1 |
ARCHIBALD A T, NEU J L, ELSHORBANY Y F, et al. Tropospheric ozone assessment report: a critical review of changes in the tropospheric ozone burden and budget from 1850 to 2100 [J]. Elementa: Science of the Anthropocene, 2020, 8(1). DOI: 10.1525/elementa.2020.034 .
|
2 |
CHANG W Y, LIAO H, WANG H J. Climate responses to direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases in Eastern China over 1951-2000[J]. Advances in Atmospheric Sciences, 2009, 26(4): 748-762.
|
3 |
CHEN W T, LIAO H, SEINFELD J H. Future climate impacts of direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D14). DOI: 10.1029/2006JD008051 .
|
4 |
GRIFFITHS P T, KEEBLE J, SHIN Y M, et al. On the changing role of the stratosphere on the tropospheric ozone budget: 1979-2010[J]. Geophysical Research Letters, 2020, 47(10). DOI:10.1029/2019GL086901 .
|
5 |
HESS P G, ZBINDEN R. Stratospheric impact on tropospheric ozone variability and trends: 1990-2009[J]. Atmospheric Chemistry and Physics, 2013, 13(2): 649-674.
|
6 |
ZHANG Y Q, COOPER O R, GAUDEL A, et al. Tropospheric ozone change from 1980 to 2010 dominated by equatorward redistribution of emissions[J]. Nature Geoscience, 2016, 9(12): 875-879.
|
7 |
DING A J, WANG T, THOURET V, et al. Tropospheric ozone climatology over Beijing: analysis of aircraft data from the MOZAIC program[J]. Atmospheric Chemistry and Physics, 2008, 8(1): 1-13.
|
8 |
LIU Y M, WANG T. Worsening urban ozone pollution in China from 2013 to 2017-Part 1: the complex and varying roles of meteorology[J]. Atmospheric Chemistry and Physics, 2020, 20(11): 6 305-6 321.
|
9 |
FAN H, ZHAO C F, YANG Y K. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014-2018[J]. Atmospheric Environment, 2020, 220. DOI: 10.1016/j.atmosenv.2019.117066 .
|
10 |
ORFANOZ-CHEUQUELAF A, ROZANOV A, WEBER M, et al. Total ozone column from Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) measurements using the broadband Weighting Function Fitting Approach (WFFA)[J]. Atmospheric Measurement Techniques, 2021, 14(8): 5 771-5 789.
|
11 |
THOMPSON A M, WITTE J C, OLTMANS S J, et al. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2000 tropical ozone climatology 2. tropospheric variability and the zonal wave-one[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D2). DOI: 10.1029/2002JD002241 .
|
12 |
THOMPSON A M, WITTE J C, McPETERS R D, et al. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2000 tropical ozone climatology 1. comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D2). DOI: 10.1029/2001JD000967 .
|
13 |
FIOLETOV V E, KERR J B, HARE E W, et al. An assessment of the world ground-based total ozone network performance from the comparison with satellite data[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D1): 1 737-1 747.
|
14 |
ZHANG Xingying, ZHANG Peng, FANG Zongyi, et al. The progress in trace gas remote sensing study based on the satellite monitoring[J]. Meteorological Monthly, 2007, 33(7): 3-14.
|
|
张兴赢, 张鹏, 方宗义, 等. 应用卫星遥感技术监测大气痕量气体的研究进展[J]. 气象, 2007, 33(7): 3-14.
|
15 |
ZHAO Shaohua, YANG Xiaoyu, LI Zhengqiang, et al. Advances of ozone satellite remote sensing in 60 years[J]. Journal of Remote Sensing, 2022, 26(5): 817-833.
|
|
赵少华, 杨晓钰, 李正强, 等. 臭氧卫星遥感六十年进展[J]. 遥感学报, 2022, 26(5): 817-833.
|
16 |
CHI Yulei, ZHAO Chuanfeng. Progress and challenges of ozone satellite remote sensing inversion[J]. Acta Optica Sinica, 2023, 43(18). DOI: 10.3788/AOS230583 .
|
|
迟雨蕾, 赵传峰. 臭氧卫星遥感反演进展及挑战[J]. 光学学报, 2023, 43(18). DOI: 10.3788/AOS230583 .
|
17 |
METTIG N, WEBER M, ROZANOV A, et al. Ozone profile retrieval from nadir TROPOMI measurements in the UV range[J]. Atmospheric Measurement Techniques, 2021, 14(9): 6 057-6 082.
|
18 |
VERSTRAETEN W W, BOERSMA K F, ZÖRNER J, et al. Validation of six years of TES tropospheric ozone retrievals with ozonesonde measurements: implications for spatial patterns and temporal stability in the bias[J]. Atmospheric Measurement Techniques, 2013, 6(5): 1 413-1 423.
|
19 |
NASSAR R, LOGAN J A, MEGRETSKAIA I A, et al. Analysis of tropical tropospheric ozone, carbon monoxide, and water vapor during the 2006 El Niño using TES observations and the GEOS-Chem model[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D17). DOI: 10.1029/2009JD011760 .
|
20 |
RAWAT P, NAJA M, FISHBEIN E, et al. Performance of AIRS ozone retrieval over the central Himalayas: use of ozonesonde and other satellite datasets[J]. Atmospheric Measurement Techniques, 2023, 16(4): 889-909.
|
21 |
METTIG N, WEBER M, ROZANOV A, et al. Combined UV and IR ozone profile retrieval from TROPOMI and CrIS measurements[J]. Atmospheric Measurement Techniques, 2022, 15(9): 2 955-2 978.
|
22 |
WESPES C, HURTMANS D, CLERBAUX C, et al. O3 variability in the troposphere as observed by IASI over 2008-2016: contribution of atmospheric chemistry and dynamics[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(4): 2 429-2 451.
|
23 |
DUFOUR G, EREMENKO M, BEEKMANN M, et al. Lower tropospheric ozone over the North China Plain: variability and trends revealed by IASI satellite observations for 2008-2016[J]. Atmospheric Chemistry and Physics, 2018, 18(22): 16 439-16 459.
|
24 |
OKAMOTO S, CUESTA J, BEEKMANN M, et al. Impact of different sources of precursors on an ozone pollution outbreak over Europe analysed with IASI+GOME2 multispectral satellite observations and model simulations[J]. Atmospheric Chemistry and Physics, 2023, 23(13): 7 399-7 423.
|
25 |
MUNRO R, SIDDANS R, REBURN W J, et al. Direct measurement of tropospheric ozone distributions from space[J]. Nature, 1998, 392(6 672): 168-171.
|
26 |
HOOGEN R, ROZANOV V V, BURROWS J P. Ozone profiles from GOME satellite data: algorithm description and first validation[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D7): 8 263-8 280.
|
27 |
HASEKAMP O P, LANDGRAF J. Ozone profile retrieval from backscattered ultraviolet radiances: the inverse problem solved by regularization[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D8): 8 077-8 088.
|
28 |
van der A R J, van OSS R F, PITERS A J M, et al. Ozone profile retrieval from recalibrated Global Ozone Monitoring Experiment data[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D15). DOI: 10.1029/2001JD000696 .
|
29 |
MÜLLER M D, KAIFEL A K, WEBER M, et al. Ozone profile retrieval from Global Ozone Monitoring Experiment (GOME) data using a neural network approach (Neural Network Ozone Retrieval System (NNORSY))[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D16). DOI: 10.1029/2002JD002784 .
|
30 |
LIU X, CHANCE K, SIORIS C E, et al. Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: algorithm description and validation[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D20). DOI: 10.1029/2005JD006240 .
|
31 |
MILES G M, SIDDANS R, KERRIDGE B J, et al. Tropospheric ozone and ozone profiles retrieved from GOME-2 and their validation[J]. Atmospheric Measurement Techniques, 2015, 8(1): 385-398.
|
32 |
LIU X, BHARTIA P K, CHANCE K, et al. Ozone profile retrievals from the ozone monitoring instrument[J]. Atmospheric Chemistry and Physics, 2010, 10(5): 2 521-2 537.
|
33 |
FISHMAN J, BOWMAN K W, BURROWS J P, et al. Remote sensing of tropospheric pollution from space[J]. Bulletin of the American Meteorological Society, 2008, 89(6): 805-822.
|
34 |
ZHAO F, LIU C, CAI Z N, et al. Ozone profile retrievals from TROPOMI: implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China[J]. Science of the Total Environment, 2021, 764. DOI: 10.1016/j.scitotenv.2020.142886 .
|
35 |
XU J, SCHÜSSLER O, RODRIGUEZ D G L, et al. A novel ozone profile shape retrieval using Full-Physics Inverse Learning Machine (FP-ILM)[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5 442-5 457.
|
36 |
FISHMAN J, LARSEN J C. Distribution of total ozone and stratospheric ozone in the tropics: implications for the distribution of tropospheric ozone[J]. Journal of Geophysical Research: Atmospheres, 1987, 92(D6): 6 627-6 634.
|
37 |
FISHMAN J, BRACKETT V G, BROWELL E V, et al. Tropospheric ozone derived from TOMS/SBUV measurements during TRACE A[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D19): 24 069-24 082.
|
38 |
ZIEMKE J R, CHANDRA S, DUNCAN B N, et al. Tropospheric ozone determined from Aura OMI and MLS: evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D19). DOI: 10.1029/2006JD007089 .
|
39 |
FROIDEVAUX L, LIVESEY N J, READ W G, et al. Early validation analyses of atmospheric profiles from EOS MLS on the aura satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1 106-1 121.
|
40 |
XU Jun, LU Yimin. Inversion of tropospheric ozone over China based on OMI data[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2021, 13(6): 707-719.
|
|
徐军, 卢毅敏. 一种基于OMI数据的中国区域对流层O3的反演方法[J]. 南京信息工程大学学报(自然科学版), 2021, 13(6): 707-719.
|
41 |
ZIEMKE J R, CHANDRA S, BHARTIA P K. Two new methods for deriving tropospheric column ozone from TOMS measurements: assimilated UARS MLS/HALOE and convective-cloud differential techniques[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D17): 22 115-22 127.
|
42 |
VALKS P J M, KOELEMEIJER R B A, van WEELE M, et al. Variability in tropical tropospheric ozone: analysis with Global Ozone Monitoring Experiment observations and a global model[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D11). DOI: 10.1029/2002JD002894 .
|
43 |
VALKS P, HAO N, GIMENO GARCIA S, et al. Tropical tropospheric ozone column retrieval for GOME-2[J]. Atmospheric Measurement Techniques, 2014, 7(8): 2 513-2 530.
|
44 |
ZIEMKE J R, CHANDRA S, BHARTIA P K. “Cloud slicing”: a new technique to derive upper tropospheric ozone from satellite measurements[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D9): 9 853-9 867.
|
45 |
ZIEMKE J R, CHANDRA S, BHARTIA P K. A 25-year data record of atmospheric ozone in the Pacific from Total Ozone Mapping Spectrometer (TOMS) cloud slicing: implications for ozone trends in the stratosphere and troposphere[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D15). DOI: 10.1029/2004JD005687 .
|
46 |
ZIEMKE J R, CHANDRA S, DUNCAN B N, et al. Recent biomass burning in the tropics and related changes in tropospheric ozone[J]. Geophysical Research Letters, 2009, 36(15). DOI: 10.1029/2009GL039303 .
|
47 |
FISHMAN J, BALOK A E. Calculation of daily tropospheric ozone residuals using TOMS and empirically improved SBUV measurements: application to an ozone pollution episode over the eastern United States[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D23): 30 319-30 340.
|
48 |
HEUE K P, LOYOLA D, ROMAHN F, et al. Tropospheric ozone retrieval by a combination of TROPOMI/S5P measurements with BASCOE assimilated data[J]. Atmospheric Measurement Techniques, 2022, 15(19): 5 563-5 579.
|
49 |
ZIEMKE J R, OMAN L D, STRODE S A, et al. Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation[J]. Atmospheric Chemistry and Physics, 2019, 19(5): 3 257-3 269.
|
50 |
BURROWS J P, BOVENSMANN H, BERGAMETTI G, et al. The geostationary tropospheric pollution explorer (GeoTROPE) mission: objectives, requirements and mission concept[J]. Advances in Space Research, 2004, 34(4): 682-687.
|
51 |
LANDGRAF J, HASEKAMP O P. Retrieval of tropospheric ozone: the synergistic use of thermal infrared emission and ultraviolet reflectivity measurements from space[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D8). DOI: 10.1029/2006JD008097 .
|
52 |
WORDEN H M, LOGAN J A, WORDEN J R, et al. Comparisons of Tropospheric Emission Spectrometer (TES) ozone profiles to ozonesondes: methods and initial results[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D3). DOI: 10.1029/2006JD007258 .
|
53 |
FU D, WORDEN J R, LIU X, et al. Characterization of ozone profiles derived from Aura TES and OMI radiances[J]. Atmospheric Chemistry and Physics, 2013, 13(6): 3 445-3 462.
|
54 |
CUESTA J, EREMENKO M, LIU X, et al. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe[J]. Atmospheric Chemistry and Physics, 2013, 13(19): 9 675-9 693.
|
55 |
CUESTA J, KANAYA Y, TAKIGAWA M, et al. Transboundary ozone pollutionacross East Asia: daily evolution and photochemical production analysed by IASI+GOME2 multispectralsatellite observations and models[J]. Atmospheric Chemistry and Physics, 2018, 18(13): 9 499-9 525.
|
56 |
COSTANTINO L, CUESTA J, EMILI E, et al. Potential of multispectral synergism for observing ozone pollution by combining IASI-NG and UVNS measurements from the EPS-SG satellite[J]. Atmospheric Measurement Techniques, 2017, 10(4): 1 281-1 298.
|
57 |
FU D J, KULAWIK S S, MIYAZAKI K, et al. Retrievals of tropospheric ozone profiles from the synergism of AIRS and OMI: methodology and validation[J]. Atmospheric Measurement Techniques, 2018, 11(10): 5 587-5 605.
|
58 |
XU J, SCHREIER F, DOICU A, et al. Deriving stratospheric trace gases from balloon-borne infrared/microwave limb sounding measurements[C]// Radiation processes in the atmosphere and ocean (IRS2012): proceedings of the International Radiation Symposium (IRC/IAMAS). Dahlem: Free University, 2013: 392-395.
|
59 |
XU JIAN. Inversion for limb infrared atmospheric sounding[M]. Munich: Technische Universit¨at Munchen, 2016.
|
60 |
XU J, SCHREIER F, DOICU A, et al. Assessment of Tikhonov-type regularization methods for solving atmospheric inverse problems[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 184: 274-286.
|
61 |
XU J, RAO L L, SCHREIER F, et al. Insight into construction of Tikhonov-type regularization for atmospheric retrievals[J]. Atmosphere, 2020, 11(10). DOI: 10.3390/atmos11101052 .
|
62 |
SOFIEVA V F, HÄNNINEN R, SOFIEV M, et al. Synergy of using nadir and limb instruments for tropospheric ozone monitoring (SUNLIT)[J]. Atmospheric Measurement Techniques, 2022, 15(10): 3 193-3 212.
|
63 |
XU J, SCHREIER F, WETZEL G, et al. Performance assessment of balloon-borne trace gas sounding with the terahertz channel of TELIS[J]. Remote Sensing, 2018, 10(2). DOI: 10.3390/rs10020315 .
|
64 |
MÜLLER M D, KAIFEL A, WEBER M, et al. Neural network scheme for the retrieval of total ozone from Global Ozone Monitoring Experiment data[J]. Applied Optics, 2002, 41(24). DOI: 10.1364/AO.41.005051 .
|
65 |
del FRATE F, ORTENZI A, CASADIO S, et al. Application of neural algorithms for a real-time estimation of ozone profiles from GOME measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(10): 2 263-2 270.
|
66 |
del FRATE F, IAPAOLO M, CASADIO S, et al. Neural networks for the dimensionality reduction of GOME measurement vector in the estimation of ozone profiles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 92(3): 275-291.
|
67 |
del FRATE F, IAPAOLO M, CASADIO S. Intercomparison between GOME ozone profiles retrieved by neural network inversion schemes and ILAS products[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22: 1 433-1 440.
|
68 |
IAPAOLO M, GODIN-BEEKMANN S, del FRATE F, et al. Gome ozone profiles retrieved by neural network techniques: a global validation with lidar measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 107(1): 105-119.
|
69 |
SELLITTO P, BOJKOV B R, LIU X, et al. Tropospheric ozone column retrieval at northern mid-latitudes from the Ozone Monitoring Instrument by means of a neural network algorithm[J]. Atmospheric Measurement Techniques, 2011, 4(11): 2 375-2 388.
|
70 |
SELLITTO P, del FRATE F, SOLIMINI D, et al. Tropospheric ozone column retrieval from ESA-envisat SCIAMACHY nadir UV/VIS radiance measurements by means of a neural network algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 998-1 011.
|
71 |
NOIA A D, SELLITTO P, del FRATE F, et al. Global tropospheric ozone column retrievals from OMI data by means of neural networks[J]. Atmospheric Measurement Techniques, 2013, 6(4): 895-915.
|
72 |
SELLITTO P, NOIA A D, del FRATE F, et al. On the role of visible radiation in ozone profile retrieval from nadir UV/VIS satellite measurements: an experiment with neural network algorithms inverting SCIAMACHY data[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113(12): 1 429-1 436.
|
73 |
ZHAN Y, LUO Y Z, DENG X F, et al. Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment[J]. Environmental Pollution, 2018, 233: 464-473.
|
74 |
LIU R Y, MA Z W, LIU Y, et al. Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: a machine learning approach[J]. Environment International, 2020, 142. DOI: 10.1016/j.envint.2020.105823 .
|
75 |
WEI J, LI Z Q, LI K, et al. Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China[J]. Remote Sensing of Environment, 2022, 270. DOI: 10.1016/j.rse.2021.112775 .
|
76 |
KLEINERT F, LEUFEN L H, SCHULTZ M G. IntelliO3-ts v1.0: a neural network approach to predict near-surface ozone concentrations in Germany[J]. Geoscientific Model Development, 2021, 14(1): 1-25.
|
77 |
SAYEED A, CHOI Y, ESLAMI E, et al. Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance[J]. Neural Networks, 2020, 121: 396-408.
|
78 |
COMRIE A C. Comparing neural networks and regression models for ozone forecasting[J]. Journal of the Air & Waste Management Association, 1997, 47(6): 653-663.
|
79 |
COBOURN W G, DOLCINE L, FRENCH M, et al. A comparison of nonlinear regression and neural network models for ground-level ozone forecasting[J]. Journal of the Air & Waste Management Association, 2000, 50(11): 1 999-2 009.
|
80 |
SCHMITZ S, TOWERS S, VILLENA G, et al. Unravelling a black box: an open-source methodology for the field calibration of small air quality sensors[J]. Atmospheric Measurement Techniques, 2021, 14(11): 7 221-7 241.
|
81 |
WANG W N, van der A R, DING J Y, et al. Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations[J]. Atmospheric Chemistry and Physics, 2021, 21(9): 7 253-7 269.
|
82 |
KELLER C A, EVANS M J, KUTZ J N, et al. Machine learning and air quality modeling[C]// 2017 IEEE international conference on big data (big data). Boston MA: IEEE, 2017: 4 570-4 576.
|
83 |
KELLER C A, EVANS M J. Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem chemistry model v10[J]. Geoscientific Model Development, 2019, 12(3): 1 209-1 225.
|
84 |
WILKINSON S, DAVIES W J. Drought, ozone, ABA and ethylene: new insights from cell to plant to community[J]. Plant, Cell & Environment, 2010, 33(4): 510-525.
|
85 |
LI T W, CHENG X. Estimating daily full-coverage surface ozone concentration using satellite observations and a spatiotemporally embedded deep learning approach[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 101. DOI: 10.1016/j.jag.2021.102356 .
|
86 |
WANG S C, HUO Y F, MU X, et al. A high-performance convolutional neural network for ground-level ozone estimation in Eastern China[J]. Remote Sensing, 2022, 14(7). DOI: 10.3390/rs14071640 .
|
87 |
ZHU S Y, XU J, YU C, et al. Learning surface ozone from satellite columns (LESO): a regional daily estimation framework for surface ozone monitoring in China[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11.
|
88 |
ZHU S Y, XU J, ZENG J Y, et al. Satellite-derived estimates of surface ozone by LESO: extended application and performance evaluation[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 113. DOI: 10.1016/j.jag.2022.103008 .
|
89 |
ZHU S Y, XU J, FAN M, et al. Estimating near-surface concentrations of major air pollutants from space: a universal estimation framework LAPSO[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-11.
|