地球科学进展 ›› 2024, Vol. 39 ›› Issue (1): 71 -81. doi: 10.11867/j.issn.1001-8166.2023.082

全新世:人类世的历史背景 上一篇    下一篇

210Pb同位素在人类世沉积物定年中的应用
吴亚妮 1( ), 陈旸 1 , 2( ), 王野 1 , 2, 莫朋军 1 , 2, 高伟斌 1 , 2   
  1. 1.表生地球化学教育部重点实验室, 南京大学 地球科学与工程学院, 江苏 南京 210023
    2.关键地球物质循环前沿科学中心, 江苏 南京 210023
  • 收稿日期:2023-09-18 修回日期:2023-11-24 出版日期:2024-01-10
  • 通讯作者: 陈旸 E-mail:929083670@qq.com;chenyang@nju.edu.cn
  • 基金资助:
    国家自然科学基金重大项目(41991252)

Application of 210Pb Isotope in Dating Anthropocene Sediments

Yani WU 1( ), Yang CHEN 1 , 2( ), Ye WANG 1 , 2, Pengjun MO 1 , 2, Weibin GAO 1 , 2   

  1. 1.Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
    2.Frontier Science Center for Critical Earth Material Cycle, Nanjing 210023, China
  • Received:2023-09-18 Revised:2023-11-24 Online:2024-01-10 Published:2024-01-26
  • Contact: Yang CHEN E-mail:929083670@qq.com;chenyang@nju.edu.cn
  • About author:WU Yani, Master student, research area includes geochemistry. E-mail: 929083670@qq.com
  • Supported by:
    the National Natural Science Foundation of China(41991252)

人类世作为一个新近被确定的地质年代单位,对其开展相关研究要求较高的时间分辨率,因此需要寻找合适的定年方法。目前主要的定年方法有137Cs、210Pb和239,240Pu定年,相比其他两种方法,210Pb定年适用范围广,在环境中的地球化学行为和分布相对稳定,测年可靠性相对更高,可用于人类世河口、湖泊和海洋等多种沉积环境的定年和沉积速率的估算。总结了210Pb定年方法及其定年原理与模式,分别阐述了210Pb定年法在河口、湖泊和海洋等不同沉积环境中建立人类世年代标尺与沉积速率获取时的应用,并讨论了其影响因素,指出了210Pb定年法的误差来源,如沉积速率的变化等,需要深入研究这些误差来源。未来研究可以考虑将210Pb定年与其他定年方法相结合,从而得到更全面和准确的人类世年代框架。总之,210Pb定年法在人类世的研究中将继续发挥重要作用,帮助我们更好地了解人类活动与地球环境演变的关系。

Research on the Anthropocene—a newly determined geological chronological unit—requires higher temporal resolution, which necessitates the identification of appropriate dating methods. Currently, the main dating methods involve 137Cs, 210Pb, and 239, 240Pu isotopes. Compared with 137Cs and 239, 240Pu dating, 210Pb dating has a wider application range, relatively stable geochemical behavior and distribution in the environment, and relatively high dating reliability. It can be used to estimate sedimentation rates in Anthropocene estuaries, lakes, oceans, and other sedimentary environments. This paper summarizes the 210Pb dating method, dating principle, and model, and expounds the application of 210Pb dating for the establishment of the Anthropocene age scale and acquisition of sedimentary rates in different sedimentary environments, such as estuaries, lakes, and oceans. It also discusses its influencing factors, and indicates that there are certain error sources in the 210Pb dating method, such as changes in sedimentary rates, which require further study. Future research should combine 210Pb dating with other dating methods to obtain a more comprehensive and accurate Anthropocene chronological framework. 210Pb will continue to play an important role in the study of the Anthropocene, helping us to better understand the history and future of Earth.

中图分类号: 

图1 河口沉积剖面 210Pbex 与深度的关系
(a)珠江三角洲core 7的 210Pb ex放射性比活度与深度的关系 22 ;(b)渤海湾core 6的 210Pb ex放射性比活度与深度的关系 23 ;(c)渤海湾core 26的 210Pb ex137Cs放射性比活度与深度的关系 25 ;(d)长江三角洲的 210Pb ex137Cs放射性比活度与深度的关系 26
Fig. 1 The relationship between 210Pbex and depth of estuary sedimentary profile
(a) The relationship between the specific activity of 210Pb ex radioactivity and depth of core 7 in the the Pearl River Delta 22 ; (b) The relationship between 210Pb ex specific activity and depth of core 6 in Bohai Bay 23 ; (c) The relationship between the specific activity and depth of 210Pb ex and 137Cs in core 26 of Bohai Bay 25 ; (d) The relationship between the specific activity and depth of 210Pb ex and 137Cs in the Yangtze River Delta 26
图2 湖泊沉积剖面的 210Pbex137Cs与深度的关系
(a)巢湖的 210Pb ex137Cs放射性比活度与深度关系 30 ; (b)鄱阳湖 210Pb ex的岩芯剖面 31 ;(c)鄱阳湖 210Pb ex沉积速率剖面 31 ;(d)四海龙湾玛珥湖的 226Ra和 210Pb、 210Pb ex137Cs放射性比活度与深度关系 36
Fig. 2 The relationship between 210Pbex and 137Cs of lake sedimentary profile and depth
(a) The relationship between the specific activity and depth of 210Pb ex and 137Cs in Chaohu Lake 30 ; (b) and (c) Represent the core profile and sedimentation rate profile of 210Pb ex in Poyang Lake 31 ; (d) The relationship between the specific activity and depth of 226Ra, 210Pb, 210Pb ex, and 137Cs in the Sihailongwan Maar Lake 36
图3 海洋沉积环境剖面的 210Pbex 与深度关系
(a)东海core ZA的 210Pb ex随深度关系 39 ;(b)渤海湾的 210Pb ex137Cs放射性比活度与深度关系 40 ;(c)南海北部湾的 210Pb ex137Cs放射性比活度与深度关系 41 ;(d)日本别府湾的 210Pb ex137Cs放射性比活度与深度关系 43
Fig. 3 The relationship between 210Pbex and depth of marine sedimentary profile
(a) The 210Pb ex depth dependent relationship of the East China Sea core ZA 39 ; (b) The relationship between the specific activity and depth of 210Pb ex and 137Cs in the Bohai Bay 40 ; (c) The specific activity and depth relationship of 210Pb ex and 137Cs in the Beibu Gulf of the South China Sea 41 ; (d) The specific activity and depth relationship of 210Pb ex and 137Cs in the Bay of Beppu, Japan 43
1 WATERS C N, ZALASIEWICZ J, SUMMERHAYES C, et al. Global Boundary Stratotype Section and Point (GSSP) for the anthropocene series: where and how to look for potential candidates [J]. Earth-Science Reviews, 2018, 178(5):379-429.
2 LI W, LI X, MEI X, et al. A review of current and emerging approaches for Quaternary marine sediment dating [J]. Science of the Total Environment, 2021, 780. DOI:10.1016/j.scitotenv.2021.146522 .
3 BENOIT G, ROZAN T F. 210Pb and 137Cs dating methods in lakes: a retrospective study [J]. Journal of Paleolimnology, 2001, 25(4): 455-465.
4 DREXLER J Z, FULLER C C, ARCHFIELD S. The approaching obsolescence of 137Cs dating of wetland soils in North America [J]. Quaternary Science Reviews, 2018, 199: 83-96.
5 ANDERSEN T J. Some practical considerations regarding the application of 210Pb and 137Cs dating to estuarine sediments[M]// Applications of paleoenvironmental techniques in estuarine studies. Amsterdam:Springer,2017: 121-140.
6 CLEMENZA M, CUCCIATI G, MAGGI V, et al. Radioactive fallouts as temporal makers for glacier ice cores dating [J]. The European Physical Journal Plus, 2012, 127(6): 1-8.
7 YANG Xu, PAN Shaoming, XU Yihong, et al. Application of Pu isotopic ratio in sediment dating[J]. Marine Science Bulletin, 2013, 32(2): 227-234.
杨旭,潘少明,徐仪红,等. Pu同位素比值在沉积物测年中的应用[J].海洋通报,2013, 32(2): 227-234.
8 GILLETTE D A, BLIFFORD I H, FENSTER C R. Measurements of aerosol size distributions and vertical fluxes of aerosols on land subject to wind erosion [J]. Journal of Applied Meteorology and Climatology, 1972, 11(6): 977-987.
9 WOLFE A P, MILLER G H, OLSEN C A, et al. Geochronology of high latitude lake sediments [M]. Netherlands:Springer, 2004: 19-52.
10 SWARZENSKI P W. 210Pb dating[M]// Encyclopedia of scientific dating methods. Amsterdam:Springer,2014:1-11.
11 SUN X, FAN D, TIAN Y, et al. Normalization of excess 210Pb with grain size in the sediment cores from the Yangtze River Estuary and adjacent areas: implications for sedimentary processes [J]. The Holocene, 2018, 28(4): 545-557.
12 BASKARAN M, SWARZENSKI P W. Seasonal variations on the residence times and partitioning of short-lived radionuclides (234Th, 7Be and 210Pb) and depositional fluxes of 7Be and 210Pb in Tampa Bay, Florida [J]. Marine Chemistry, 2007, 104(1): 27-42.
13 GARCIA-ORELLANA J, GRàCIA E, VIZCAINO A, et al. Identifying instrumental and historical earthquake records in the SW Iberian margin using 210Pb turbidite chronology [J]. Geophysical Research Letters, 2006, 33(24). DOI:10.1029/2006GL028417 .
14 FONTANA L, FERREIRA P A, BENASSI R F, et al. Sedimentation rate inferred from 210Pb and 137Cs dating of three sediment cores at Itaipu reservoir (Paraná State, Brazil) the world’s second largest hydroelectricity producer [J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(9): 3 571-3 589.
15 TURNER L A, DELORME L. 210Pb dating of lacustrine sediments from Alberta, Saskatchewan and Manitoba[Z]. Burlington, Ontario: National Water Research Institute Contribution, 1994: 94-130.
16 HE Q, WALLING D. Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments [J]. Journal of Environmental Radioactivity, 1996, 30(2): 117-137.
17 ROBBINS J A. Geochemical and geophysical applications of radioactive lead[M]// Biogeochemistry of lead in the environment. Amsterdam: Springer, 1978: 285-393.
18 GOLDBERG E, KOIDE M. Rates of sediment accumulation in the Indian Ocean [J]. Earth Science and Meteoritics, 1963, 1:90-102.
19 APPLEBY P G, OLDFIELD F. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment [J]. CATENA, 1978, 5(1): 1-8.
20 ROBBINS J A, EDGINGTON D N. Determination of recent sedimentation rates in Lake Michigan using 210Pb and 137Cs [J]. Geochimica et Cosmochimica Acta, 1975, 39(3): 285-304.
21 KRISHNASWAMI S, BENNINGER L K, ALLER R C, et al. Atmospherically-derived radionuclides as tracers of sediment mixing and accumulation in near-shore marine and lake sediments: evidence from 7Be, 210Pb, and 239,240Pu[J]. Earth and Planetary Science Letters, 1980, 47(3): 307-318.
22 LIN Ruifen, MIN Yushun, WEI Keqin, et al. 210Pb dating of sediment cores from the Pearl River Estuary and its geochemical significance [J]. Geochemistry, 1998(5): 401-411.
林瑞芬,闵育顺,卫克勤, 等. 珠江口沉积柱样210Pb法年龄测定结果及其环境地球化学意义[J].地球化学,1998(5): 401-411.
23 LIU Zhiyong, PAN Shaoming, CHENG Gongbi, et al. 210Pb distribution characteristics and environmental significance of sediments in the Pearl River Estuary [J]. Acta Sedimentologica Sinica, 2010, 28(1): 166-175.
刘志勇,潘少明,程功弼, 等.珠江口沉积物210Pb分布特征及环境意义[J].沉积学报,2010,28(1): 166-175.
24 LI F Y. Modern sedimentation rates and sedimentation feature in the huanghe river estuary based on 210Pb technique [J]. Chinese Journal of Oceanology and Limnology, 1993, 11(4): 333-342.
25 WU X, BI N, KANAI Y, et al. Sedimentary records off the modern Huanghe (Yellow River) delta and their response to deltaic river channel shifts over the last 200 years [J]. Journal of Asian Earth Sciences, 2015, 108(15): 68-80.
26 WANG F, NIAN X, WANG J, et al. Multiple dating approaches applied to the recent sediments in the Yangtze River (Changjiang) subaqueous delta [J]. Holocene, 2018, 28(6): 858-866.
27 CHANTON J P, MARTENS C S, KIPPHUT G W. Lead-210 sediment geochronology in a changing coastal environment [J]. Geochimica et Cosmochimica Acta, 1983, 47(10): 1 791-1 804.
28 PUTYRSKAYA V, KLEMT E, RÖLLIN S, et al. Dating of recent sediments from Lago Maggiore and Lago di Lugano (Switzerland/Italy) using 137Cs and 210Pb [J]. Journal of Environmental Radioactivity, 2020, 212. DOI:10.1016/j.jenvrad.2019.106135 .
29 CHEN X, MCGOWAN S, JI J, et al. Paleolimnological records for tracking dam-induced changes in the composition and supply of sediment to middle Yangtze floodplain lakes [J]. Catena, 2022, 219. DOI:10.1016/j.catena.2022.106643 .
30 WANG X, GAO N, LIANG Y, et al. Chronological deposition record of trace metals in sediment cores from Chaohu Lake, Anhui Province, China [J]. Environmental Monitoring and Assessment, 2022, 194(11): 843-843.
31 TIAN J, CHEN Y, ZHAO Z, et al. Responses of burial characteristics of n-alkanes and polycyclic aromatic hydrocarbons in Poyang Lake, China to changes in organic matter inputs from 1886 to 2019 [J]. Research Square, 2022. DOI:10.21203/rs.3.rs-2055640/v1 .
32 HAN Y M, AN Z S, LEI D W, et al. The Sihailongwan Maar Lake, northeastern China as a candidate global boundary stratotype section and point for the Anthropocene series [J]. The Anthropocene Review, 2023, 10(1): 177-200.
33 WATERS C N, TURNER S D, ZALASIEWICZ J, et al. Candidate sites and other reference sections for the global boundary stratotype section and point of the Anthropocene series[J]. The Anthropocene Review, 2023, 10(1): 3-24.
34 WATERS C N, TURNER S D. Defining the onset of the anthropocene [J]. Science, 2022, 378:706-708.
35 MESZAR M, WAGREICH M, LAPPÉ K, et al. Anthropogenic sediments and the Anthropocene of Vienna[C]// IGCP 732 KICK-OFF MEETING, language of the Anthropocene. University of Vienna, 2021.
36 CHU Guoqiang, GU Zhaoyan, XU Bing, et al. Sediment dating of Lake Maar in Sihailongwan, Northeast China using varve chronology, 137Cs and 210Pb dating methods [J]. Quaternary Sciences, 2005(2): 202-207.
储国强,顾兆炎,许冰, 等.东北四海龙湾玛珥湖沉积物纹层计年与137Cs、210Pb测年[J].第四纪研究,2005(2): 202-207.
37 HE Huaiyu, LIU Jiaqi, MA Zhibang. Determination of sedimentation rates in Lake Maar, Northeast China using 210Pb dating method [J]. Quaternary Sciences, 2000, 20(6): 571.
贺怀宇, 刘嘉麒, 马志邦. 210Pb年代学方法测定东北玛珥湖沉积速率 [J]. 第四纪研究, 2000, 20(6): 571.
38 XIA Weilan, XUE Bin. Determination of sedimentation rates in Xiaolongwan, Jilin using 210Pb and 137Cs dating methods [J]. Quaternary Sciences, 2004, 24(1): 124-125.
夏威岚, 薛滨. 吉林小龙湾沉积速率的210Pb和137Cs年代学方法测定 [J]. 第四纪研究, 2004, 24(1): 124-125.
39 ZHANG M, SUN X, HU Y, et al. The influence of anthropogenic activities on heavy metal pollution of estuary sediment from the coastal East China Sea in the past nearly 50 years [J]. Marine Pollution Bulletin, 2022, 181. DOI:10.1016/j.marpolbul.2022.113872 .
40 WANG Fu, YANG Biao, TIAN Lizhu, et al. Selection of CIC and CRS models for 210Pbex dating in the open tidal flat area of Chongming Island [J]. Earth Science, 2016, 41(6): 971-981.
王福,杨彪,田立柱,等.开放潮坪地区210Pbex测年CIC和CRS计算模式的选择[J].地球科学,2016,41(6):971-981.
41 GUO J, COSTA O S, WANG Y, et al. Accumulation rates and chronologies from depth profiles of 210Pbex and 137Cs in sediments of northern Beibu Gulf, South China sea [J]. Journal of Environmental Radioactivity, 2020, 213. DOI:10.1016/j.jenvrad.2019.106136 .
42 KUWAE M, TSUGEKI N K, AMANO A, et al. Human-induced marine degradation in anoxic coastal sediments of Beppu Bay, Japan, as an Anthropocene marker in East Asia [J]. Anthropocene, 2022, 37. DOI:10.1016/j.ancene.2021.100318 .
43 KUWAE M, YAMAMOTO M, IKEHARA K, et al. Stratigraphy and wiggle-matching-based age-depth model of late Holocene marine sediments in Beppu Bay, southwest Japan [J]. Journal of Asian Earth Sciences, 2013, 69:133-148.
44 ARNAUD F, LIGNIER V, REVEL M, et al. Flood and earthquake disturbance of 210Pb geochronology (Lake Anterne, NW Alps)[J]. Terra Nova, 2002, 14(4): 225-232.
45 DEZILEAU L, LEHU R, LALLEMAND S, et al. Historical reconstruction of submarine earthquakes using 210Pb, 137Cs, and 241Am turbidite chronology and radiocarbon reservoir age estimation off East Taiwan[J]. Radiocarbon, 2016, 58(1): 25-36.
46 RUBIN K H, MACDOUGALL J D, PERFIT M R. 210Po-210Pb dating of recent volcanic eruptions on the sea floor[J]. Nature, 1994, 368(6 474): 841-844.
47 SATO J, DOI T, SEGAWA T, et al. Seasonal variation of atmospheric concentrations of 210Pb and 7Be at Tsukuba, Japan, with a possible observation of 210Pb originating from the 1991 eruption of Pinatubo volcano, Philippines[J]. Geochemical Journal, 1994, 28(2): 123-129.
48 MIHAI S, MATHER J. Role of mineralogical structure of sediments in accumulation of radionuclides and trace elements[J]. Journal of Radioanalytical and Nuclear Chemistry, 2003, 256(3): 425-430.
49 MCCUBBIN D, LEONARD K S, MAHER B A, et al. Association of 210Po (210Pb), 239+240Pu and 241Am with different mineral fractions of a beach sand at Seascale, Cumbria, UK[J]. Science of the Total Environment, 2000, 254(1): 1-15.
50 YANG W, GUO L, CHUANG C Y, et al. Adsorption characteristics of 210Pb, 210Po and 7Be onto micro-particle surfaces and the effects of macromolecular organic compounds[J]. Geochimica et Cosmochimica Acta, 2013, 107: 47-64.
51 WANG J, ZHONG Q, BASKARAN M, et al. Investigations on the time-series partitioning of 210Pb, 207Bi and 210Po between marine particles and solution under different salinity and pH conditions[J]. Chemical Geology, 2019, 528. DOI:10.1016/j.ancene.2021.100318 .
52 SUN W, ZHOU Z, YIN X, et al. Response of sedimentation rate to environmental evolution in Da River reservoir in Southwest China [J]. Environmental Science and Pollution Research, 2022, 29(51): 76 739-76 751.
53 HUH C A, SU C C. Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239,240Pu[J]. Marine Geology, 1999, 160(1/2): 183-196.
54 SHI Hongqi, CHEN Farong. Distribution of 210Pb and 137Cs in surface sediments of Chukotka Sea and Beiluhe Estuary [J]. Advances in Marine Science, 2021, 39(3): 403-414.
石红旗, 陈发荣. 楚科奇海、白令海表层沉积物210Pb和137Cs分布 [J]. 海洋科学进展, 2021, 39(3): 403-414.
55 CARVALHO F P. 210Pb and 210Po in sediments and suspended matter in the Tagus estuary, Portugal: local enhancement of natural levels by wastes from phosphate ore processing industry [J]. Science of the Total Environment, 1995, 159(2): 201-214.
56 KHATER A E, BAKR W F. Technologically enhanced 210Pb and 210Po in iron and steel industry [J]. Journal of environmental radioactivity, 2011, 102(5): 527-530.
57 GAO J H, JIA J, SHENG H, et al. Variations in the transport, distribution, and budget of 210Pb in sediment over the estuarine and inner shelf areas of the East China Sea due to Changjiang catchment changes[J]. Journal of Geophysical Research: Earth Surface, 2017, 122(1): 235-247.
[1] 周卫健, 赵雪, 陈宁. 中国人类世科学研究新进展[J]. 地球科学进展, 2024, 39(1): 1-11.
[2] 江鸿, 韩永明, 刘卫国, 曹蕴宁, 胡婧, 樊会敏, 刘博. 四海龙湾沉积物多指标反映人类活动从 1850年开始显著增强[J]. 地球科学进展, 2024, 39(1): 82-95.
[3] 张立杨. 硅质岩的成因与沉积环境及其在重建洋板块地层中的应用[J]. 地球科学进展, 2023, 38(5): 453-469.
[4] 王晓宁, 岳大鹏, 赵景波. 榆林西南部下白垩统砂岩粒度组成与成因分析[J]. 地球科学进展, 2022, 37(10): 1088-1100.
[5] 孙华山,杨辉. 远喷口型 SEDEX铅锌矿床最新研究进展及发展趋势[J]. 地球科学进展, 2021, 36(7): 663-670.
[6] 关秀宇, 郭杰, 陈海燕, 修迪, 张运强. 冀北承德盆地奥陶纪冶里组叠层石的发现及沉积环境[J]. 地球科学进展, 2018, 33(5): 545-553.
[7] 沈传波, 刘泽阳, 肖凡, 胡迪, 杜嘉祎. 石油系统Re-Os同位素体系封闭性研究进展[J]. 地球科学进展, 2015, 30(2): 187-195.
[8] 秦松, 孙传敏, 杨继友, 张伟, 尼玛次仁. 冈底斯东段色日绒地区冈瓦纳相冰海杂砾岩特征及其意义[J]. 地球科学进展, 2015, 30(11): 1239-1249.
[9] 马会珍, 王雪华. 黔东北志留纪晚期小溪组沉积环境研究[J]. 地球科学进展, 2014, 29(7): 859-864.
[10] 刘学, 张志强, 郑军卫, 赵纪东, 王立伟. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
[11] 常玉光, 白万备, 齐永安, 孙凤余, 王敏. 豫西寒武纪叠层石微生物化石组合及其沉积环境[J]. 地球科学进展, 2014, 29(4): 456-463.
[12] 李岩峰,曲国胜,张进. 弧形构造研究进展[J]. 地球科学进展, 2007, 22(7): 708-715.
[13] 屈建军; 代枫年; 康国定; 王远萍; 张伟民. 鸣沙研究及其展望[J]. 地球科学进展, 1993, 8(4): 59-61.
[14] 李任伟. 分子地层学[J]. 地球科学进展, 1992, 7(2): 78-.
[15] 刘铁兵. 碳硫生物地球化学与沉积环境分析[J]. 地球科学进展, 1990, 5(3): 22-25.
阅读次数
全文


摘要