The global Ocean General Circulation Model (OGCM) is a critical component of Earth system modeling and plays an essential role in climate projections and marine environmental forecasting. Herein, the history of global OGCM models is systematically reviewed and significant scientific and recent technological advancements are summarized. This review covers three topics involving the core technology of OGCMs: the dynamical core, physics or physical parameterization, and soft-hardware configuration. In the dynamic core, the latest developments in horizontal discretization methods, vertical coordinate schemes, and multi-resolution strategies are explored. Regarding physics, the focus has been on the progress of mesoscale, sub-mesoscale, and boundary-layer mixing parameterizations. In the soft-hardware configuration section, the current status and prospects for the application of heterogeneous computing architectures and artificial intelligence technology in global OGCMs are discussed. The advancement of the LASG/IAP Climate System Ocean Model, a fully autonomous Chinese global OGCM, is also highlighted. Based on key trends and novel ideas in the field of global OGCMs, suggestions are provided for Chinese researchers and relevant policymakers to comprehensively advance R&D strategies and long-term planning for fully autonomous global OGCMs.

中图分类号: 

图1 全球海洋环流模式示意图
Fig. 1 The conceptual diagram of global ocean general circulation models
1 SYMONDS M E. Faculty opinions recommendation of IPCC, 2021: summary for policymakers [R]// Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. 2021.
2 CHASSIGNET E, le SOMMER J, WALLCRAFT A. General circulation models [M]// COCHRAN K J, BOKUNIEWICZ H J, YAGER P L. Encyclopedia of ocean sciences, 2019, 5: 486-490.
3 BRYAN K. A numerical method for the study of the circulation of the world ocean[J]. Journal of Computational Physics, 1969, 4(3): 347-376.
4 GRIFFIES S, STOUFFER R, ADCROFT A, et al. A historical introduction to MOM [EB/OL]. 2015. [2023-11-20]. .
5 SMITH R D, DUKOWICZ J K, MALONE R C. Parallel ocean general circulation modeling[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/2/3/4): 38-61.
6 BLECK R. An oceanic general circulation model framed in hybrid isopycnic-cartesian coordinates[J]. Ocean Modelling, 2002, 4(1): 55-88.
7 MARSLAND S J, HAAK H, JUNGCLAUS J H, et al. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates[J]. Ocean Modelling, 2003, 5(2): 91-127.
8 GURVAN M, the NEMO team. NEMO ocean engine [M]. Note du Pôle de modélisation de l'Institut Pierre-Simon Laplace No. 27,2017.
9 MARSHALL J, ADCROFT A, HILL C, et al. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers[J]. Journal of Geophysical Research: Oceans, 1997, 102(C3): 5 753-5 766.
10 ZHANG X H, LIANG X Z. A numerical world ocean general circulation model[J]. Advances in Atmospheric Sciences, 1989, 6(1): 44-61.
11 LIU H L, ZHANG X H, LI W, et al. An eddy-permitting oceanic general circulation model and its preliminary evaluation[J]. Advances in Atmospheric Sciences, 2004, 21(5): 675-690.
12 LI Y W, LIU H L, DING M R, et al. Eddy-resolving simulation of CAS-LICOM3 for phase 2 of the ocean model intercomparison project[J]. Advances in Atmospheric Sciences, 2020, 37(10): 1 067-1 080.
13 LIN P F, YU Z P, LIU H L, et al. LICOM model datasets for the CMIP6 ocean model intercomparison project[J]. Advances in Atmospheric Sciences, 2020, 37(3): 239-249.
14 LIU H L, LIN P F, YU Y Q, et al. The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2[J]. Acta Meteorologica Sinica, 2012, 26(3): 318-329.
15 WANG Pengfei, JIANG Jinrong, LIN Pengfei, et al. The GPU version of LASG/IAP Climate System Ocean Model version 3 (LICOM3) under the Heterogeneous-compute Interface for Portability (HIP) framework and its large-scale application [J]. Geoscientific Model Development, 2021, 14(5): 2 781-2 799.
16 WEI J L, JIANG J R, LIU H L, et al. LICOM3-CUDA: a GPU version of LASG/IAP climate system ocean model version 3 based on CUDA[J]. The Journal of Supercomputing, 2023, 79(9): 9 604-9 634.
17 GRIFFIES S M, BIASTOCH A, BÖNING C, et al. Coordinated Ocean-ice Reference Experiments (COREs)[J]. Ocean Modelling, 2009, 26(1): 1-46.
18 TONANI M, BALMASEDA M, BERTINO L, et al. Status and future of global and regional ocean prediction systems[J]. Journal of Operational Oceanography, 2015, 8(): s201-s220.
19 LIU Na, WANG Hui, LING Tiejun, et al. Review and prospect of global operational ocean forecasting[J]. Advances in Earth Science, 2018, 33(2): 131-140.
刘娜, 王辉, 凌铁军, 等. 全球业务化海洋预报进展与展望[J]. 地球科学进展, 2018, 33(2): 131-140.
20 ZHANG Yongchui, CHEN Shiyao, WANG Ning, et al. Progress of global operational ocean forecasting systems[J]. Advances in Earth Science, 2022, 37(4): 344-357.
张永垂, 陈诗尧, 王宁, 等. 全球业务化海洋预报系统进展[J]. 地球科学进展, 2022, 37(4): 344-357.
21 HEWITT H T, ROBERTS M, MATHIOT P, et al. Resolving and parameterising the ocean mesoscale in Earth system models[J]. Current Climate Change Reports, 2020, 6(4): 137-152.
22 DONG J H, FOX-KEMPER B, ZHANG H, et al. The seasonality of submesoscale energy production, content, and cascade[J]. Geophysical Research Letters, 2020, 47(6). DOI:10.1029/2020GL087388 .
23 SU Z, WANG J B, KLEIN P, et al. Ocean submesoscales as a key component of the global heat budget[J]. Nature Communications, 2018, 9. DOI:10.1038/s41467-018-02983-w .
24 RINGLER T, PETERSEN M, HIGDON R L, et al. A multi-resolution approach to global ocean modeling[J]. Ocean Modelling, 2013, 69: 211-232.
25 DANILOV S, SIDORENKO D, WANG Q, et al. The Finite-volumE Sea ice-Ocean Model (FESOM2) [J]. Geoscientific Model Development, 2017, 10(2): 765-789.
26 KORN P, BRÜGGEMANN N, JUNGCLAUS J H, et al. ICON-O: the ocean component of the ICON earth system model—global simulation characteristics and local telescoping capability[J]. Journal of Advances in Modeling Earth Systems, 2022, 14(10). DOI:10.1029/2021MS002952 .
27 ARBIC B K. Incorporating tides and internal gravity waves within global ocean general circulation models: a review[J]. Progress in Oceanography, 2022, 206. DOI:10.7302/4882 .
28 HÄFNER D, NUTERMAN R, Fast JOCHUM M., cheap, and turbulent—global ocean modeling with GPU acceleration in python [J]. Journal of Advances in Modeling Earth Systems, 2021, 13(12). DOI: 10.1029/2021MS002717 .
29 SILVESTRI S, WAGNER G, HILL C, et al. Oceananigans. jl: a model that achieves breakthrough resolution, memory and energy efficiency in global ocean simulations [J]. arXiv preprint arXiv: 230906662, 2023. DOI:10.48550/arXiv.2309.06662 .
30 GRIFFIES S, DANABASOGLU G, DURACK P, et al. OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project[J]. Geoscientific Model Development, 2016, 9(9): 3 231-3 296.
31 TSUJINO H, URAKAWA L S, GRIFFIES S M, et al. Evaluation of global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2)[J]. Geoscientific Model Development, 2020, 13(8): 3 643-3 708.
32 CHASSIGNET E P, YEAGER S G, FOX-KEMPER B, et al. Impact of horizontal resolution on global ocean-sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2)[J]. Geoscientific Model Development, 2020, 13(9): 4 595-4 637.
33 TREGUIER A M, de BOYER M C, BOZEC A, et al. The mixed layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies [J]. EGUsphere, 2023, 16(13): 3 849-3 872.
34 WANG Q, SHU Q, BOZEC A, et al. Impact of high resolution on Arctic Ocean simulations in Ocean Model Intercomparison Project phase 2 (OMIP-2) [J]. Geoscientific Model Development Discussions, 2023. DOI:10.5194/gmd-2023-123 .
35 NI Q B, ZHAI X M, WILSON C, et al. Submesoscale eddies in the South China Sea[J]. Geophysical Research Letters, 2021, 48(6). DOI:10.1029/2020GL091555 .
36 TANG H B, SHU Y Q, WANG D X, et al. Submesoscale processes observed by high-frequency float in the western South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2022, 192(7 550). DOI:10.1016/j.dsr.2022.103896 .
37 OSCAR V, ROSEMARY M, ISABELLE P M, et al. Global submesoscale diagnosis using along-track satellite altimetry[J]. Ocean Science, 2023, 19(2): 363-379.
38 LI Jun. Review on current Chinese supercomputing industry[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(6): 617-624.
历军. 中国超算产业发展现状分析[J]. 中国科学院院刊, 2019, 34(6): 617-624.
39 MURRAY R J. Explicit generation of orthogonal grids for ocean models[J]. Journal of Computational Physics, 1996, 126(2): 251-273.
40 KORN P. Formulation of an unstructured grid model for global ocean dynamics[J]. Journal of Computational Physics, 2017, 339: 525-552.
41 ARAKAWA A, LAMB V R. Computational design of the basic dynamical processes of the UCLA general circulation model[M]// Methods in computational physics: advances in research and applications. Amsterdam: Elsevier, 1977: 173-265.
42 DUKOWICZ J K. Mesh effects for Rossby waves[J]. Journal of Computational Physics, 1995, 119(1): 188-194.
43 WAJSOWICZ R C. Free planetary waves in finite-difference numerical models[J]. Journal of Physical Oceanography, 1986, 16(4): 773-789.
44 BARHAM W, BACHMAN S, GROOMS I. Some effects of horizontal discretization on linear baroclinic and symmetric instabilities[J]. Ocean Modelling, 2018, 125: 106-116.
45 MCDOUGALL T. Neutral surfaces [J]. Journal of Physical Oceanography, 1987, 17(11): 1 950-1 964.
46 VERONIS G. The role of models in tracer studies [J]. Numerical Models of Ocean Circulation, 1975: 133-146.
47 ADCROFT A, HALLBERG R. On methods for solving the oceanic equations of motion in generalized vertical coordinates[J]. Ocean Modelling, 2004, 11(1): 224-233.
48 FOX-KEMPER B, ADCROFT A, BÖNING C, et al. Challenges and prospects in ocean circulation models [J]. Frontiers in Marine Science, 2019, 6: 65-102.
49 HALLBERG R. Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects[J]. Ocean Modelling, 2013, 72: 92-103.
50 SEIN D V, KOLDUNOV N V, DANILOV S, et al. Ocean modeling on a mesh with resolution following the local rossby radius[J]. Journal of Advances in Modeling Earth Systems, 2017, 9(7): 2 601-2 614.
51 BERGER M J, CALHOUN D A, HELZEL C, et al. Logically rectangular finite volume methods with adaptive refinement on the sphere[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367(1 907): 4 483-4 496.
52 BLAYO E, DEBREU L. Adaptive mesh refinement for finite-difference ocean models: first experiments [J]. Journal of Physical Oceanography, 1999, 29(6): 1 239-1 250.
53 KEVLAHAN N K R, DUBOS T, AECHTNER M. Adaptive wavelet simulation of global ocean dynamics using a new Brinkman volume penalization[J]. Geoscientific Model Development, 2015, 8(12): 3 891-3 909.
54 POPINET S, RICKARD G. A tree-based solver for adaptive ocean modelling[J]. Ocean Modelling, 2006, 16(3): 224-249.
55 ZHANG Yan, WANG Xuantong, SUN Yuhao, et al. Ocean Modeling with Adaptive REsolution (OMARE, version 1.0)-refactoring NEMO model (version 4.0.1) with the parallel computing framework of JASMIN. Part 1: adaptive grid refinement in an idealized double-gyre case [J]. EGUsphere, 2022. DOI: 10.5194/gmd-16-679-2023 .
56 BIASTOCH A, SEIN D, DURGADOO J V, et al. Simulating the Agulhas system in global ocean models-nesting vs. multi-resolution unstructured meshes[J]. Ocean Modelling, 2018, 121: 117-131.
57 DANILOV S, WANG Q. Resolving eddies by local mesh refinement[J]. Ocean Modelling, 2015, 93: 75-83.
58 ENGWIRDA D. JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere[J]. Geoscientific Model Development, 2017, 10(6): 2 117-2 140.
59 HOANG T T P, LENG W, JU L L, et al. Conservative explicit local time-stepping schemes for the shallow water equations[J]. Journal of Computational Physics, 2019, 382: 152-176.
60 LIU Hailong. LASG/IAP climate system ocean model (LICOM 1.0) reference manual[M]. Beijing: Science Press, 2004.
刘海龙. LASG/IAP气候系统海洋模式(LICOM 1.0)参考手册[M]. 北京: 科学出版社, 2004.
61 XIE J W, LIU H L, LIN P F. A multifaceted isoneutral eddy transport diagnostic framework and its application in the southern ocean[J]. Journal of Advances in Modeling Earth Systems, 2023, 15(7). DOI:10.1029/2023MS003728 .
62 WANG Bin, JI Zhongzhen. A new numerical method in atmospheric science and its application[M]. Beijing: Science Press, 2006.
王斌, 季仲贞. 大气科学中的数值新方法及其应用[M]. 北京: 科学出版社, 2006.
63 GENT P R, MCWILLIAMS J C. Isopycnal mixing in ocean circulation models[J]. Journal of Physical Oceanography, 1990, 20(1): 150-160.
64 REDI M H. Oceanic isopycnal mixing by coordinate rotation[J]. Journal of Physical Oceanography, 1982, 12(10): 1 154-1 158.
65 VISBECK M, MARSHALL J, HAINE T, et al. Specification of eddy transfer coefficients in coarse-resolution ocean circulation models[J]. Journal of Physical Oceanography, 1997, 27(3): 381-402.
66 BACHMAN S D, FOX-KEMPER B, PEARSON B. A scale-aware subgrid model for quasi-geostrophic turbulence[J]. Journal of Geophysical Research: Oceans, 2017, 122(2): 1 529-1 554.
67 JANSEN M F, HELD I M. Parameterizing subgrid-scale eddy effects using energetically consistent backscatter[J]. Ocean Modelling, 2014, 80: 36-48.
68 JANSEN M F, HELD I M, ADCROFT A, et al. Energy budget-based backscatter in an eddy permitting primitive equation model[J]. Ocean Modelling, 2015, 94: 15-26.
69 BACHMAN S D. The GM+E closure: a framework for coupling backscatter with the Gent and McWilliams parameterization[J]. Ocean Modelling, 2019, 136: 85-106.
70 FOX-KEMPER B, MENEMENLIS D. Can large eddy simulation techniques improve mesoscale-rich ocean models?[J]. Geophysical Monograph Series, 2008, 177: 319-338.
71 GRAHAM J P, RINGLER T. A framework for the evaluation of turbulence closures used in mesoscale ocean large-eddy simulations[J]. Ocean Modelling, 2013, 65: 25-39.
72 LEITH C E. Stochastic models of chaotic systems[J]. Physica D, 1996, 98(2/3/4): 481-491.
73 KHANI S, DAWSON C N. A gradient based subgrid-scale parameterization for ocean mesoscale eddies[J]. Journal of Advances in Modeling Earth Systems, 2023, 15(2). DOI:10.1029/2022MS003356 .
74 BOLTON T, ZANNA L. Applications of deep learning to ocean data inference and subgrid parameterization[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(1): 376-399.
75 GUILLAUMIN A P, ZANNA L. Stochastic-deep learning parameterization of ocean momentum forcing[J]. Journal of Advances in Modeling Earth Systems, 2021, 13(9). DOI:10.1029/2021MS002534 .
76 FREZAT H, le SOMMER J, FABLET R, et al. A posteriori learning for quasi-geostrophic turbulence parametrization[J]. Journal of Advances in Modeling Earth Systems, 2022, 14(11). DOI: 10.1029/2022MS003124 .
77 FOX-KEMPER B, DANABASOGLU G, FERRARI R, et al. Parameterization of mixed layer eddies. III: implementation and impact in global ocean climate simulations[J]. Ocean Modelling, 2011, 39(1/2): 61-78.
78 FOX-KEMPER B, FERRARI R, HALLBERG R. Parameterization of mixed layer eddies. part I: theory and diagnosis[J]. Journal of Physical Oceanography, 2008, 38(6): 1 145-1 165.
79 ZHANG J C, ZHANG Z W, QIU B. Parameterizing submesoscale vertical buoyancy flux by simultaneously considering baroclinic instability and strain-induced frontogenesis[J]. Geophysical Research Letters, 2023, 50(8). DOI:10.1029/2022GL102292 .
80 LARGE W G, MCWILLIAMS J C, DONEY S C. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization[J]. Reviews of Geophysics, 1994, 32(4): 363-403.
81 MELLOR G L, YAMADA T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 1982, 20(4): 851-875.
82 REICHL B, HALLBERG R. A simplified energetics based Planetary Boundary Layer (ePBL) approach for ocean climate simulations[J]. Environmental Science, Physics, 2018. DOI: DOI:10.1016/J.OCEMOD.2018.10.004 .
83 BURCHARD H, BOLDING K. Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer[J]. Journal of Physical Oceanography, 2001, 31(8): 1 943-1 968.
84 GRIFFIES S, LEVY M, ADCROFT A, et al. Theory and numerics of the community ocean vertical mixing (CVMix) project [Z]. Draft from March, 2015.
85 van ROEKEL L, ADCROFT A J, DANABASOGLU G, et al. The KPP boundary layer scheme for the ocean: revisiting its formulation and benchmarking one-dimensional simulations relative to LES[J]. Journal of Advances in Modeling Earth Systems, 2018, 10(11): 2 647-2 685.
86 ARBIC B K, ALFORD M H, ANSONG J K, et al. A primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITgcm[M]// New frontiers in operational oceanography. GODAE OceanView, 2018.
87 LOGEMANN K, LINARDAKIS L, KORN P, et al. Global tide simulations with ICON-O: testing the model performance on highly irregular meshes[J]. Ocean Dynamics, 2021, 71(1): 43-57.
88 von STORCH J S, HERTWIG E, LÜSCHOW V, et al. Open-ocean tides simulated by ICON-O, version icon-2.6.6[J]. Geoscientific Model Development, 2023, 16(17): 5 179-5 196.
89 YU Y, LIU H L, LAN J. The influence of explicit tidal forcing in a climate ocean circulation model[J]. Acta Oceanologica Sinica, 2016, 35(9): 42-50.
90 ROCHA C B, CHERESKIN T K, GILLE S T, et al. Mesoscale to submesoscale wavenumber spectra in drake passage[J]. Journal of Physical Oceanography, 2016, 46(2): 601-620.
91 ROCHA C, GILLE S, CHERESKIN T, et al. Seasonality of submesoscale dynamics in the Kuroshio Extension[J]. Geophysical Research Letters, 2016, 43(21). DOI:10.1002/2016GL071349 .
92 MÜLLER M, CHERNIAWSKY J Y, FOREMAN M G G, et al. Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling[J]. Geophysical Research Letters, 2012, 39(19). DOI:10.1029/2012GL053320 .
93 SONG Pengyang, SIDORENKO Dmitry, SCHOLZ Patrick, et al. The tidal effects in the Finite-volumE Sea ice-Ocean Model (FESOM2.1): a comparison between parameterised tidal mixing and explicit tidal forcing [J]. Geoscientific Model Development, 2023, 16(1): 383-405.
94 WEI Z X, SUN J C, TENG F, et al. A harmonic analyzed parameterization of tide-induced mixing for ocean models[J]. Acta Oceanologica Sinica, 2018, 37(7): 1-7.
95 XU S, HUANG X, OEY L Y, et al. POM.gpu-v1.0: a GPU-based princeton ocean model[J]. Geoscientific Model Development, 2015, 8(9): 2 815-2 827.
96 JIANG J R, LIN P F, WANG J, et al. Porting LASG/IAP climate system ocean model to gpus using OpenAcc[J]. IEEE Access, 2019, 7: 154 490-154 501.
97 PARK M S, KIM M, LEE M I, et al. Detection of tropical cyclone genesis via quantitative satellite ocean surface wind pattern and intensity analyses using decision trees[J]. Remote Sensing of Environment, 2016, 183: 205-214.
98 ZHANG W, LEUNG Y, CHAN J C L. The analysis of tropical cyclone tracks in the western North Pacific through data mining. part I: tropical cyclone recurvature[J]. Journal of Applied Meteorology and Climatology, 2013, 52(6): 1 394-1 416.
99 JIANG G Q, XU J, WEI J. A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models[J]. Geophysical Research Letters, 2018, 45(8): 3 706-3 716.
100 ZHANG Tao, XIE Feng, XUE Wei, et al. Quantification and optimization of parameter uncertainty in the grid-point atmospheric model GAMIL2[J]. Chinese Journal of Geophysics, 2016, 59(2): 465-475.
张涛, 谢丰, 薛巍, 等. 格点大气环流模式GAMIL2参数不确定性的量化分析与优化[J]. 地球物理学报, 2016, 59(2): 465-475.
101 ZHU J C, HU S, ARCUCCI R, et al. Model error correction in data assimilation by integrating neural networks[J]. Big Data Mining and Analytics, 2019, 2(2): 83-91.
102 BRENOWITZ N D, BRETHERTON C S. Prognostic validation of a neural network unified physics parameterization[J]. Geophysical Research Letters, 2018, 45(12): 6 289-6 298.
103 WILLIS M J, von STOSCH M. Simultaneous parameter identification and discrimination of the nonparametric structure of hybrid semi-parametric models[J]. Computers and Chemical Engineering, 2017, 104: 366-376.
104 LIU H L, LIN P F, ZHENG W P, et al. A global eddy-resolving ocean forecast system in China-LICOM Forecast System (LFS)[J]. Journal of Operational Oceanography, 2023, 16(1): 15-27.
105 ZHENG W P, LIN P F, LIU H L, et al. An assessment of the LICOM Forecast System under the IVTT class 4 framework[J]. Frontiers in Marine Science, 2023, 10. DOI:10.3389/fmars.2023.1112025 .
106 ZHANG Z W, LIU Y L, QIU B, et al. Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport[J]. Nature Communications, 2023, 14. DOI: 10.1038/s41467-023-36991-2 .
107 JING Z, WANG S P, WU L X, et al. Maintenance of mid-latitude oceanic fronts by mesoscale eddies[J]. Science Advances, 2020, 6(31). DOI: 10.1126/sciadv.aba7880 .
108 WANG S P, JING Z, WU L X, et al. El Niño/Southern Oscillation inhibited by submesoscale ocean eddies[J]. Nature Geoscience, 2022, 15: 112-117.
109 LIN H Y, LIU Z Y, HU J Y, et al. Characterizing meso- to submesoscale features in the South China Sea[J]. Progress in Oceanography, 2020, 188. DOI:10.1016/j.pocean.2020.102420 .
110 LIU C Y, WANG X W, LIU Z Y, et al. On the formation of a subsurface weakly sheared laminar layer and an upper thermocline strongly sheared turbulent layer in the eastern equatorial Pacific: interplays of multiple-time-scale equatorial waves[J]. Journal of Physical Oceanography, 2020, 50(10): 2 907-2 930.
111 PENG S Q, LIAO J W, WANG X W, et al. Energetics-based estimation of the diapycnal mixing induced by internal tides in the andaman sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(4). DOI:10.1029/2020JC016521 .
112 BRYAN F, KAUFFMAN B, LARGE W, et al. NCAR CSM flux coupler. Technical note[Z]. 1996.
113 BALAJI V. The FMS manual: a developer’s guide to the GFDL Flexible Modeling System [Z]. 2002.
114 VALCKE S. The OASIS3 coupler: a European climate modelling community software[J]. Geoscientific Model Development, 2013, 6(2): 373-388.
[1] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[2] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[3] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(9): 891-903.
[4] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
[5] 唐彦丽, 董文杰, 李立娟, 薛巍, 王斌. CPL7及其在中国地球系统模式中的应用前景[J]. 地球科学进展, 2015, 30(5): 620-625.
[6] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[7] 程承旗,李启青,沙志友,郭仕德. 城市居住单元环境质量的高分辨率遥感评价方法研究[J]. 地球科学进展, 2006, 21(1): 24-30.
[8] 翦知盡,黄维. 快速气候变化与高分辨率的深海沉积记录[J]. 地球科学进展, 2003, 18(5): 673-680.
[9] 王文远,刘嘉麒. 玛珥湖与过去全球变化研究[J]. 地球科学进展, 2000, 15(5): 604-608.
[10] 王先锋,刘东生. 洞穴碳酸盐微层研究及其发展方向[J]. 地球科学进展, 1999, 14(3): 286-291.
[11] 李万春,李世杰,濮培民. 高分辨率古环境指示器——湖泊纹泥研究综述[J]. 地球科学进展, 1999, 14(2): 172-176.
[12] 郑卓. 第四纪孢粉分析的时间序列与空间模型[J]. 地球科学进展, 1998, 13(3): 300-305.
[13] 徐钰麟. 大洋钻探与地层学——高分辨率磁性生物年代地层格架[J]. 地球科学进展, 1995, 10(3): 258-262.
阅读次数
全文


摘要