地球科学进展 ›› 2003, Vol. 18 ›› Issue (5): 673 -680. doi: 10.11867/j.issn.1001-8166.2003.05.0673

研究论文 上一篇    下一篇

快速气候变化与高分辨率的深海沉积记录
翦知湣,黄维   
  1. 同济大学海洋地质教育部重点实验室,上海 200092
  • 收稿日期:2003-06-16 修回日期:2003-07-02 出版日期:2003-12-20
  • 通讯作者: 翦知湣 E-mail:zjiank@online.sh.cn
  • 基金资助:

    国家杰出青年科学基金项目“晚第四纪印度/太平洋海洋通道的水体交换及其全球气候意义”(编号: 40125015);教育部霍英东青年教师基金项目“晚第四纪赤道太平洋上层海水温度纬向梯度的演变”(编号: 81015)资助.

RAPID CLIMATE CHANGE AND HIGH RESOLUTION DEEP-SEA SEDIMENTARY RECORDS

Jian Zhimin,Huang Wei   

  1. Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2003-06-16 Revised:2003-07-02 Online:2003-12-20 Published:2003-10-01

通过高分辨率海洋古气候序列研究快速气候变化的机制是大洋钻探ODP及相关的国际海洋古全球变化研究IMAGES的重要贡献。研究发现,千年、百年尺度的古气候事件具有全球性,不仅见于冰芯和北大西洋高纬区,也发生在热带太平洋等其它海区和地球的其它部分;不仅见于末次冰期,也发生在全新世和早、中更新世。尽管这些快速气候变化的原因和机理尚无定论,但至少说明存在有别于冰期/间冰期冰盖体积变化的因素(如热带过程、太阳活动等)在起作用,从根本上改变了学术界对地球气候环境系统历史的认识。

Studies of the rapid climate changes through high-resolution deep-sea sequences represent an important legacy of the Ocean Drilling Program (ODP) and related International Marine Global Change Study (IMAGES). It has been revealed that decadal to millennial-scale climate variability is a global phenomenon, which was not limited to the ice cores and high latitudes of the North Atlantic, but also extended to other oceans such as the tropical Pacific and other parts of the globe. These rapid climate changes occurred in the last glacial stage, but also in the Holocene and the middle and early Pleistocene. Despite its reason and mechanism are still vigorously debated, it has been clearly shown that some elements (e.g., tropical forcing, solar activity) different from the glacial-interglacial ice cover volume change were responsible for the rapid climate changes. This fundamentally altered the way Earth scientists thought about the operation of the Earth's climate system and the relatively sensitivity of this system to major climatic shifts.

中图分类号: 

[1] Sarnthein M, Kennett J P, Allen J, et al. Decadal-to-millennial-scale climate variability-chronology and mechanisms: Summary and recommendations[J]. Quaternary Science Reviews, 2002, 21: 1 121-1 128.

[2] McManus J F, Oppo D W, Cullen J L. A 0.5 million year record of millennial-scale climate variability in the North Atlantic[J]. Science, 1999, 283: 971-975.

[3] Schulz M, Berger W H, Sarnthein M,et al. Amplitude variations of 1470 year climate oscillations during the last 100 000 years linked to fluctuations of continental ice mass[J]. Geophysical Research Letters, 1999, 26:3 385-3 388.

[4] Magney M. Solar influences on Holocene climate changes illustrated by correlations between past lake-level fluctuations and the atmospheric C-14 record[J]. Quaternary Research, 1993, 40: 1-9.

[5] Berger W H, Labeyrie L D. Abrupt climate change—An introduction[A]. In: Berger W H, Labeyrie L D, eds. Abrupt Climate Change-Evidence and Implications[C]. Dordrecht: Reidel, 1987. 3-22.

[6] Dansgaard W, White J W C, Johnsen S. The abrupt termination of the Younger Dryas climate event[J]. Nature, 1989, 339: 532-533.

[7] Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climate from 1 250 ka ice-core record[J]. Nature, 1993, 364: 218-220.

[8] Mayewski P A, Bender M. The GISP2 ice core record-Paleoclimate highlights[J]. Reviews of Geophysics, 1995, Supplement: 1 287-1 296.

[9] Alley R B, Clark P U. The deglaciation of the Northern Hemisphere: A global perspective[J]. Annual Review of Earth and Planetary Science, 1999, 27: 149-182.

[10] Kennett J P, Peterson L C. Rapid climate change: Ocean responses to earth system instability in the late Quaternary[J]. JOIDES Journal, 2002, 28(1): 5-9.

[11] Heinrich H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130 000 years[J]. Quaternary Research, 1988, 29: 143-152.

[12] Broecker W S, Bond G C, Klas M, et al. Origin of the northern Atlantic’s Heinrich events[J]. Climate Dynamics, 1992, 6: 265-273.

[13] Bond G, Lotti R. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation[J]. Science, 1995, 267:1 005-1 010.

[14] Hendy I L, Kennet J P. Latest Quaternary North Pacific surface-water responses imply atmosphere-driven climate instability[J]. Geology, 1999, 27: 291-294.

[15] Cannariato K G, Kennett J P. Climatically related millennial-scale fluctuations in strength of California margin oxygen-minimum zone during the past 60 ka[J]. Geology, 1999, 27: 975-978.

[16] Peterson L C, Haug G H, Hughen K A, et al. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial[J]. Science, 2000, 290: 1 947-1 951.

[17] Sachs J P, Lehman S J. Subtropical north Atlantic temperatures 60 000 to 30 000 years ago[J]. Science, 1999, 286: 756-759.

[18] Wang L, Sarnthein M, Erlenkeuser H,et al. East Asian monsoon climate during the late Pleistocene: High-resolution sediment records from the south China sea[J]. Marine Geology, 1999, 156(3/4): 245-284.

[19] Schulz H, Vonrab U, Erlenkeuser H. Correlation between Arabian Sea and Greenland climate oscillation of the past 110 000 years[J]. Nature, 1998, 393: 54-57.

[20] Chappell J. Sea level changes triggered rapid climate shifts in the last glacial cycle: New results from coral terraces[J]. Quaternary Science Reviews, 2002, 21: 1231-1242.

[21] Wang Y J, Cheng H, Edward R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294: 2 245-2 248.

[22] Genty D, Blamart D, Ouahdi R, et al. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data[J]. Nature, 2003, 421: 833-837.

[23] Stager J C, Mayewski P A. Abrupt early to mid-Holocene climatic transition registered at the equator and the poles[J]. Science, 1997, 276: 1 834-1 836.

[24] Shi Yafeng, ed. The Dimates and Environments of the Holocene Megathernal in China[M]. Beijing:China Ocean Press,1992.1-213.[施雅风主编. 中国全新世大暖期气候与环境 [M]. 北京: 海洋出版社, 1992.1-213.]

[25] Jian Zhimin, Li Baohua, Pflaumann U, et al. Late Holocene cooling event in the western Pacific[J]. Science in China(D), 1996, 39(5): 543-550. [翦知湣,李保华, Pflaumann U,. 西太平洋晚全新世变冷事件[J]. 中国科学:D, 1996, 26(5): 461-466.]

[26] Keigwin L D. The Little ice age and medieval warm period in the Sargasso sea[J]. Science,1996,274:1 504-1 508.

[27] Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in north Atlantic Holocene and glacial climates[J]. Science, 1997, 278: 1 257-1 266.

[28] O’Brien S R, Mayewski P A, Meeker L D, et al. Complexity of Holocene climate as reconstructed from a Greenland ice core[J]. Science, 1995, 270: 1 962-1 964.

[29] deMenocal P, Ortiz J, Guilderson T, et al. Coherent highand low-latitude climate variability during the Holocene warm period[J]. Science, 2000, 288: 2 198-2 202.

[30] Jian Z, Wang P, Saito Y, et al. Holocene variability of the Kuroshio current in the Okinawa Trough,northwestern Pacific ocean[J]. Earth and Planetary Science Letters, 2000, 184(1): 305-319.

[31] Schulz M, Paul A. Holocene climate variability on centennial-millennial time scales: 1. Climate records from the north-Atlantic realm[A]. In: Wefer G, Berger W, Behre K E, et al,eds. Climate Development and History of the North Atlantic Realm[C]. Berlin, Heidelberg: Springer-Verlag, 2002. 41-54.

[32] Oppo D W, McManus J F, Cullen J L. Abrupt climate events 500 000 to 340 000 years ago: Evidence from subpolar north Atlantic sediments[J]. Science, 1998, 279: 1 335-1 338.

[33] Raymo M E, Ganley K, Carter S, et al. Millennial-scale climate instability during the early Pleistocene epoch[J]. Nature, 1998, 392: 699-702.

[34] Helmke J P, Schulz M, Bauch H A. Sediment-color record from the northeast Atlantic reveals patterns of millennial-scale climate variability during the past 500 000 years[J]. Quaternary Research, 2002, 57: 49-57.

[35] Ito M, Horikawa K. Millennial- to decadal-scale fluctuation in the paleo-Kuroshio current documented in the middle Pleistocene shelf succession on the Boso Peninsula, Japan[J]. Sedimentary Geology, 2000,137(1/2): 1-8.

[36] Ruddiman W F, Raymo M, Mcintyre A. Matuyama 41 000-year cycles: North Atlantic ocean and northern hemisphere ice sheets[J]. Earth Planetary Science Letters, 1986, 80: 117-129.

[37] Hinnov L A, Schulz M, Yiou P. Interhemispheric space-time attributes of the Dansgaard-Oeschger oscillations between 100-0 ka[J]. Quaternary Science Reviews, 2002, 21: 1 215-1 230.

[38] Broecker W S, Denton G H. The role of ocean-atmosphere reorganization in glacial cycles[J]. Geochimica et Cosmochimica Acta,1989,53:2 465-2 501.

[39] Keeling C D, Whorf T P. The 1 800-year oceanic tidal cycle: A possible cause of rapid climate change[J]. Proceedings of National Academy of Sciences, 2000, 97: 3 814-3 819.

[40] Ganopolski A, Rahmstorf S. Simulation of rapid glacial climate changes in a coupled climate model[J]. Nature, 2001, 409: 153-158.

[41] Kiefer T, Sarnthein M, Erlenkeuser H, et al. North Pacific response to millennial-scale changes in ocean circulation over the last 65 ka[J]. Paleoceanograpgy, 2001, 16: 179-189.

[42] Blunier T, Chappellaz J, Schwander J, et al. Asynchrony of Antarctic and Greenland climate change during the last glacial period[J]. Nature, 1998, 394: 739-743.

[43] Broecker W S. Paleocean circulation during the last glaciation: A bipolar seesaw?[J]. Paleoceanography, 1998, 13(2): 119-121.

[44] Wigley T M L, Kelly P M. Holocene climate change, 14C wiggles and variations in solar irradiance[J]. Philosophical Transactions of the Royal Society, London, 1990, 330A: 547-560.

[45] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420: 162-165.

[46] Stott L, Poulsen C, Lund S, et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 297: 222-226.

[47] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399: 429-436.

[1] 拓守廷,温廷宇,张钊,李阳阳. 大洋钻探计划运行的国际经验及对我国的启示[J]. 地球科学进展, 2021, 36(6): 632-642.
[2] 马鹏飞,刘志飞,拓守廷,蒋璟鑫,许艺炜,胡修棉. 国际大洋钻探科学数据的现状、特征及其汇编的科学意义[J]. 地球科学进展, 2021, 36(6): 643-662.
[3] 汪品先. 未雨绸缪——迎接大洋钻探学术新计划的制定[J]. 地球科学进展, 2017, 32(12): 1229-1235.
[4] 林间, 徐敏, 周志远, 王月. 全球俯冲带大洋钻探进展与启示[J]. 地球科学进展, 2017, 32(12): 1253-1266.
[5] 王风平, 陈云如. 深部生物圈研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1277-1286.
[6] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义——国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12): 1287-1296.
[7] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
[8] 汪品先. 我国参加大洋钻探的近十年回顾与展望[J]. 地球科学进展, 2014, 29(3): 322-326.
[9] 丁晓东, 郑立伟, 高树基. 新仙女木事件研究进展 *[J]. 地球科学进展, 2014, 29(10): 1095-1109.
[10] 常凤鸣,李铁刚. 西太平洋暖池区古海洋学研究[J]. 地球科学进展, 2013, 28(8): 847-858.
[11] 钟广法,游倩. 高分辨率FMS成像测井资料在科学大洋钻探中的应用[J]. 地球科学进展, 2012, 27(3): 347-358.
[12] 汪鹏,钟广法. 南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359-366.
[13] 杨守业,王权. 冲绳海槽中部热液活动与IODP 331航次初步成果[J]. 地球科学进展, 2011, 26(12): 1282-1289.
[14] 高抒,全体船上科学家. IODP 333航次:科学目标、钻探进展与研究潜力[J]. 地球科学进展, 2011, 26(12): 1290-1299.
[15] 王剑飞,萨仁高娃,李铁刚,申之义,于心科. 苏禄海深海沉积物古菌群落结构多样性研究[J]. 地球科学进展, 2010, 25(7): 766-774.
阅读次数
全文


摘要