1 |
LARSEN L, MOSEMAN S, SANTORO A E, et al. A complex-systems approach to predicting effects of sea level rise and nitrogen loading on nitrogen cycling in coastal wetland[J]. Eco-DAS VIII, 2010: 67-92. DOI:10.4319/ecodas.2010.978-0-9845591-1-4.67 .
|
2 |
IPCC. Climate change 2021: the physical science basis[M]// Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021.
|
3 |
HINKEL J, JAEGER C, NICHOLLS R J, et al. Sea-level rise scenarios and coastal risk management [J]. Nature Climate Change, 2015, 5: 188-190.
|
4 |
ODUM W E. Comparative ecology of tidal freshwater and salt marshes [J]. Annual Review of Ecology and Systematics, 1988, 19(1): 147-176.
|
5 |
KNOWLES N. Natural and management influences on freshwater inflows and salinity in the San Francisco Estuary at monthly to interannual scales [J]. Water Resources Research, 2002, 38(12). DOI:10.1029/2001WR000360 .
|
6 |
CRAFT C, CLOUGH J, EHMAN J, et al. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services[J]. Frontiers in Ecology and the Environment, 2009, 7(2): 73-78.
|
7 |
ELSEY-QUIRK T, SELISKAR D M, SOMMERFIELD C K, et al. Salt marsh carbon pool distribution in a mid-Atlantic lagoon, USA: sea level rise implications [J]. Wetlands, 2011, 31: 87-99.
|
8 |
SHARPE P J, BALDWIN A H. Tidal marsh plant community response to sea-level rise: a mesocosm study [J]. Aquatic Botany, 2012, 101: 34-40.
|
9 |
HILL T D, ANISFELD S C. Coastal wetland response to sea level rise in connecticut and New York[J]. Estuarine, Coastal and Shelf Science, 2015, 163: 185-193.
|
10 |
GE Z M, CAO H B, CUI L F, et al. Future vegetation patterns and primary production in the coastal wetlands of East China under sea level rise, sediment reduction, and saltwater intrusion [J]. Journal of Geophysical Research Biogeosciences, 2015, 120(10): 1 923-1 940.
|
11 |
SCHILE L M, CALLAWAY J C, SUDING K N, et al. Can community structure track sea-level rise? Stress and competitive controls in tidal wetlands [J]. Ecology and Evolution, 2017, 7(4): 1 276-1 285.
|
12 |
WESTON N B, VILE M A, NEUBAUER S C, et al. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils[J]. Biogeochemistry, 2011, 102(1): 135-151.
|
13 |
KRAUSS K W, WHITBECK J L. Soil greenhouse gas fluxes during wetland forest retreat along the lower savannah river, Georgia (USA)[J]. Wetlands, 2012, 32(1): 73-81.
|
14 |
NEUBAUER S C. Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology [J]. Estuaries and Coasts, 2013, 36: 491-507.
|
15 |
TONG C, LUO M, HUANG J F, et al. Greenhouse gas fluxes and porewater geochemistry following short-term pulses of saltwater and Fe(III) in a subtropical tidal freshwater estuarine marsh[J]. Geoderma, 2020, 369. DOI:10.1016/j.geoderma.2020.114340 .
|
16 |
CHERRY J A, RAMSEUR G S, SPARKS E L, et al. Testing sea-level rise impacts in tidal wetlands: a novel in situ approach[J]. Methods in Ecology and Evolution, 2015, 6(12): 1 443-1 451.
|
17 |
SPALDING E A, HESTER M W. Interactive effects of hydrology and salinity on oligohaline plant species productivity: implications of relative sea-level rise [J]. Estuaries and Coasts, 2007, 30: 214-225.
|
18 |
CHAMBERS L G, OSBORNE T Z, REDDY K R. Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: a laboratory experiment[J]. Biogeochemistry, 2013, 115(1): 363-383.
|
19 |
TONG C, CADILLO-QUIROZ H, ZENG Z H, et al. Changes of community structure and abundance of methanogens in soils along a freshwater-brackish water gradient in subtropical estuarine marshes [J]. Geoderma, 2017, 299: 101-110.
|
20 |
LUO M, ZHAI Z F, YE R Z, et al. Carbon mineralization in tidal freshwater marsh soils at the intersection of low-level saltwater intrusion and ferric iron loading [J]. Catena, 2020, 193. DOI:10.1016/j.catena.2020.104644 .
|
21 |
CHAMBERS L G, REDDY K R, OSBORNE T Z. Short-term response of carbon cycling to salinity pulses in a freshwater wetland [J]. Soil Science Society of America Journal, 2011, 75(5): 2 000-2 007.
|
22 |
WANG C, TONG C, CHAMBERS L G, et al. Identifying the salinity thresholds that impact greenhouse gas production in subtropical tidal freshwater marsh soils[J]. Wetlands, 2017, 37(3): 559-571.
|
23 |
MORRIS J T, SUNDARESHWAR P V, NIETCH C T, et al. Responses of coastal wetlands to rising sea level [J]. Ecology, 2002, 83: 2 869-2 877.
|
24 |
MUDD S M, HOWELL S M, MORRIS J T. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation [J]. Estuarine, Coastal and Shelf Science, 2009, 82: 377-389.
|
25 |
KIRWAN M L, LANGLEY J A, GUNTENSPERGEN G R, et al. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes [J]. Biogeosciences, 2013, 10: 1 869-1 876.
|
26 |
LANGLEY J A, MOZDZER T J, SHEPARD K A, et al. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise [J]. Global Change Biology, 2013, 19(5): 1 495-1 503.
|
27 |
TAN Fengfeng, LUO Min, ZHANG Changwei, et al. Plants moderate the effects of emission fluxes of CO2 and CH4 on increased flooding in wetland soils [J]. China Environmental Science, 2023, 43(1): 424-435.
|
|
谭凤凤, 罗敏, 张昌威, 等. 植物调节湿地CO2和CH4排放对淹水增强的响应[J]. 中国环境科学, 2023, 43(1): 424-435.
|
28 |
LIU B G, TONG C, FANG Y Y, et al. Interactive effects of sea-level rise and nitrogen enrichment on the decay of different plant residues in an oligohaline estuarine marsh [J]. Estuarine, Coastal and Shelf Science, 2022, 270. DOI:10.1016/j.ecss.2022.107835 .
|
29 |
STACHELEK J, KELLY S P, SKLAR F H, et al. In situ simulation of sea-level rise impacts on coastal wetlands using a flow-through mesocosm approach [J]. Methods in Ecology and Evolution, 2018, 9(8): 1 908-1 915.
|
30 |
LIU Y X, LUO M, CHEN J, et al. Root iron plaque abundance as an indicator of carbon decomposition rates in a tidal freshwater wetland in response to salinity and flooding [J]. Soil Biology & Biochemistry, 2021, 162. DOI:10.1016/j.soilbio.2021.108403 .
|
31 |
LI Jing, HUANG Jiafang, LUO Min, et al. Effect of increasing tidewater inundation on porewater geochemistries and CO2 and CH4 effluxes in the tidal freshwater marshes of the Min-jiang River Estuary, southeast China [J]. Environmental Science, 2019, 40(12): 5 494-5 502.
|
|
李敬, 黄佳芳, 罗敏, 等. 淹水增加对闽江河口淡水潮汐湿地孔隙水地球化学特征及CO2和CH4排放通量的影响 [J]. 环境科学, 2019, 40(12): 5 494-5 502.
|
32 |
DANG C, MORRISSEY E M, NEUBAUER S C, et al. Novel microbial community composition and carbon biogeochemistry emerge over time following saltwater intrusion in wetlands[J]. Global Change Biology, 2019, 25(2): 549-561.
|
33 |
HOPPLE A M, PENNINGTON S C, MEGONIGAL J P, et al. Disturbance legacies regulate coastal forest soil stability to changing salinity and inundation: a soil transplant experiment[J]. Soil Biology and Biochemistry, 2022, 169. DOI:10.1016/j.soilbio.2022.108675 .
|
34 |
POFFENBARGER H J, NEEDELMAN B A, MEGONIGAL J P. Salinity influence on methane emissions from tidal marshes [J]. Wetlands, 2011, 31(5): 831-842.
|
35 |
DELAUNE R D, SMITH C J, PATRICK W H. Methane release from Gulf coast wetlands[J]. Tellus B, 1983, 35B(1): 8-15.
|
36 |
SMITH C J, DELAUNE R D, PATRICK W H. Carbon dioxide emission and carbon accumulation in coastal wetlands[J]. Estuarine, Coastal and Shelf Science, 1983, 17(1): 21-29.
|
37 |
BARTLETT K B, BARTLETT D S, HARRISS R C, et al. Methane emissions along a salt marsh salinity gradient[J]. Biogeochemistry, 1987, 4(3): 183-202.
|
38 |
NYMAN J A, DELAUNE R D. CO2 emission and soil Eh responses to different hydrological conditions in fresh brackish, and saline marsh soils [J]. Limnology and Oceanography, 1991, 36(7): 1 406-1 414.
|
39 |
PURVAJA R, RAMESH R. Natural and anthropogenic methane emission from coastal wetlands of South India [J]. Environmental Management, 2001, 27: 547-557.
|
40 |
DAUSSE A, GARBUTT A, NORMAN L, et al. Biogeochemical functioning of grazed estuarine tidal marshes along a salinity gradient [J]. Estuarine, Coastal and Shelf Science, 2012, 100(20): 83-92.
|
41 |
WESTON N B, NEUBAUER S C, VELINSKY D J, et al. Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient[J]. Biogeochemistry, 2014, 120(1): 163-189.
|
42 |
WILSON B J, MORTAZAVI B, KIENE R P. Spatial and temporal variability in carbon dioxide and methane exchange at three coastal marshes along a salinity gradient in a northern Gulf of Mexico estuary [J]. Biogeochemistry, 2015, 123(3): 329-347.
|
43 |
GUNN C M. Methane emissions along a salinity gradient of a restored salt marsh in Casco Bay, Maine [D/OL]. Bates College, Lewiston, 2016. [2023-10-25]. .
|
44 |
HOLM G O, PEREZ B C, MCWHORTER D E, et al. Ecosystem level methane fluxes from tidal freshwater and brackish marshes of the Mississippi River Delta: implications for coastal wetland carbon projects [J]. Wetlands, 2016, 36: 401-413.
|
45 |
HU M J, REN H C, REN P, et al. Response of gaseous carbon emissions to low-level salinity increase in tidal marsh ecosystem of the Min River Estuary, southeastern China[J]. Journal of Environmental Sciences, 2017, 52: 210-222.
|
46 |
MISHRA S R, PATTNAIK P, SETHUNATHAN N, et al. Anion-mediated salinity affecting methane production in a flooded alluvial soil [J]. Geomicrobiology Journal, 2003, 20: 579-586.
|
47 |
NEUBAUER S C, GIVLER K, VALENTINE S, et al. Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry [J]. Ecology, 2005, 86(12): 3 334-3 344.
|
48 |
WESTON N B, DIXON R E, JOYE S B. Ramifications of increased salinity in tidal freshwater sediments: geochemistry and microbial pathways of organic matter mineralization [J]. Journal of Geophysical Research: Biogeosciences, 2006, 111. DOI:10.1029/2005JG000071 .
|
49 |
MARTON J M, HERBERT E R, CRAFT C B. Effects of salinity on denitrification and greenhouse gas production from laboratory-incubated tidal forest soils [J]. Wetlands, 2012, 32: 347-357.
|
50 |
BALDWIN D S, REES G N, MITCHELL A M, et al. The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland[J]. Wetlands, 2006, 26(2): 455-464.
|
51 |
SUTTON-GRIER A E, KELLER J K, KOCH R, et al. Electron donors and acceptors influence anaerobic soil organic matter mineralization in tidal marshes [J]. Soil Biology and Biochemistry, 2011, 43: 1 576-1 583.
|
52 |
BERNER R. Early diagenesis: a theoretical approach [M]. New Jersey, Princeton: Princeton University Press, 1980.
|
53 |
LUO M, HUANG J F, ZHU W F, et al. Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: a review [J]. Hydrobiologia, 2019, 827: 31-49.
|
54 |
SEO D C, YU K W, DELAUNE R D. Influence of salinity level on sediment denitrification in a Louisiana Estuary receiving diverted Mississippi River water[J]. Archives of Agronomy and Soil Science, 2008, 54(3): 249-257.
|
55 |
KRISTENSEN E, BOUILLON S, DITTMAR T, et al. Organic carbon dynamics in mangrove ecosystems: a review [J]. Aquatic Botany, 2008, 89(2): 201-219.
|
56 |
LUO M, ZENG C S, TONG C, et al. Iron reduction along an inundation gradient in a tidal sedge (Cyperus malaccensis) marsh: the rates, pathways, and contributions to anaerobic organic matter mineralization [J]. Estuaries and Coasts, 2016, 39: 1 679-1 693.
|
57 |
SCHOEPFER V A, BERNHARDT E S, BURGIN A J. Iron clad wetlands: soil iron-sulfur buffering determines coastal wetland response to salt water incursion[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(12): 2 209-2 219.
|
58 |
HANSON A, JOHNSON R, WIGAND C, et al. Responses of Spartina alterniflora to multiple stressors: changing precipitation patterns, accelerated sea level rise, and nutrient enrichment [J]. Estuaries and Coasts, 2016, 39: 1 376-1 385.
|
59 |
FETTROW S, VARGAS R, SEYFFERTH A L. Experimentally simulated sea level rise destabilizes carbon-mineral associations in temperate tidal marsh soil[J]. Biogeochemistry, 2023, 163(2): 103-120.
|
60 |
LEWIS D B, BROWN J A, JIMENEZ K L. Effects of flooding and warming on soil organic matter mineralization in Avicennia germinans mangrove forests and Juncus roemerianus salt marshes [J]. Estuarine, Coastal and Shelf Science, 2014, 139: 11-19.
|
61 |
MUELLER P, MOZDZER T J, LANGLEY J A, et al. Plant species determine tidal wetland methane response to sea level rise [J]. Nature Communications, 2020, 11. DOI:10.1038/s41467-020-18763-4 .
|
62 |
TONG Chuan, HUANG Jiafang, WANG Weiqi, et al. Methane dynamics of a brackish-water tidal Phragmites australis marsh in the Minjiang River Estuary[J]. Acta Geographica Sinica, 2012, 67(9): 1 165-1 180.
|
|
仝川, 黄佳芳, 王维奇, 等. 闽江口半咸水芦苇潮汐沼泽湿地甲烷动态[J]. 地理学报, 2012, 67(9): 1 165-1 180.
|
63 |
CHAMBERS L G, DAVIS S E, TROXLER T, et al. Biogeochemical effects of simulated sea level rise on carbon loss in an everglades mangrove peat soil[J]. Hydrobiologia, 2014, 726(1): 195-211.
|
64 |
CRAFT C. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes [J]. Limnology and Oceanography, 2007, 52(3): 1 220-1 230.
|
65 |
WIĘSKI K, GUO H Y, CRAFT C B, et al. Ecosystem functions of tidal fresh, brackish, and salt marshes on the Georgia coast[J]. Estuaries and Coasts, 2010, 33(1): 161-169.
|
66 |
WEBSTER J R, BENFIELD E F. Vascular plant breakdown in freshwater ecosystems [J]. Annual Review of Ecology and Systematics, 1986, 17(1): 567-594.
|
67 |
HAN Zhixian, TONG Chuan, LIU Baigui, et al. Effects of simulated sea level rise and nitrogen enrichment on net ecosystem exchange of CO2 of Cyperus malaccensis marsh in the Min River Estuary[J]. Acta Scientiae Circumstantiae, 2021, 41(6): 2 421-2 429.
|
|
韩智献, 仝川, 刘白贵, 等. 模拟海平面上升和氮负荷增加对河口感潮沼泽湿地CO2垂直交换的影响[J]. 环境科学学报, 2021, 41(6): 2 421-2 429.
|