地球科学进展 ›› 2024, Vol. 39 ›› Issue (1): 56 -70. doi: 10.11867/j.issn.1001-8166.2024.002

大气探测与遥感 上一篇    下一篇

对流层臭氧卫星遥感反演综述
许健 1( ), 张卓 1, 饶兰兰 1, 王雅鹏 2, 闫欢欢 2, 胡斯勒图 3, 石崇 3, 刘嵩 4, 格根塔娜 1( ), 王文煜 1, 石恩涛 1, 姚舜 5, 朱军 5, 王咏梅 1, 董晓龙 1, 施建成 1   
  1. 1.中国科学院国家空间科学中心,北京 100190
    2.中国气象局国家卫星气象中心,北京 100081
    3.中国科学院空天信息创新研究院,北京 100101
    4.南方科技大学 环境科学与工程学院,广东 深圳 518055
    5.航天东方红卫星有限公司,北京 100081
  • 收稿日期:2023-08-30 修回日期:2023-11-26 出版日期:2024-01-10
  • 通讯作者: 格根塔娜 E-mail:xujian@nssc.ac.cn;gegentana@nssc.ac.cn
  • 基金资助:
    国家自然科学基金项目(42375142);国家民用空间基础设施项目(Y5BZ31AC60)

Tropospheric Ozone Retrieval from Satellite Remote Sensing—A Review

Jian XU 1( ), Zhuo ZHANG 1, Lanlan RAO 1, Yapeng WANG 2, Huanhuan YAN 2, LETU HUSI 3, Chong SHI 3, Song LIU 4, TANA GEGEN 1( ), Wenyu WANG 1, Entao SHI 1, Shun YAO 5, Jun ZHU 5, Yongmei WANG 1, Xiaolong DONG 1, Jiancheng SHI 1   

  1. 1.National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
    2.National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China
    3.Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
    4.School of Environmental Science & Engineering, South University of Science and Technology, Shenzhen Guangdong 518055, China
    5.DFH Satellite Co. , Ltd. , Beijing 100081, China
  • Received:2023-08-30 Revised:2023-11-26 Online:2024-01-10 Published:2024-01-26
  • Contact: TANA GEGEN E-mail:xujian@nssc.ac.cn;gegentana@nssc.ac.cn
  • About author:XU Jian, Professor, research area includes satellite remote sensing of atmospheric components. E-mail: xujian@nssc.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(42375142);The National Civil Space Infrastructure Project(Y5BZ31AC60)

臭氧是地球大气中最重要的痕量气体之一,在气候变化和生态环境中均扮演着至关重要的角色。对流层臭氧作为光化学烟雾的重要成分之一,其浓度变化与人类活动息息相关。基于卫星遥感技术监测对流层臭氧浓度可以帮助我们更好地发现和定量解释对流层臭氧在不同季节、不同时刻以及不同区域的变化特征,探讨臭氧在对流层中的成因机制。随着卫星遥感技术的全面发展,臭氧遥感产品(例如臭氧总量、廓线等)无论在产品精度或是时空分辨率方面均取得了显著进步,然而,由于受较弱卫星信号与复杂下垫面的影响,对流层臭氧遥感产品精度仍无法满足目前对流层大气成分的精细化科学应用研究。主要围绕对流层臭氧卫星遥感,回顾和分析了臭氧卫星遥感载荷的发展历程和现状,结果表明国内外已基于不同谱段(紫外—可见光、热红外和太赫兹)实现了全球及区域臭氧的时空分布探测;讨论了基于不同技术遥感反演算法(直接与间接反演、多波段联合反演、天底—临边协同反演、基于机器学习技术的创新算法等)的特点及适用性,分析表明算法精度的提升包括从复杂大气背景下的辐射传输模拟、基于地面观测的先验信息优化以及仪器定标与信噪比等多方面的工作;展望了卫星遥感在全球和区域尺度提供可靠对流层臭氧观测数据的应用前景,为对流层臭氧污染的形成机理、人类活动与气候变化如何影响对流层臭氧浓度变化等方面的研究提供关键数据支撑。

Ozone is among the most important trace gases in Earth’s atmosphere and plays a crucial role in both climate change and ecology. Tropospheric ozone is an important component of photochemical smog, and its variations are closely related to human activity. Monitoring of tropospheric ozone based on satellite remote sensing can help us better understand and quantitatively explain the characteristics of tropospheric ozone changes in different seasons, times, and regions, and explore the mechanism of ozone generation in the troposphere. With the comprehensive development of satellite remote sensing techniques, ozone remote sensing products (e.g., total ozone, profiles, etc.) have improved significantly in terms of accuracy and spatiotemporal resolution. However, the accuracy of tropospheric ozone products is still not sufficient for the current scientific application of the atmospheric composition of the troposphere due to the weak satellite signals and complexity of the subsurface. This review focuses on satellite remote sensing of tropospheric ozone. It outlines and analyzes the development history and current status of ozone satellite remote sensing payloads and discusses the characteristics and applicability of remote sensing retrieval algorithms based on different technologies (direct and indirect retrieval, multiband joint retrieval, collaborated nadir-limb retrieval, and innovative algorithms based on machine learning techniques). It further discusses the application of satellite remote sensing for the provision of reliable tropospheric ozone observation data at the global and regional scales. Overall, this review envisions the application of satellite remote sensing for providing reliable tropospheric ozone observations at the global and regional scales.

中图分类号: 

图1 SHADOZWOUDC的主要臭氧探空仪分布 10
SHADOZ:南半球附加臭氧探空仪;WOUDC:世界臭氧和紫外辐射数据中心
Fig. 1 Main ozonesondes from SHADOZ and WOUDC 10
SHADOZ:Southern Hemisphere Additional Ozonesondes;WOUDC:World Ozone and Ultraviolet Radiation Data Center
表1 本文与近期发表的 2篇臭氧遥感综述文章的对比
Table 1 Comparison between this paper and recent reviews of ozone remote sensing
比较方面 参考文献[ 15 参考文献[ 16 本文
难点 均认为对流层反演是臭氧卫星探测的一个难点,对流层中低层和近地面臭氧浓度反演精度不高 针对臭氧卫星遥感应用瓶颈能更清晰更有针对性地指明提高对流层臭氧精度的措施
差异 对流层反演的描述不系统,仅在臭氧廓线的反演方法中,综述了现阶段研究方法之一的多波段联合反演方法 对流层反演综述没有展开,仅提出“常用方法是余值法、扫描角几何法和对流云微分法”,其原理、优劣及适用性没有进一步分析 由于卫星遥感针对对流层臭氧观测存在局限性,关于对流层臭氧遥感反演的研究难度高,不确定大,但应用需求强烈,更需要进一步深入研究
主题 主题宏观,包括臭氧总量、廓线、近地面臭氧的方法和应用进展,涵盖了国内外卫星探测器发展进程、反演算法、应用进展、存在问题和发展趋势等多个方面 主题宏观,文章结构及所综述范围与综述1相似,丰富了臭氧污染相关研究及应用研究案例,包括“臭氧污染时空特征分析”、“典型污染事件分析”、“臭氧污染与气象条件相互作用”等 更聚焦于对流层遥感的研究进展,所综述的方法和应用也是围绕对流层臭氧相关主题展开的
方法 没有关于对流层臭氧反演算法的对比分析 没有关于对流层臭氧反演算法的对比分析 详细描述了获取对流层臭氧的遥感方法的理论基础及优劣和适用性
表2 基于紫外辐射后向散射技术的国外主要臭氧探测载荷
Table 2 Major international payloads for monitoring ozone based on backscatter UV techniques
表3 基于热红外 /太赫兹技术的国际主要臭氧探测载荷
Table 3 Major international payloads for monitoring ozone based on thermal IR and THz techniques
表4 国内主要臭氧探测载荷
Table 4 Major domestic payloads for monitoring ozone
图2 对流层臭氧反演的理论框架
Fig. 2 Theoretical framework of tropospheric ozone retrieval
表5 对流层臭氧直接反演算法
Table 5 Direct retrieval algorithms for tropospheric ozone
发表时间 应用载荷 研究团队 算法基础 算法特点 算法精度
1998年 GOME Munro等 25 OEM 首次验证了从GOME数据反演对流层廓线的可能性 对流层臭氧反演精度受光谱影响更大
1999年 GOME Hoogen等 26 OEM 采用全反演(FURM)法反演臭氧0~80 km廓线,首次通过200个地面观测站对算法进行对比验证 均方根误差:对流层21%~24%
2001年 GOME Hasekamp等 27 TR 采用Phillips-Tikhonov正则化反演算法,L-曲线确定正则化参数,最大限度利用观测数据的臭氧廓线信息,同时减小观测误差对反演结果的影响,首个不需要O3廓线先验的反演算法

均方根误差:

0~10 km为25%~50%

10~15 km为10%~15%

2002年 GOME van der A等 28 OEM 算法引入了光谱校正模块 基于未校正的光谱反演的臭氧廓线偏差在对流层分达到150%,经过校正的光谱反演的臭氧廓线偏差在对流层小于80%
2003年 GOME Müller等 29 NN 高速运算,不需要先验O3廓线信息 与FURM算法反演结果和地面站点观测资料吻合;与TOMS臭氧月均柱总量偏差在0~5%
2005年 GOME Liu等 30 OEM Ring效应与极化的校正,优化模型所需的云、地表反照率、气压、气溶胶和温度廓线等输入信息 15 km以上平均偏差<15%,对流层—平流层底部柱浓度偏差20%~30%
2008年 SAGE和SCIAMACHY Fishman等 33 OEM 应用了对流层臭氧间接和直接反演方法 无精度描述
2010年 OMI Liu等 32 OEM 应用Müller等 30 提出的算法于OMI数据,结合OMI观测资料进行了相应改进 对流层—中平流层均方根误差:6%~35%
2015年 GOME-2 Miles等 31 OEM 充分利用紫外波段的光谱信息,三步反演框架,引入针对卫星观测光谱的校正 与地面站点对比误差在6%以内(1 DU),与化学模式TOMCAT对比误差小于0.7 DU
2021年 TROPOMI Zhao等 34 OEM 引入针对TROPOMI光谱的软校正 拟合残差较官方产品显著减小,尤其在热带和中纬度地区,反演结果与探空仪观测数据偏差小于2.4 DU,1 000~30 hPa范围内误差小于5%
表6 对流层臭氧间接反演算法
Table 6 Indirect retrieval algorithms for tropospheric ozone
图3 天底臭氧总量DOAS反演流程图
Fig. 3 Flow diagram for total ozone DOAS retrieval from nadir-viewing sensors
表7 基于机器学习技术的对流层廓线或柱浓度反演算法
Table 7 Retrieval algorithms for tropospheric ozone profile/column based on machine learning
研究团队 模型输入 模型输出 算法能力
Müller等 64 GOME光谱:270~325 nm、380~385 nm、598~603 nm、758~772 nm,太阳和观测几何,LoS,纬度和季节,In-orbit时间,温度廓线 Ozonsonde臭氧廓线 平流层臭氧方差减少40%,对流层臭氧方差减少10%~30%,柱总浓度与TOMS相比偏差在5%以内,廓线分辨率为4~6 km,与传统反演算法相比,计算效率显著提高。算法局限性主要体现在当SZA高或者臭氧含量低时,部分地区偏差达到10%~20%
Del Frate等 65 GOME光谱:321~325 nm,太阳天顶角,臭氧总柱浓度 GOME RAL臭氧廓线 322.1~322.7 nm和 323.5~324.2 nm对臭氧廓线反演最重要;可以寻找到微型臭氧空洞
Del Frate等 66 GOME光谱:288.040~292.054 nm、294.971~298.963 nm、303.054~307.029 nm、313.029~316.050 nm、319.984~325.963 nm,太阳天顶角,臭氧总柱浓度 GOME RAL臭氧廓线 320~325 nm所含的臭氧廓线信息最多;使用了降维方法EP(Extended Pruning)和PCA,EP方法效率更高
Del Frate等 67 和Iapaolo等 68 GOME光谱:321~325 nm连续光谱或290~335 nm区间17个波长上光谱,臭氧柱浓度 GOME RAL臭氧廓线 与ILAS地面观测结果相比,321~325 nm神经网络模型(GOME-V1)误差为12%,290~335 nm神经网络模型(GOME-V2)误差为10%,并且GOME-V1太阳天顶和斜柱光程较大时,反演精度下降较快。算法局限性主要表现在对流层下层(大于3 hPa)的臭氧廓线反演可靠性不强
Sellitto等 72

SCIAMACHY光谱:

UV-Hartley+UV-Huggins+VIS或UV-Hartley+UV-Huggins,太阳天顶角

Ozonsonde臭氧廓线 加入VIS能够对对流层臭氧廓线精度的提高达到10%,对近地面的偏差最小(UV波段偏差12%,加入VIS偏差为4%);垂直分辨率大概为7 km;306 nm和320 nm附近对臭氧廓线反演最重要
Sellitto等 69 OMI光谱:305~307 nm和322~325 nm,OMTO3臭氧总柱浓度,太阳天顶角 Ozonesonde臭氧浓度廓线地面-200 hPa的积分 可以获得与TOR算法和直接反演算法相当的精度,与欧洲Ozonesonde站点观测数据对比,能够获得更好的精度。局限性体现在反演受Ozonesonde站点位置限制,算法只适用于北半球中纬度地区;臭氧层顶定义不准确
Sellitto等 70 SCIAMACHY光谱:UV或者UV+VIS,太阳天顶角 Ozonsonde臭氧浓度廓线在0~14 km的积分 298~307 nm信息最多,其次是322~340 nm,550~650 nm;观测天顶角,相对方位角和时间信息对结果影响可忽略,加入太阳天顶角能够大大提高反演结果;加入VIS波段能够提高与Ozonsonde结果的Pearson相关系数
Di Noia等 71 OMI UV2光谱主成分,太阳天顶角、观测天顶角、高程、云量,NCEP Tropopause气压温度,月均OMI-MLS对流层臭氧柱浓度 Ozonsonde臭氧浓度廓线地面-NCEP Tropopause的积分 除了北极地区,算法反演的纬度带平均年臭氧柱浓度与Ozonsonde臭氧柱浓度相关性为0.75~0.85,RMS误差为5~6 DU,北极地区有一个很大的负偏差(-2.9 DU);算法可以识别出OMI的异常区域,与真实异常相关性达到0.7;与化学模式TM5的对流层臭氧柱浓度模拟结果相比,偏差约为4 DU;卫星光谱数据能够显著提高臭氧柱浓度和异常区识别精度。算法应用局限于特定区域,因为Ozonsonde站点在热带地区分布较少,算法结果精度低于中纬度和极地地区
Xu等 35 第一个分类模型输入包括GOME-2光谱主成分、太阳天顶角、观测天顶角、相对方位角、地表反照率及地表压强;第二个缩放模型输入包括臭氧总量 第一个模型输出廓线形状类;第二个模型输出臭氧廓线 基于模拟数据的反演:反演误差在15%以内(1 000~1 hPa);基于GOME-2实测数据的反演:与官方产品的偏差在5%~20%以内,计算效率较官方RAL-OEM算法提升2个数量级,与探空仪数据的对比证明该算法在对流层反演精度更高
1 ARCHIBALD A T, NEU J L, ELSHORBANY Y F, et al. Tropospheric ozone assessment report: a critical review of changes in the tropospheric ozone burden and budget from 1850 to 2100 [J]. Elementa: Science of the Anthropocene, 2020, 8(1). DOI: 10.1525/elementa.2020.034 .
2 CHANG W Y, LIAO H, WANG H J. Climate responses to direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases in Eastern China over 1951-2000[J]. Advances in Atmospheric Sciences, 2009, 26(4): 748-762.
3 CHEN W T, LIAO H, SEINFELD J H. Future climate impacts of direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D14). DOI: 10.1029/2006JD008051 .
4 GRIFFITHS P T, KEEBLE J, SHIN Y M, et al. On the changing role of the stratosphere on the tropospheric ozone budget: 1979-2010[J]. Geophysical Research Letters, 2020, 47(10). DOI:10.1029/2019GL086901 .
5 HESS P G, ZBINDEN R. Stratospheric impact on tropospheric ozone variability and trends: 1990-2009[J]. Atmospheric Chemistry and Physics, 2013, 13(2): 649-674.
6 ZHANG Y Q, COOPER O R, GAUDEL A, et al. Tropospheric ozone change from 1980 to 2010 dominated by equatorward redistribution of emissions[J]. Nature Geoscience, 2016, 9(12): 875-879.
7 DING A J, WANG T, THOURET V, et al. Tropospheric ozone climatology over Beijing: analysis of aircraft data from the MOZAIC program[J]. Atmospheric Chemistry and Physics, 2008, 8(1): 1-13.
8 LIU Y M, WANG T. Worsening urban ozone pollution in China from 2013 to 2017-Part 1: the complex and varying roles of meteorology[J]. Atmospheric Chemistry and Physics, 2020, 20(11): 6 305-6 321.
9 FAN H, ZHAO C F, YANG Y K. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014-2018[J]. Atmospheric Environment, 2020, 220. DOI: 10.1016/j.atmosenv.2019.117066 .
10 ORFANOZ-CHEUQUELAF A, ROZANOV A, WEBER M, et al. Total ozone column from Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) measurements using the broadband Weighting Function Fitting Approach (WFFA)[J]. Atmospheric Measurement Techniques, 2021, 14(8): 5 771-5 789.
11 THOMPSON A M, WITTE J C, OLTMANS S J, et al. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2000 tropical ozone climatology 2. tropospheric variability and the zonal wave-one[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D2). DOI: 10.1029/2002JD002241 .
12 THOMPSON A M, WITTE J C, McPETERS R D, et al. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2000 tropical ozone climatology 1. comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D2). DOI: 10.1029/2001JD000967 .
13 FIOLETOV V E, KERR J B, HARE E W, et al. An assessment of the world ground-based total ozone network performance from the comparison with satellite data[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D1): 1 737-1 747.
14 ZHANG Xingying, ZHANG Peng, FANG Zongyi, et al. The progress in trace gas remote sensing study based on the satellite monitoring[J]. Meteorological Monthly, 2007, 33(7): 3-14.
张兴赢, 张鹏, 方宗义, 等. 应用卫星遥感技术监测大气痕量气体的研究进展[J]. 气象, 2007, 33(7): 3-14.
15 ZHAO Shaohua, YANG Xiaoyu, LI Zhengqiang, et al. Advances of ozone satellite remote sensing in 60 years[J]. Journal of Remote Sensing, 2022, 26(5): 817-833.
赵少华, 杨晓钰, 李正强, 等. 臭氧卫星遥感六十年进展[J]. 遥感学报, 2022, 26(5): 817-833.
16 CHI Yulei, ZHAO Chuanfeng. Progress and challenges of ozone satellite remote sensing inversion[J]. Acta Optica Sinica, 2023, 43(18). DOI: 10.3788/AOS230583 .
迟雨蕾, 赵传峰. 臭氧卫星遥感反演进展及挑战[J]. 光学学报, 2023, 43(18). DOI: 10.3788/AOS230583 .
17 METTIG N, WEBER M, ROZANOV A, et al. Ozone profile retrieval from nadir TROPOMI measurements in the UV range[J]. Atmospheric Measurement Techniques, 2021, 14(9): 6 057-6 082.
18 VERSTRAETEN W W, BOERSMA K F, ZÖRNER J, et al. Validation of six years of TES tropospheric ozone retrievals with ozonesonde measurements: implications for spatial patterns and temporal stability in the bias[J]. Atmospheric Measurement Techniques, 2013, 6(5): 1 413-1 423.
19 NASSAR R, LOGAN J A, MEGRETSKAIA I A, et al. Analysis of tropical tropospheric ozone, carbon monoxide, and water vapor during the 2006 El Niño using TES observations and the GEOS-Chem model[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D17). DOI: 10.1029/2009JD011760 .
20 RAWAT P, NAJA M, FISHBEIN E, et al. Performance of AIRS ozone retrieval over the central Himalayas: use of ozonesonde and other satellite datasets[J]. Atmospheric Measurement Techniques, 2023, 16(4): 889-909.
21 METTIG N, WEBER M, ROZANOV A, et al. Combined UV and IR ozone profile retrieval from TROPOMI and CrIS measurements[J]. Atmospheric Measurement Techniques, 2022, 15(9): 2 955-2 978.
22 WESPES C, HURTMANS D, CLERBAUX C, et al. O3 variability in the troposphere as observed by IASI over 2008-2016: contribution of atmospheric chemistry and dynamics[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(4): 2 429-2 451.
23 DUFOUR G, EREMENKO M, BEEKMANN M, et al. Lower tropospheric ozone over the North China Plain: variability and trends revealed by IASI satellite observations for 2008-2016[J]. Atmospheric Chemistry and Physics, 2018, 18(22): 16 439-16 459.
24 OKAMOTO S, CUESTA J, BEEKMANN M, et al. Impact of different sources of precursors on an ozone pollution outbreak over Europe analysed with IASI+GOME2 multispectral satellite observations and model simulations[J]. Atmospheric Chemistry and Physics, 2023, 23(13): 7 399-7 423.
25 MUNRO R, SIDDANS R, REBURN W J, et al. Direct measurement of tropospheric ozone distributions from space[J]. Nature, 1998, 392(6 672): 168-171.
26 HOOGEN R, ROZANOV V V, BURROWS J P. Ozone profiles from GOME satellite data: algorithm description and first validation[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D7): 8 263-8 280.
27 HASEKAMP O P, LANDGRAF J. Ozone profile retrieval from backscattered ultraviolet radiances: the inverse problem solved by regularization[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D8): 8 077-8 088.
28 van der A R J, van OSS R F, PITERS A J M, et al. Ozone profile retrieval from recalibrated Global Ozone Monitoring Experiment data[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D15). DOI: 10.1029/2001JD000696 .
29 MÜLLER M D, KAIFEL A K, WEBER M, et al. Ozone profile retrieval from Global Ozone Monitoring Experiment (GOME) data using a neural network approach (Neural Network Ozone Retrieval System (NNORSY))[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D16). DOI: 10.1029/2002JD002784 .
30 LIU X, CHANCE K, SIORIS C E, et al. Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: algorithm description and validation[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D20). DOI: 10.1029/2005JD006240 .
31 MILES G M, SIDDANS R, KERRIDGE B J, et al. Tropospheric ozone and ozone profiles retrieved from GOME-2 and their validation[J]. Atmospheric Measurement Techniques, 2015, 8(1): 385-398.
32 LIU X, BHARTIA P K, CHANCE K, et al. Ozone profile retrievals from the ozone monitoring instrument[J]. Atmospheric Chemistry and Physics, 2010, 10(5): 2 521-2 537.
33 FISHMAN J, BOWMAN K W, BURROWS J P, et al. Remote sensing of tropospheric pollution from space[J]. Bulletin of the American Meteorological Society, 2008, 89(6): 805-822.
34 ZHAO F, LIU C, CAI Z N, et al. Ozone profile retrievals from TROPOMI: implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China[J]. Science of the Total Environment, 2021, 764. DOI: 10.1016/j.scitotenv.2020.142886 .
35 XU J, SCHÜSSLER O, RODRIGUEZ D G L, et al. A novel ozone profile shape retrieval using Full-Physics Inverse Learning Machine (FP-ILM)[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5 442-5 457.
36 FISHMAN J, LARSEN J C. Distribution of total ozone and stratospheric ozone in the tropics: implications for the distribution of tropospheric ozone[J]. Journal of Geophysical Research: Atmospheres, 1987, 92(D6): 6 627-6 634.
37 FISHMAN J, BRACKETT V G, BROWELL E V, et al. Tropospheric ozone derived from TOMS/SBUV measurements during TRACE A[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D19): 24 069-24 082.
38 ZIEMKE J R, CHANDRA S, DUNCAN B N, et al. Tropospheric ozone determined from Aura OMI and MLS: evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D19). DOI: 10.1029/2006JD007089 .
39 FROIDEVAUX L, LIVESEY N J, READ W G, et al. Early validation analyses of atmospheric profiles from EOS MLS on the aura satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1 106-1 121.
40 XU Jun, LU Yimin. Inversion of tropospheric ozone over China based on OMI data[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2021, 13(6): 707-719.
徐军, 卢毅敏. 一种基于OMI数据的中国区域对流层O3的反演方法[J]. 南京信息工程大学学报(自然科学版), 2021, 13(6): 707-719.
41 ZIEMKE J R, CHANDRA S, BHARTIA P K. Two new methods for deriving tropospheric column ozone from TOMS measurements: assimilated UARS MLS/HALOE and convective-cloud differential techniques[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D17): 22 115-22 127.
42 VALKS P J M, KOELEMEIJER R B A, van WEELE M, et al. Variability in tropical tropospheric ozone: analysis with Global Ozone Monitoring Experiment observations and a global model[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D11). DOI: 10.1029/2002JD002894 .
43 VALKS P, HAO N, GIMENO GARCIA S, et al. Tropical tropospheric ozone column retrieval for GOME-2[J]. Atmospheric Measurement Techniques, 2014, 7(8): 2 513-2 530.
44 ZIEMKE J R, CHANDRA S, BHARTIA P K. “Cloud slicing”: a new technique to derive upper tropospheric ozone from satellite measurements[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D9): 9 853-9 867.
45 ZIEMKE J R, CHANDRA S, BHARTIA P K. A 25-year data record of atmospheric ozone in the Pacific from Total Ozone Mapping Spectrometer (TOMS) cloud slicing: implications for ozone trends in the stratosphere and troposphere[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D15). DOI: 10.1029/2004JD005687 .
46 ZIEMKE J R, CHANDRA S, DUNCAN B N, et al. Recent biomass burning in the tropics and related changes in tropospheric ozone[J]. Geophysical Research Letters, 2009, 36(15). DOI: 10.1029/2009GL039303 .
47 FISHMAN J, BALOK A E. Calculation of daily tropospheric ozone residuals using TOMS and empirically improved SBUV measurements: application to an ozone pollution episode over the eastern United States[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D23): 30 319-30 340.
48 HEUE K P, LOYOLA D, ROMAHN F, et al. Tropospheric ozone retrieval by a combination of TROPOMI/S5P measurements with BASCOE assimilated data[J]. Atmospheric Measurement Techniques, 2022, 15(19): 5 563-5 579.
49 ZIEMKE J R, OMAN L D, STRODE S A, et al. Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation[J]. Atmospheric Chemistry and Physics, 2019, 19(5): 3 257-3 269.
50 BURROWS J P, BOVENSMANN H, BERGAMETTI G, et al. The geostationary tropospheric pollution explorer (GeoTROPE) mission: objectives, requirements and mission concept[J]. Advances in Space Research, 2004, 34(4): 682-687.
51 LANDGRAF J, HASEKAMP O P. Retrieval of tropospheric ozone: the synergistic use of thermal infrared emission and ultraviolet reflectivity measurements from space[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D8). DOI: 10.1029/2006JD008097 .
52 WORDEN H M, LOGAN J A, WORDEN J R, et al. Comparisons of Tropospheric Emission Spectrometer (TES) ozone profiles to ozonesondes: methods and initial results[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D3). DOI: 10.1029/2006JD007258 .
53 FU D, WORDEN J R, LIU X, et al. Characterization of ozone profiles derived from Aura TES and OMI radiances[J]. Atmospheric Chemistry and Physics, 2013, 13(6): 3 445-3 462.
54 CUESTA J, EREMENKO M, LIU X, et al. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe[J]. Atmospheric Chemistry and Physics, 2013, 13(19): 9 675-9 693.
55 CUESTA J, KANAYA Y, TAKIGAWA M, et al. Transboundary ozone pollutionacross East Asia: daily evolution and photochemical production analysed by IASI+GOME2 multispectralsatellite observations and models[J]. Atmospheric Chemistry and Physics, 2018, 18(13): 9 499-9 525.
56 COSTANTINO L, CUESTA J, EMILI E, et al. Potential of multispectral synergism for observing ozone pollution by combining IASI-NG and UVNS measurements from the EPS-SG satellite[J]. Atmospheric Measurement Techniques, 2017, 10(4): 1 281-1 298.
57 FU D J, KULAWIK S S, MIYAZAKI K, et al. Retrievals of tropospheric ozone profiles from the synergism of AIRS and OMI: methodology and validation[J]. Atmospheric Measurement Techniques, 2018, 11(10): 5 587-5 605.
58 XU J, SCHREIER F, DOICU A, et al. Deriving stratospheric trace gases from balloon-borne infrared/microwave limb sounding measurements[C]// Radiation processes in the atmosphere and ocean (IRS2012): proceedings of the International Radiation Symposium (IRC/IAMAS). Dahlem: Free University, 2013: 392-395.
59 XU JIAN. Inversion for limb infrared atmospheric sounding[M]. Munich: Technische Universit¨at Munchen, 2016.
60 XU J, SCHREIER F, DOICU A, et al. Assessment of Tikhonov-type regularization methods for solving atmospheric inverse problems[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 184: 274-286.
61 XU J, RAO L L, SCHREIER F, et al. Insight into construction of Tikhonov-type regularization for atmospheric retrievals[J]. Atmosphere, 2020, 11(10). DOI: 10.3390/atmos11101052 .
62 SOFIEVA V F, HÄNNINEN R, SOFIEV M, et al. Synergy of using nadir and limb instruments for tropospheric ozone monitoring (SUNLIT)[J]. Atmospheric Measurement Techniques, 2022, 15(10): 3 193-3 212.
63 XU J, SCHREIER F, WETZEL G, et al. Performance assessment of balloon-borne trace gas sounding with the terahertz channel of TELIS[J]. Remote Sensing, 2018, 10(2). DOI: 10.3390/rs10020315 .
64 MÜLLER M D, KAIFEL A, WEBER M, et al. Neural network scheme for the retrieval of total ozone from Global Ozone Monitoring Experiment data[J]. Applied Optics, 2002, 41(24). DOI: 10.1364/AO.41.005051 .
65 del FRATE F, ORTENZI A, CASADIO S, et al. Application of neural algorithms for a real-time estimation of ozone profiles from GOME measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(10): 2 263-2 270.
66 del FRATE F, IAPAOLO M, CASADIO S, et al. Neural networks for the dimensionality reduction of GOME measurement vector in the estimation of ozone profiles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 92(3): 275-291.
67 del FRATE F, IAPAOLO M, CASADIO S. Intercomparison between GOME ozone profiles retrieved by neural network inversion schemes and ILAS products[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22: 1 433-1 440.
68 IAPAOLO M, GODIN-BEEKMANN S, del FRATE F, et al. Gome ozone profiles retrieved by neural network techniques: a global validation with lidar measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 107(1): 105-119.
69 SELLITTO P, BOJKOV B R, LIU X, et al. Tropospheric ozone column retrieval at northern mid-latitudes from the Ozone Monitoring Instrument by means of a neural network algorithm[J]. Atmospheric Measurement Techniques, 2011, 4(11): 2 375-2 388.
70 SELLITTO P, del FRATE F, SOLIMINI D, et al. Tropospheric ozone column retrieval from ESA-envisat SCIAMACHY nadir UV/VIS radiance measurements by means of a neural network algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 998-1 011.
71 NOIA A D, SELLITTO P, del FRATE F, et al. Global tropospheric ozone column retrievals from OMI data by means of neural networks[J]. Atmospheric Measurement Techniques, 2013, 6(4): 895-915.
72 SELLITTO P, NOIA A D, del FRATE F, et al. On the role of visible radiation in ozone profile retrieval from nadir UV/VIS satellite measurements: an experiment with neural network algorithms inverting SCIAMACHY data[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113(12): 1 429-1 436.
73 ZHAN Y, LUO Y Z, DENG X F, et al. Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment[J]. Environmental Pollution, 2018, 233: 464-473.
74 LIU R Y, MA Z W, LIU Y, et al. Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: a machine learning approach[J]. Environment International, 2020, 142. DOI: 10.1016/j.envint.2020.105823 .
75 WEI J, LI Z Q, LI K, et al. Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China[J]. Remote Sensing of Environment, 2022, 270. DOI: 10.1016/j.rse.2021.112775 .
76 KLEINERT F, LEUFEN L H, SCHULTZ M G. IntelliO3-ts v1.0: a neural network approach to predict near-surface ozone concentrations in Germany[J]. Geoscientific Model Development, 2021, 14(1): 1-25.
77 SAYEED A, CHOI Y, ESLAMI E, et al. Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance[J]. Neural Networks, 2020, 121: 396-408.
78 COMRIE A C. Comparing neural networks and regression models for ozone forecasting[J]. Journal of the Air & Waste Management Association, 1997, 47(6): 653-663.
79 COBOURN W G, DOLCINE L, FRENCH M, et al. A comparison of nonlinear regression and neural network models for ground-level ozone forecasting[J]. Journal of the Air & Waste Management Association, 2000, 50(11): 1 999-2 009.
80 SCHMITZ S, TOWERS S, VILLENA G, et al. Unravelling a black box: an open-source methodology for the field calibration of small air quality sensors[J]. Atmospheric Measurement Techniques, 2021, 14(11): 7 221-7 241.
81 WANG W N, van der A R, DING J Y, et al. Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations[J]. Atmospheric Chemistry and Physics, 2021, 21(9): 7 253-7 269.
82 KELLER C A, EVANS M J, KUTZ J N, et al. Machine learning and air quality modeling[C]// 2017 IEEE international conference on big data (big data). Boston MA: IEEE, 2017: 4 570-4 576.
83 KELLER C A, EVANS M J. Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem chemistry model v10[J]. Geoscientific Model Development, 2019, 12(3): 1 209-1 225.
84 WILKINSON S, DAVIES W J. Drought, ozone, ABA and ethylene: new insights from cell to plant to community[J]. Plant, Cell & Environment, 2010, 33(4): 510-525.
85 LI T W, CHENG X. Estimating daily full-coverage surface ozone concentration using satellite observations and a spatiotemporally embedded deep learning approach[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 101. DOI: 10.1016/j.jag.2021.102356 .
86 WANG S C, HUO Y F, MU X, et al. A high-performance convolutional neural network for ground-level ozone estimation in Eastern China[J]. Remote Sensing, 2022, 14(7). DOI: 10.3390/rs14071640 .
87 ZHU S Y, XU J, YU C, et al. Learning surface ozone from satellite columns (LESO): a regional daily estimation framework for surface ozone monitoring in China[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11.
88 ZHU S Y, XU J, ZENG J Y, et al. Satellite-derived estimates of surface ozone by LESO: extended application and performance evaluation[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 113. DOI: 10.1016/j.jag.2022.103008 .
89 ZHU S Y, XU J, FAN M, et al. Estimating near-surface concentrations of major air pollutants from space: a universal estimation framework LAPSO[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-11.
[1] 王思杰, 林金泰, 孔浩, 张宇航, 徐呈浩, 李春锦, 任芳萱. 基于卫星遥感的氮氧化物排放快速反演方法比较[J]. 地球科学进展, 2024, 39(3): 269-278.
[2] 段梦伟, 李如仁, 刘东, 蒋昕桐, 仇志强, 李柯妤. 河流水体悬浮泥沙遥感研究进展与展望[J]. 地球科学进展, 2023, 38(7): 675-687.
[3] 陈洪萍, 贾根锁, 冯锦明, 董燕生. 气候模式中关键陆面植被参量遥感估算的研究进展[J]. 地球科学进展, 2014, 29(1): 56-67.
[4] 牟龙江,赵进平. 格陵兰海海冰外缘线变化特征分析[J]. 地球科学进展, 2013, 28(6): 709-717.
[5] 张朝林, 宋长青. “中国地区整层大气甲烷柱总量及其垂直分布特征研究”研究成果介绍[J]. 地球科学进展, 2013, 28(11): 1285-1286.
[6] 崔月菊,杜建国,陈志,李静,谢超,周晓成,刘雷. 2010年玉树Ms 7.1地震前后大气物理化学遥感信息[J]. 地球科学进展, 2011, 26(7): 787-794.
[7] 文军,蓝永超,苏中波,田辉,史小康,张宇,王欣,刘蓉,张堂堂,康悦,吕少宁,张静辉. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-586.
[8] 任建奇,严卫,叶晶,韩丁. 云相态的卫星遥感研究进展[J]. 地球科学进展, 2010, 25(10): 1051-1060.
[9] 付红丽,赵进平. 白令海冰间湖的数值模拟及影响模拟准确度的关键因素[J]. 地球科学进展, 2009, 24(5): 538-548.
[10] 张廷军,晋 锐,高 峰. 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1073-1083.
[11] H.Ishikawa,K.Tanaka,Y.Oku,马耀明,胡泽勇,李茂善,马伟强. 利用场地观测计算地表通量[J]. 地球科学进展, 2006, 21(12): 1237-1243.
[12] 姚清林;强祖基;王弋平. 青藏高原地震前CO的排放与卫星热红外增温异常[J]. 地球科学进展, 2005, 20(5): 505-510.
[13] 王开存;周秀骥;李维亮;刘晶淼;王普才. 利用卫星遥感资料反演感热和潜热通量的研究综述[J]. 地球科学进展, 2005, 20(1): 42-048.
[14] 马建文;田国良;王长耀;燕守勋. 遥感变化检测技术发展综述[J]. 地球科学进展, 2004, 19(2): 192-196.
[15] 范一大,史培军,罗敬宁. 沙尘暴卫星遥感研究进展[J]. 地球科学进展, 2003, 18(3): 367-373.
阅读次数
全文


摘要