1 |
WATERS C N, ZALASIEWICZ J, SUMMERHAYES C, et al. Global Boundary Stratotype Section and Point (GSSP) for the anthropocene series: where and how to look for potential candidates [J]. Earth-Science Reviews, 2018, 178(5):379-429.
|
2 |
LI W, LI X, MEI X, et al. A review of current and emerging approaches for Quaternary marine sediment dating [J]. Science of the Total Environment, 2021, 780. DOI:10.1016/j.scitotenv.2021.146522 .
|
3 |
BENOIT G, ROZAN T F. 210Pb and 137Cs dating methods in lakes: a retrospective study [J]. Journal of Paleolimnology, 2001, 25(4): 455-465.
|
4 |
DREXLER J Z, FULLER C C, ARCHFIELD S. The approaching obsolescence of 137Cs dating of wetland soils in North America [J]. Quaternary Science Reviews, 2018, 199: 83-96.
|
5 |
ANDERSEN T J. Some practical considerations regarding the application of 210Pb and 137Cs dating to estuarine sediments[M]// Applications of paleoenvironmental techniques in estuarine studies. Amsterdam:Springer,2017: 121-140.
|
6 |
CLEMENZA M, CUCCIATI G, MAGGI V, et al. Radioactive fallouts as temporal makers for glacier ice cores dating [J]. The European Physical Journal Plus, 2012, 127(6): 1-8.
|
7 |
YANG Xu, PAN Shaoming, XU Yihong, et al. Application of Pu isotopic ratio in sediment dating[J]. Marine Science Bulletin, 2013, 32(2): 227-234.
|
|
杨旭,潘少明,徐仪红,等. Pu同位素比值在沉积物测年中的应用[J].海洋通报,2013, 32(2): 227-234.
|
8 |
GILLETTE D A, BLIFFORD I H, FENSTER C R. Measurements of aerosol size distributions and vertical fluxes of aerosols on land subject to wind erosion [J]. Journal of Applied Meteorology and Climatology, 1972, 11(6): 977-987.
|
9 |
WOLFE A P, MILLER G H, OLSEN C A, et al. Geochronology of high latitude lake sediments [M]. Netherlands:Springer, 2004: 19-52.
|
10 |
SWARZENSKI P W. 210Pb dating[M]// Encyclopedia of scientific dating methods. Amsterdam:Springer,2014:1-11.
|
11 |
SUN X, FAN D, TIAN Y, et al. Normalization of excess 210Pb with grain size in the sediment cores from the Yangtze River Estuary and adjacent areas: implications for sedimentary processes [J]. The Holocene, 2018, 28(4): 545-557.
|
12 |
BASKARAN M, SWARZENSKI P W. Seasonal variations on the residence times and partitioning of short-lived radionuclides (234Th, 7Be and 210Pb) and depositional fluxes of 7Be and 210Pb in Tampa Bay, Florida [J]. Marine Chemistry, 2007, 104(1): 27-42.
|
13 |
GARCIA-ORELLANA J, GRàCIA E, VIZCAINO A, et al. Identifying instrumental and historical earthquake records in the SW Iberian margin using 210Pb turbidite chronology [J]. Geophysical Research Letters, 2006, 33(24). DOI:10.1029/2006GL028417 .
|
14 |
FONTANA L, FERREIRA P A, BENASSI R F, et al. Sedimentation rate inferred from 210Pb and 137Cs dating of three sediment cores at Itaipu reservoir (Paraná State, Brazil) the world’s second largest hydroelectricity producer [J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(9): 3 571-3 589.
|
15 |
TURNER L A, DELORME L. 210Pb dating of lacustrine sediments from Alberta, Saskatchewan and Manitoba[Z]. Burlington, Ontario: National Water Research Institute Contribution, 1994: 94-130.
|
16 |
HE Q, WALLING D. Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments [J]. Journal of Environmental Radioactivity, 1996, 30(2): 117-137.
|
17 |
ROBBINS J A. Geochemical and geophysical applications of radioactive lead[M]// Biogeochemistry of lead in the environment. Amsterdam: Springer, 1978: 285-393.
|
18 |
GOLDBERG E, KOIDE M. Rates of sediment accumulation in the Indian Ocean [J]. Earth Science and Meteoritics, 1963, 1:90-102.
|
19 |
APPLEBY P G, OLDFIELD F. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment [J]. CATENA, 1978, 5(1): 1-8.
|
20 |
ROBBINS J A, EDGINGTON D N. Determination of recent sedimentation rates in Lake Michigan using 210Pb and 137Cs [J]. Geochimica et Cosmochimica Acta, 1975, 39(3): 285-304.
|
21 |
KRISHNASWAMI S, BENNINGER L K, ALLER R C, et al. Atmospherically-derived radionuclides as tracers of sediment mixing and accumulation in near-shore marine and lake sediments: evidence from 7Be, 210Pb, and 239,240Pu[J]. Earth and Planetary Science Letters, 1980, 47(3): 307-318.
|
22 |
LIN Ruifen, MIN Yushun, WEI Keqin, et al. 210Pb dating of sediment cores from the Pearl River Estuary and its geochemical significance [J]. Geochemistry, 1998(5): 401-411.
|
|
林瑞芬,闵育顺,卫克勤, 等. 珠江口沉积柱样210Pb法年龄测定结果及其环境地球化学意义[J].地球化学,1998(5): 401-411.
|
23 |
LIU Zhiyong, PAN Shaoming, CHENG Gongbi, et al. 210Pb distribution characteristics and environmental significance of sediments in the Pearl River Estuary [J]. Acta Sedimentologica Sinica, 2010, 28(1): 166-175.
|
|
刘志勇,潘少明,程功弼, 等.珠江口沉积物210Pb分布特征及环境意义[J].沉积学报,2010,28(1): 166-175.
|
24 |
LI F Y. Modern sedimentation rates and sedimentation feature in the huanghe river estuary based on 210Pb technique [J]. Chinese Journal of Oceanology and Limnology, 1993, 11(4): 333-342.
|
25 |
WU X, BI N, KANAI Y, et al. Sedimentary records off the modern Huanghe (Yellow River) delta and their response to deltaic river channel shifts over the last 200 years [J]. Journal of Asian Earth Sciences, 2015, 108(15): 68-80.
|
26 |
WANG F, NIAN X, WANG J, et al. Multiple dating approaches applied to the recent sediments in the Yangtze River (Changjiang) subaqueous delta [J]. Holocene, 2018, 28(6): 858-866.
|
27 |
CHANTON J P, MARTENS C S, KIPPHUT G W. Lead-210 sediment geochronology in a changing coastal environment [J]. Geochimica et Cosmochimica Acta, 1983, 47(10): 1 791-1 804.
|
28 |
PUTYRSKAYA V, KLEMT E, RÖLLIN S, et al. Dating of recent sediments from Lago Maggiore and Lago di Lugano (Switzerland/Italy) using 137Cs and 210Pb [J]. Journal of Environmental Radioactivity, 2020, 212. DOI:10.1016/j.jenvrad.2019.106135 .
|
29 |
CHEN X, MCGOWAN S, JI J, et al. Paleolimnological records for tracking dam-induced changes in the composition and supply of sediment to middle Yangtze floodplain lakes [J]. Catena, 2022, 219. DOI:10.1016/j.catena.2022.106643 .
|
30 |
WANG X, GAO N, LIANG Y, et al. Chronological deposition record of trace metals in sediment cores from Chaohu Lake, Anhui Province, China [J]. Environmental Monitoring and Assessment, 2022, 194(11): 843-843.
|
31 |
TIAN J, CHEN Y, ZHAO Z, et al. Responses of burial characteristics of n-alkanes and polycyclic aromatic hydrocarbons in Poyang Lake, China to changes in organic matter inputs from 1886 to 2019 [J]. Research Square, 2022. DOI:10.21203/rs.3.rs-2055640/v1 .
|
32 |
HAN Y M, AN Z S, LEI D W, et al. The Sihailongwan Maar Lake, northeastern China as a candidate global boundary stratotype section and point for the Anthropocene series [J]. The Anthropocene Review, 2023, 10(1): 177-200.
|
33 |
WATERS C N, TURNER S D, ZALASIEWICZ J, et al. Candidate sites and other reference sections for the global boundary stratotype section and point of the Anthropocene series[J]. The Anthropocene Review, 2023, 10(1): 3-24.
|
34 |
WATERS C N, TURNER S D. Defining the onset of the anthropocene [J]. Science, 2022, 378:706-708.
|
35 |
MESZAR M, WAGREICH M, LAPPÉ K, et al. Anthropogenic sediments and the Anthropocene of Vienna[C]// IGCP 732 KICK-OFF MEETING, language of the Anthropocene. University of Vienna, 2021.
|
36 |
CHU Guoqiang, GU Zhaoyan, XU Bing, et al. Sediment dating of Lake Maar in Sihailongwan, Northeast China using varve chronology, 137Cs and 210Pb dating methods [J]. Quaternary Sciences, 2005(2): 202-207.
|
|
储国强,顾兆炎,许冰, 等.东北四海龙湾玛珥湖沉积物纹层计年与137Cs、210Pb测年[J].第四纪研究,2005(2): 202-207.
|
37 |
HE Huaiyu, LIU Jiaqi, MA Zhibang. Determination of sedimentation rates in Lake Maar, Northeast China using 210Pb dating method [J]. Quaternary Sciences, 2000, 20(6): 571.
|
|
贺怀宇, 刘嘉麒, 马志邦. 210Pb年代学方法测定东北玛珥湖沉积速率 [J]. 第四纪研究, 2000, 20(6): 571.
|
38 |
XIA Weilan, XUE Bin. Determination of sedimentation rates in Xiaolongwan, Jilin using 210Pb and 137Cs dating methods [J]. Quaternary Sciences, 2004, 24(1): 124-125.
|
|
夏威岚, 薛滨. 吉林小龙湾沉积速率的210Pb和137Cs年代学方法测定 [J]. 第四纪研究, 2004, 24(1): 124-125.
|
39 |
ZHANG M, SUN X, HU Y, et al. The influence of anthropogenic activities on heavy metal pollution of estuary sediment from the coastal East China Sea in the past nearly 50 years [J]. Marine Pollution Bulletin, 2022, 181. DOI:10.1016/j.marpolbul.2022.113872 .
|
40 |
WANG Fu, YANG Biao, TIAN Lizhu, et al. Selection of CIC and CRS models for 210Pbex dating in the open tidal flat area of Chongming Island [J]. Earth Science, 2016, 41(6): 971-981.
|
|
王福,杨彪,田立柱,等.开放潮坪地区210Pbex测年CIC和CRS计算模式的选择[J].地球科学,2016,41(6):971-981.
|
41 |
GUO J, COSTA O S, WANG Y, et al. Accumulation rates and chronologies from depth profiles of 210Pbex and 137Cs in sediments of northern Beibu Gulf, South China sea [J]. Journal of Environmental Radioactivity, 2020, 213. DOI:10.1016/j.jenvrad.2019.106136 .
|
42 |
KUWAE M, TSUGEKI N K, AMANO A, et al. Human-induced marine degradation in anoxic coastal sediments of Beppu Bay, Japan, as an Anthropocene marker in East Asia [J]. Anthropocene, 2022, 37. DOI:10.1016/j.ancene.2021.100318 .
|
43 |
KUWAE M, YAMAMOTO M, IKEHARA K, et al. Stratigraphy and wiggle-matching-based age-depth model of late Holocene marine sediments in Beppu Bay, southwest Japan [J]. Journal of Asian Earth Sciences, 2013, 69:133-148.
|
44 |
ARNAUD F, LIGNIER V, REVEL M, et al. Flood and earthquake disturbance of 210Pb geochronology (Lake Anterne, NW Alps)[J]. Terra Nova, 2002, 14(4): 225-232.
|
45 |
DEZILEAU L, LEHU R, LALLEMAND S, et al. Historical reconstruction of submarine earthquakes using 210Pb, 137Cs, and 241Am turbidite chronology and radiocarbon reservoir age estimation off East Taiwan[J]. Radiocarbon, 2016, 58(1): 25-36.
|
46 |
RUBIN K H, MACDOUGALL J D, PERFIT M R. 210Po-210Pb dating of recent volcanic eruptions on the sea floor[J]. Nature, 1994, 368(6 474): 841-844.
|
47 |
SATO J, DOI T, SEGAWA T, et al. Seasonal variation of atmospheric concentrations of 210Pb and 7Be at Tsukuba, Japan, with a possible observation of 210Pb originating from the 1991 eruption of Pinatubo volcano, Philippines[J]. Geochemical Journal, 1994, 28(2): 123-129.
|
48 |
MIHAI S, MATHER J. Role of mineralogical structure of sediments in accumulation of radionuclides and trace elements[J]. Journal of Radioanalytical and Nuclear Chemistry, 2003, 256(3): 425-430.
|
49 |
MCCUBBIN D, LEONARD K S, MAHER B A, et al. Association of 210Po (210Pb), 239+240Pu and 241Am with different mineral fractions of a beach sand at Seascale, Cumbria, UK[J]. Science of the Total Environment, 2000, 254(1): 1-15.
|
50 |
YANG W, GUO L, CHUANG C Y, et al. Adsorption characteristics of 210Pb, 210Po and 7Be onto micro-particle surfaces and the effects of macromolecular organic compounds[J]. Geochimica et Cosmochimica Acta, 2013, 107: 47-64.
|
51 |
WANG J, ZHONG Q, BASKARAN M, et al. Investigations on the time-series partitioning of 210Pb, 207Bi and 210Po between marine particles and solution under different salinity and pH conditions[J]. Chemical Geology, 2019, 528. DOI:10.1016/j.ancene.2021.100318 .
|
52 |
SUN W, ZHOU Z, YIN X, et al. Response of sedimentation rate to environmental evolution in Da River reservoir in Southwest China [J]. Environmental Science and Pollution Research, 2022, 29(51): 76 739-76 751.
|
53 |
HUH C A, SU C C. Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239,240Pu[J]. Marine Geology, 1999, 160(1/2): 183-196.
|
54 |
SHI Hongqi, CHEN Farong. Distribution of 210Pb and 137Cs in surface sediments of Chukotka Sea and Beiluhe Estuary [J]. Advances in Marine Science, 2021, 39(3): 403-414.
|
|
石红旗, 陈发荣. 楚科奇海、白令海表层沉积物210Pb和137Cs分布 [J]. 海洋科学进展, 2021, 39(3): 403-414.
|
55 |
CARVALHO F P. 210Pb and 210Po in sediments and suspended matter in the Tagus estuary, Portugal: local enhancement of natural levels by wastes from phosphate ore processing industry [J]. Science of the Total Environment, 1995, 159(2): 201-214.
|
56 |
KHATER A E, BAKR W F. Technologically enhanced 210Pb and 210Po in iron and steel industry [J]. Journal of environmental radioactivity, 2011, 102(5): 527-530.
|
57 |
GAO J H, JIA J, SHENG H, et al. Variations in the transport, distribution, and budget of 210Pb in sediment over the estuarine and inner shelf areas of the East China Sea due to Changjiang catchment changes[J]. Journal of Geophysical Research: Earth Surface, 2017, 122(1): 235-247.
|