地球科学进展 ›› 1999, Vol. 14 ›› Issue (3): 286 -291. doi: 10.11867/j.issn.1001-8166.1999.03.0286

全球变化研究 上一篇    下一篇

洞穴碳酸盐微层研究及其发展方向
王先锋,刘东生   
  1. 中国科学院地质研究所洞穴沉积古气候实验室,北京 100029
  • 收稿日期:1998-09-14 修回日期:1999-02-12 出版日期:1999-06-01
  • 通讯作者: 王先锋,男,1972年10月出生,博士研究生,主要从事第四纪古气候学的研究。
  • 基金资助:

    国家自然科学基金重大项目“中国季风区古环境演变机制及其与全球变化的动力学联系”(编号:49894170)、国家自然科学基金项目“季风气候条件下石笋微层与稳定同位素气候信息研究”(编号:49672134);中科院“九五”重点项目“洞穴碳酸盐微层年代学与气候学”(编号:KZ952-J1-014)资助。

PROGRESS IN SPELEOTHEM MICROLAYERS RESEARCH

WANG Xianfeng,LIU Dongsheng   

  1. Laboratory of Speleothem and Paleoclimatology,Institute of Geology,The Chinese Academy of Sciences,Beijing100029,China
  • Received:1998-09-14 Revised:1999-02-12 Online:1999-06-01 Published:1999-06-01

近几年,在高分辨率气候-环境变化研究中,洞穴碳酸盐微层逐渐受到人们重视。洞穴碳酸盐微层的类型较多,主要为年层。微层是在沉积条件发生高频率的周期性改变时形成的,要受到供水条件和碳酸钙浓度等多因素的控制。洞穴碳酸盐微层的稳定同位素组成、生长速率、微层结构与物质组分、微层厚度与灰度和光学特征等可以反映降水、温度、土壤成分及植被变化等信息。应用微层进行古气候重建需要测年技术、沉积机制和气候信息解译等三个方面研究的密切配合。

In recent years, the use of stalagmites and other speleothems as high resolution paleoclimatic indicators is advancing with the recognition of annual growth layers in stalagmites. Research has tended to focus on characteristics of microlayers which were formed along the growing axes of stalagmites and can be identified under microscopes. It has been supported that the microlayers almost are annual layers by TIMS-U series, AMS14C and other dating methods. Speleothem microlayers can be manifested in several manners defined by①alternating luminescent/non-uminescent laminae;②alternating fibrous porosity/density laminae;③alternations of aragonite and calcite laminae. Observed under transmitted light and fluorescent respectively, bi-optical microlayers (transmitted-light microlayers and luminescent microlayers) can be found in many Holocene stalagmites of China.
Microlayers are endured a forming process with high frequency. The growth rate of stalagmites has been demonstrated to be dependent on the calcium concentration of the drip water, the water drip rate, the temperature, the thickness of the water film on the stalagmite cap and the carbon dioxide concentration in the cave air. The presence of annual growth microlayers also has implications for the interpretation of growth rate variations. Annual microlayer is not observed in all stalagmite samples. Previous studies have quoted mixing of groundwater in the aquifer, soil water residence characteristics and depth in the aquifer as a primary cause of the lack of lamina preservation.Great potential exists for the utilization of stalagmites as high resolution proxies in the karsted regions and could potentially allow for acquisition of long annual proxy record of the continent paleoenvironment. Information of precipitation, temperature, paleosoil and vegetation can be got from this kind ideal material. In this paper, several proxies were discussed, such as oxygen and carbon isotopes, growth rate and pattern, chemical components, thickness, gray level, and optical characteristics of microlayers.
Paleoenvironmental reconstruction using speleothem samples should ideally use multiple samples. In the near future, critical projects include the calibration of the stalagmite growth lamina record with instruments and historical records and cross-calibration with other annually dated proxies such as tree-rings. Besides, three aspects of research on speleothem microlayers are needed, ie. improved analytical techniques and instrumentation that allow dating of smaller samples of speleothem calcite with higher precision, an improved understanding of speleothem forming processes, and more accurate information translation.

中图分类号: 

〔1〕Baker A, Smart P L, Edwards R L. Annual growth banding in a cave stalagmite. Nature, 1993, 364: 518~520.
〔2〕Swiss Speleological Society. Proceedings of the 12th International Congress of Speleogy. Volume 1, La Chaux-de-Fonds,Switzerland, 1997. 3~111.
〔3〕Lauritzen S. Climate Change: The Karst Record. Karst Water Institute, Inc. West Virginia, 1996.
〔4〕谭明,刘东生.洞穴碳酸钙沉积的古气候记录研究.地球科学进展, 1996, 11(4): 388~395.
〔5〕Broecker W S. Radiocarbon measurement and annual rings in cave formations. Nature, 1960, 185: 93~94.
〔6〕Baker A, Genty D, Dreybrodt W,et al. Testing theoretically predicted stalagmite growth rate with recent annually laminated samples: Implications for past stalagmite deposition.Geochim Cosmoch Acta, 1998, 62(3): 393~404.
〔7〕Shopov Y Y, Ford D C, Schwarcz H P. Luminescent microbanding in speleothems: high-resolution chronology and palaeoclimate. Geology, 1994, 22: 407~410.
〔8〕White W B, Brennan E S. Luminescence of speleothems due to fulvic acid and other activators. Proceedings of the International Conference of Speleology, 1989, (10): 212~214.
〔9〕Lauritzen S E, Ford D C, Schwarcz HP. Humic substances in a speleothem matrix. Proceedings of the 9th International Congress of Speleology, 1986. 77~79.
〔10〕Genty D, Quinif Y. Annually laminated sequences in the internal structure of some Belgian stalagmites—importance for paleoclimatology. Journal of Sedimentary Research, 1996,66: 275~288.
〔11〕Railsback L B, Brook G A, Chen J,et al. Environmental controls on the petrology of a late Holocene speleothem from Botswana with annual layers of aragonite and calcite. Journal of Sedimentary Research, 1994, 64: 147~155.
〔12〕刘东生,谭明,秦小光,等.洞穴碳酸钙微层在中国的首次发现及其对全球变化研究的意义.第四纪研究, 1997, (1): 41~51.
〔13〕秦小光,刘东生,谭明,等.北京石花洞石笋微层灰度变化特征及其气候意义-I微层显微特征.中国科学(D辑), 1998,28(1): 91~96.
〔14〕谭明,秦小光,沈凛梅,等.中国洞穴碳酸盐双重光性显微旋回及其意义.科学通报, 1999, 44(6):646~648.
〔15〕Dreybrodt W. Deposition of calcite from thin films of natural calcareous solutions and the growth of speleothems. Chemical Geology, 1980, 29: 80~105.
〔16〕Dreybrodt W. The kinetics of calcite precipitation from thin films of calcareous solutions and the growth of speleothems:revisited. Chemical Geology, 1981, 32: 237~245.
〔17〕Dreybrodt W. Processes in Karst Systems-Physics, chemistry and geology. Springer Series in Physical Environments,Vol 5.New York: Springer Berlin, 1988. 288.
〔18〕Dreybrodt W, J Lauckner, L Zhaihua,et al. The kinetics of the reaction CO2+H2O→H++HCO-3as one of the rate limiting steps for the dissolution of calcite in the system H2O-CO2-CaCO3. Geochim Cosmoch Acta, 1996, 60(18): 3 375~3 381.
〔19〕Baker A, Barnes W L, Smart P L. Speleothem luminescence intensity and spectral characteristics: Signal calibration and a record of palaeovegetation change. Chemical Geology, 1996,130: 65~76.
〔20〕Shopov Y Y, Georgiev L, Tsankov L,et al. Methods for research of luminescence of cave minerals and speleothem records of the paleoclimate and solar activity in the past. In:Geology, climate, hydrology and karst formation, IUGS,Guilin, China, 1991.
〔21〕Gascoyne M. Palaeoclimate determination from cave calcite deposits. Quaternary Science Reviews, 1992, 11: 609~632.
〔22〕Quinif Y, Genty D, Maire R. Les speleothemes: un outil performant pour les etudes paleoclimatiques. Bulletin Society Geology France, 1994, 165: 603~612.
〔23〕Baker A, Smart P L, Edwards R L. Paleoclimate implications of mass spectrometric dating of a British Flowstone.Geology, 1995: 23: 309~312.
〔24〕Baker A, Barnes W, Smart P. Variations in the discharge and organic matter content of stalagmite drip waters in Lower Cave, Bristol. Hydrological Processes, 1997, 11: 1 541~1 555.
〔25〕Schwarcz H P. Geochronology and isotopic geochemistry of speleothems. In: Fritz P, Fontes J Ch ed. Handbook of environmental isotope geochemistry. Elsevier, New York,1986. 271~303.
〔26〕汪训一.桂林洞穴沉积物的氧、碳同位素特征.中国岩溶,1985, 4(1,2): 149~153.
〔27〕陈跃,黄培华,朱洪山.北京周口店地区洞穴内第四纪石笋的同位素古温度研究.科学通报, 1986, (20): 1 576~1 577.
〔28〕朱洪山,张巽等. 44万年以来北京地区石笋古温度记录.科学通报, 1992,37(20): 1 880~1 883.
〔29〕李彬.洞穴化学沉积物中δ13C、δ18O对环境变迁的示踪意义.中国岩溶, 1994, 13(1): 17~24.
〔30〕Tan Ming, Liu Dongsheng. Stable isotope records of a stalagmite from Jiguan Cave in Henan Province, China. Scientia Geologica Sinica, 1995, Suppl (1): 281~284.
〔31〕洪阿实,彭子成,李平.洞穴石笋古温度的同位素地球化学方法.地球科学进展, 1995, 10(4): 348~352.
〔32〕袁道先.岩溶作用对环境变化的敏感性及其记录.科学通报,1995, 40(13): 1 210~1 213.
〔33〕李红春,顾德隆,Lowel D S,等.高分辨率洞穴石笋稳定同位素应用之一——京津地区500 a来的气候变化-δ18O记录.中国科学,(D辑), 1998, 28(2): 181~186.
〔34〕Xia Qikai, Zhao Jianxin, Collerson K D. U-series dating and C-O-Sr isotopic study of a stalagmite in northern Australia: palaeoclimatic implications. Chinese Science Bulletin,1998, 43 (Supplement 8): 146.
〔35〕Gonzalez L A, Metzger R, Ciochon R. Extraction of monsoonal variability from stalagmite growth banding and stable isotopic composition: an example from northern Vietnam.International Himalayan/Tibetan Plateau Paleoclimate Workshop, Katmandu, Nepal, Participant Abstracts. 1995. 21~22.
〔36〕Baker R G, Gonzalez L A, Raymo M,et al. Comparison of multiple proxy records of Holocene environments in the midwestern United States. Geology, 1998, 26(12): 1 131~1 134.
〔37〕Dorale J A, Edwards R L, Emi Ito,et al. Climate and vegetation history of the Midcontinent from 75 to 25 ka: A speleothem record from Crevice Cave, Missouri, USA. Science, 282: 1 870~1 874.
〔38〕Lauritzen S. Annually resolved stable isotope data from speleothem calcite by laser ablation/mass spectrometry. In:Lauritzen S, ed. Climate Change: The Karst Record. Karst Water Institute, Inc. West Virginia, 1996.
〔39〕Baker A, Smart P L, Edwards R L. Mass spectrometric dating of flowstones from Stump Cross Caverns and Lancaster Hole, Yorkshire: palaeoclimate implications. Journal of Quaternary Science, 1996, 11(2): 107~114.
〔40〕Baker A, Proctor C J, Barnes W L. Variations in stalagmite luminescence laminae structure at Poole' s England, AD 1910 to AD 1996: calibration of a palaeoprecipitation proxy. To be submitted,“Speleothems as Palaeoclimate Archives”, the Holocene, 1999.
〔41〕谭明,秦小光,刘东生.石笋记录的年际、十年、百年尺度气候变化.中国科学,(D辑), 1998, 28(3): 272~277.
〔42〕Tan Ming, Qin Xiaoguang, Liu Tungsheng. Climatic records from annual layers and stable isotopes of a stalagmite in Beijing over the last 2 300 years. The Journal of Chinese Geography, 1997, 7(3): 16~25.
〔43〕谭明,刘东生,钟华,等.季风条件下全新世洞穴碳酸钙稳定同位素气候信息初步研究.科学通报, 1997, 42: 1 302~1306.
〔44〕李彬,袁道先,林玉石,等.桂林盘龙洞石笋发光性特征及其古环境记录的初步研究.地质学报, 1997, 18(4): 400~406.
〔45〕Genty D,Baker A,Barnes W.Comparaison entre les lamines luminescentes et les lamines visibles annuelles de stalag-mites. Comptes Rendus de l' Academie de Sciences (Paris),1997, 325: 193~200.
〔46〕Baker A, Genty D, Smart P L. High-resolution records of soil humification and paleoclimate change from variations in speleothem luminescence excitation and emission wave-lengths. Geology, 1998, 26(10): 903~906.
〔47〕Roberts M S, Smart P L. Trace elements in Holocene speleothem. In: Lauritzen S, ed. Climate Change: The Karst Record. Karst Water Institute, Inc. West Virginia,1996.
〔48〕Roberts M S, Smart P L, Baker A. Annual trace element variations in a Holocene speleothem. Earth and Planetary Science Letters, 1998, 154: 237~246.
〔49〕王先锋,刘东生,梁汉东,等.石笋物质组成的二次离子质谱初步分析及其气候意义.第四纪研究, 1999, (1): 53~60.
〔50〕Genty D, Massault M. Bomb14C recorded in laminated speleothems: calculation of dead carbon proportion. Radio-carbon, 1997, 39(1): 33~48.
〔51〕Genty D, Vokal B, Obelic B,et al. Bomb14C time history recorded in two modern stalagmites-importance for soil organic matter dynamics and bomb14C distribution over continents. Earth and Planetary Science Letters, 1998, 160: 795~809.

[1] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[2] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[3] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[4] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
[5] 唐彦丽, 董文杰, 李立娟, 薛巍, 王斌. CPL7及其在中国地球系统模式中的应用前景[J]. 地球科学进展, 2015, 30(5): 620-625.
[6] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[7] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[8] 程承旗,李启青,沙志友,郭仕德. 城市居住单元环境质量的高分辨率遥感评价方法研究[J]. 地球科学进展, 2006, 21(1): 24-30.
[9] 翦知盡,黄维. 快速气候变化与高分辨率的深海沉积记录[J]. 地球科学进展, 2003, 18(5): 673-680.
[10] 王文远,刘嘉麒. 玛珥湖与过去全球变化研究[J]. 地球科学进展, 2000, 15(5): 604-608.
[11] 李万春,李世杰,濮培民. 高分辨率古环境指示器——湖泊纹泥研究综述[J]. 地球科学进展, 1999, 14(2): 172-176.
[12] 郑卓. 第四纪孢粉分析的时间序列与空间模型[J]. 地球科学进展, 1998, 13(3): 300-305.
[13] 徐钰麟. 大洋钻探与地层学——高分辨率磁性生物年代地层格架[J]. 地球科学进展, 1995, 10(3): 258-262.
阅读次数
全文


摘要