地球科学进展 ›› 2024, Vol. 39 ›› Issue (3): 269 -278. doi: 10.11867/j.issn.1001-8166.2024.014

研究论文 上一篇    下一篇

基于卫星遥感的氮氧化物排放快速反演方法比较
王思杰( ), 林金泰( ), 孔浩, 张宇航, 徐呈浩, 李春锦, 任芳萱   
  1. 北京大学 物理学院大气与海洋科学系 气候与海—气实验室,北京 100871
  • 收稿日期:2023-10-14 修回日期:2024-01-23 出版日期:2024-03-10
  • 通讯作者: 林金泰 E-mail:wangsijie@stu.pku.edu.cn;linjt@pku.edu.cn
  • 基金资助:
    国家自然科学基金(42075175);第二次青藏高原综合科学考察研究项目(2019QZKK0604)

Comparison of Satellite-Based Fast Inversion Methods for Nitrogen Oxides Emissions

Sijie WANG( ), Jintai LIN( ), Hao KONG, Yuhang ZHANG, Chenghao XU, Chunjin LI, Fangxuan REN   

  1. Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
  • Received:2023-10-14 Revised:2024-01-23 Online:2024-03-10 Published:2024-04-01
  • Contact: Jintai LIN E-mail:wangsijie@stu.pku.edu.cn;linjt@pku.edu.cn
  • About author:WANG Sijie, Ph. D student, research area includes satellite remote sensing. E-mail: wangsijie@stu.pku.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(42075175);The Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0604)

基于对流层二氧化氮(NO2)垂直柱浓度卫星遥感数据,实现快速、高空间水平分辨率(5 km或更高)的氮氧化物(NO x =NO+NO2)排放反演,可为空气污染精准治理提供及时、细致的排放数据。现有多种低计算成本的快速反演方法,如指数修正高斯模型、散度模型和PHLET算法,但其反演效果尚未得到充分对比分析。以2019年夏季京津冀地区为研究对象,对比了上述3种方法的反演效果,研究发现,指数修正高斯模型主要适用于点源排放,但在京津冀等排放源密集地区的反演效果较差;散度模型考虑了在预定NO x 大气寿命情况下的水平输送,能快速识别主要排放源位置,但存在排放低估和负排放等问题;PHLET算法考虑了水平输送、NO2垂直柱浓度和NO x 大气寿命的非线性关系以及卫星像元不规则等因素,对排放的估计较为准确。改善风场数据、填补卫星数据缺失和改善NO x 化学损失估计是进一步提升排放反演质量的关键。

Satellite-based fast inversion for nitrogen oxides (NO x =NO+NO2) emissions at low computational costs and high resolutions (≤5 km or finer) can provide timely, detailed data to support targeted pollution control. To date, a variety of low-cost fast inversion methods have been developed, such as the Exponentially Modified Gaussian (EMG), Divergence (DIV), and the PHLET (Peking University High-resolution Lifetime-Emission-Transport) models. However, quantitative comparisons of these methods and their emission results are lacking. This study compares the above three inversion methods for the Beijing-Tianjin-Hebei region during the summer of 2019. We found that the EMG model, which was designed for point source emission inversion, performs poorly in Beijing-Tianjin-Hebei due to dense emission sources even within each city. The DIV considers the horizontal transport of NO x with a predetermined (fixed) lifetime and can quickly identify the locations of emission sources; however, it tends to underestimate the emission amounts and even leads to negative emissions in many places. PHLET algorithm considers the horizontal transport of NO2, the nonlinear relationship between local NO2 concentrations and lifetimes, and the two-way matching between irregular satellite pixels and regular model grid cells, resulting in more reliable emission estimates. Filling in missing satellite data through data fusion, improving wind data resolution and accuracy, and improving NO x chemical loss estimation will significantly enhance the quality of emission inversion.

中图分类号: 

图1 POMINO-TROPOMI v1 NO2 垂直柱浓度数据
(a)调整前;(b)根据POMINO-OMI数据调整后;(c)在(b)基础上去除背景值(PHLET算法);(d)在(b)基础上去除背景值(DIV方法)
Fig. 1 POMINO-TROPOMI v1 NO2 tropospheric vertical column density data
(a) Before adjustment; (b) After adjustment based on POMINO-OMI data; (c)~(d) Similar to (b) but with NO 2 background removed based on the criterion by PHLET (c) and DIV (d)
表1 PHLETDIVEMG快速反演方法对比
Table 1 Comparison of PHLETDIV and EMG fast inversion methods
图2 20196~8月平均NO x 排放空间分布
(a)散度模型(DIV)反演结果;(b)PHLET算法的反演结果;(c)NO x 排放通量的绝对差异(PHLET减DIV);(d)人口密度(彩色图)及国家干线公路网络(灰线)
Fig. 2 Spatial distribution of average NO x emissions in JJA 2019
(a) Inversion result of Divergence model;(b) Inversion result of Peking University High-resolution Lifetime-Emission-Transport (PHLET);(c) The absolute difference between PHLET and DIV; (d) Population density (colored map) and highways (gray lines)
图3 京津冀区域所有格点的NO x 排放通量箱式图
箱体下端是25%(25%分位数为Q1),上端是75%(75%分位数为Q3),箱体黑线是50%,黑色实心圆点是平均值,上下箱须分别表示95%和最小值
Fig. 3 Boxplot of NO x emission flux in Beijing-Tianjin-Hebei region
The box extends from 25% (The first quartile, Q1) to 75% (the third quartile, Q3) of the data, with a line denoting the median and a dot denoting the mean. The whiskers cover the 0~95% percentiles of the data
图4 北京、天津和唐山3个城市区域NO x 排放总量
Fig. 4 Total NO x emissions of BeijingTianjin and Tangshan urban areas
1 LI M, LIU H, GENG G N, et al. Anthropogenic emission inventories in China: a review[J]. National Science Review, 2017, 4(6): 834-866.
2 ZHENG B, HUO H, ZHANG Q, et al. High-resolution mapping of vehicle emissions in China in 2008[J]. Atmospheric Chemistry and Physics, 2014, 14(18): 9 787-9 805.
3 GENG G N, ZHANG Q, MARTIN R V, et al. Impact of spatial proxies on the representation of bottom-up emission inventories: a satellite-based analysis[J]. Atmospheric Chemistry and Physics, 2017, 17(6): 4 131-4 145.
4 KONG H, LIN J T, CHEN L L, et al. Considerable unaccounted local sources of NO x emissions in China revealed from satellite[J]. Environmental Science & Technology, 2022, 56(11): 7 131-7 142.
5 ZHENG B, CHENG J, GENG G N, et al. Mapping anthropogenic emissions in China at 1 km spatial resolution and its application in air quality modeling[J]. Science Bulletin, 2021, 66(6): 612-620.
6 MCLINDEN C A, FIOLETOV V, SHEPHARD M W, et al. Space-based detection of missing sulfur dioxide sources of global air pollution[J]. Nature Geoscience, 2016, 9: 496-500.
7 van DAMME M, CLARISSE L, WHITBURN S, et al. Industrial and agricultural ammonia point sources exposed[J]. Nature, 2018, 564: 99-103.
8 MARTIN R V, JACOB D J, CHANCE K, et al. Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D17). DOI:10.1029/2003JD003453 .
9 LAMSAL L N, MARTIN R V, PADMANABHAN A, et al. Application of satellite observations for timely updates to global anthropogenic NO x emission inventories[J]. Geophysical Research Letters, 2011, 38(5). DOI: 10.1029/2010GL046476 .
10 LIN J T, LIU Z, ZHANG Q, et al. Modeling uncertainties for tropospheric nitrogen dioxide columns affecting satellite-based inverse modeling of nitrogen oxides emissions[J]. Atmospheric Chemistry and Physics, 2012, 12(24): 12 255-12 275.
11 GU D S, WANG Y H, SMELTZER C, et al. Anthropogenic emissions of NO x over China: reconciling the difference of inverse modeling results using GOME-2 and OMI measurements[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(12): 7 732-7 740.
12 MIYAZAKI K, ESKES H J, SUDO K, et al. Decadal changes in global surface NO x emissions from multi-constituent satellite data assimilation[J]. Atmospheric Chemistry and Physics, 2017, 17(2):2 807-2 837.
13 QU Z, HENZE D K, CAPPS S L, et al. Monthly top-down NO x emissions for China (2005-2012): a hybrid inversion method and trend analysis[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(8): 4 600-4 625.
14 BEIRLE S, BOERSMA K F, PLATT U, et al. Megacity emissions and lifetimes of nitrogen oxides probed from space[J]. Science, 2011, 333(6 050): 1 737-1 739.
15 JIN X M, ZHU Q D, COHEN R C. Direct estimates of biomass burning NO x emissions and lifetimes using daily observations from TROPOMI[J]. Atmospheric Chemistry and Physics, 2021, 21(20): 15 569-15 587.
16 LU Z, STREETS D G, de FOY B, et al. Emissions of nitrogen oxides from US urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005-2014[J]. Atmospheric Chemistry and Physics, 2015, 15(18): 10 367-10 383.
17 de FOY B, LU Z F, STREETS D G, et al. Estimates of power plant NO x emissions and lifetimes from OMI NO2 satellite retrievals[J]. Atmospheric Environment, 2015, 116: 1-11.
18 LIU F, BEIRLE S, ZHANG Q, et al. NO x emission trends over Chinese cities estimated from OMI observations during 2005 to 2015[J]. Atmospheric Chemistry and Physics, 2017, 17(15): 9 261-9 275.
19 LANGE K, RICHTER A, BURROWS J P. Variability of nitrogen oxide emission fluxes and lifetimes estimated from Sentinel-5P TROPOMI observations[J]. Atmospheric Chemistry and Physics, 2022, 22(4): 2 745-2 767.
20 VALIN L C, RUSSELL A R, COHEN R C. Variations of OH radical in an urban plume inferred from NO2 column measurements[J]. Geophysical Research Letters, 2013, 40(9): 1 856-1 860.
21 LIU F, BEIRLE S, ZHANG Q, et al. NO x lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations[J]. Atmospheric Chemistry and Physics, 2016, 16(8): 5 283-5 298.
22 BEIRLE S, BORGER C, DÖRNER S, et al. Pinpointing nitrogen oxide emissions from space[J]. Science Advances, 2019, 5(11). DOI: 10.1126/sciadv.aax9800 .
23 BEIRLE S, BORGER C, DÖRNER S, et al. Catalog of NO x emissions from point sources as derived from the divergence of the NO2 flux for TROPOMI[J]. Earth System Science Data, 2021, 13(6): 2 995-3 012.
24 de FOY B, SCHAUER J J. An improved understanding of NO x emissions in South Asian megacities using TROPOMI NO2 retrievals[J]. Environmental Research Letters, 2022, 17(2). DOI: 10.1088/1748-9326/ac48b4 .
25 BEIRLE S, BORGER C, JOST A, et al. Improved catalog of NO x point source emissions (version 2)[J]. Earth System Science Data, 2023, 15(7): 3 051-3 073.
26 KONG H, LIN J T, ZHANG R X, et al. High-resolution (0.05°×0.05°) NO x emissions in the Yangtze River Delta inferred from OMI[J]. Atmospheric Chemistry and Physics, 2019, 19(20): 12 835-12 856.
27 KONG H, LIN J T, ZHANG Y H, et al. High natural nitric oxide emissions from lakes on Tibetan Plateau under rapid warming[J]. Nature Geoscience, 2023, 16(6): 474-477.
28 LIU M Y, LIN J T, KONG H, et al. A new TROPOMI product for tropospheric NO2 columns over East Asia with explicit aerosol corrections[J]. Atmospheric Measurement Techniques, 2020, 13(8): 4 247-4 259.
29 GRIFFIN D, MCLINDEN C A, BOERSMA F, et al. High resolution mapping of nitrogen dioxide with TROPOMI: first results and validation over the Canadian oil sands[J]. Geophysical Research Letters, 2019, 46(2): 1 049-1 060.
30 van GEFFEN J, BOERSMA K F, ESKES H, et al. S5P TROPOMI NO2 slant column retrieval: method, stability, uncertainties and comparisons with OMI[J]. Atmospheric Measurement Techniques, 2020, 13(3): 1 315-1 335.
31 QU Z, JACOB D J, SILVERN R F, et al. US COVID-19 shutdown demonstrates importance of background NO2 in inferring NO x emissions from satellite NO2 observations[J]. Geophysical Research Letters, 2021, 48(10). DOI:10.1029/2021GL092783 .
32 LUCCHESI R. File specification for GEOS FP [EB/OL]. GMAO Office Note No. 4 (Version 1.2), 2018. 61. [2023-05-08]. .
33 School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur and Center for International Earth Science Information Network (CIESIN), Columbia University. Global high resolution population denominators project-funded by the bill and melinda gates foundation (opp1134076)[Z]. 2018. DOI:10.5258/SOTON/WP00647.
34 SEINFELD J H. Urban air pollution: state of the science[J]. Science, 1989, 243(4 892): 745-752.
35 CRIPPA M, SOLAZZO E, HUANG G L, et al. High resolution temporal profiles in the emissions database for global atmospheric research[J]. Scientific Data, 2020, 7. DOI:10.1038/s41597-020-0462-2 .
36 HUANG T B, ZHU X, ZHONG Q R, et al. Spatial and temporal trends in global emissions of nitrogen oxides from 1960 to 2014[J]. Environmental Science & Technology, 2017, 51(14): 7 992-8 000.
37 FENG L Y, SMITH S J, BRAUN C, et al. The generation of gridded emissions data for CMIP6[J]. Geoscientific Model Development, 2020, 13(2): 461-482.
38 SMITH S J, AHSAN H, MOTT A, et al. CEDS v-2021-02-05 Emission Data 1975-2019 [DS]. 2021. DOI:10.25584/PNNLDataHub/1779095 .
39 National Bureau of Statistics of China, Ministry of Ecology and Environmrnt of the People’s Republic of China. China statistical yearbook on environment[M]. Beijing: China Statistical Press, 2021.
中华人民共和国统计局, 中华人民共和国生态环境部. 中国环境统计年鉴[M]. 北京: 中国统计出版社, 2021.
40 KIM J, JEONG U, AHN M H, et al. New era of air quality monitoring from space: Geostationary Environment Monitoring Spectrometer (GEMS)[J]. Bulletin of the American Meteorological Society, 2020, 101(1): E1-E22.
41 ZOOGMAN P, LIU X, SULEIMAN R M, et al. Tropospheric Emissions: Monitoring of Pollution (TEMPO)[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 186: 17-39.
42 ZHANG Y H, LIN J T, KIM J, et al. A research product for tropospheric NO2 columns from geostationary environment monitoring spectrometer based on Peking University OMI NO2 algorithm[J]. Atmospheric Measurement Techniques, 2023, 16(19):4 643-4 665.
[1] 许健, 张卓, 饶兰兰, 王雅鹏, 闫欢欢, 胡斯勒图, 石崇, 刘嵩, 格根塔娜, 王文煜, 石恩涛, 姚舜, 朱军, 王咏梅, 董晓龙, 施建成. 对流层臭氧卫星遥感反演综述[J]. 地球科学进展, 2024, 39(1): 56-70.
[2] 段梦伟, 李如仁, 刘东, 蒋昕桐, 仇志强, 李柯妤. 河流水体悬浮泥沙遥感研究进展与展望[J]. 地球科学进展, 2023, 38(7): 675-687.
[3] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[4] 张达, 何春阳, 邬建国, 黄庆旭. 京津冀地区可持续发展的主要资源和环境限制性要素评价——基于景观可持续科学概念框架[J]. 地球科学进展, 2015, 30(10): 1151-1161.
[5] 陈洪萍, 贾根锁, 冯锦明, 董燕生. 气候模式中关键陆面植被参量遥感估算的研究进展[J]. 地球科学进展, 2014, 29(1): 56-67.
[6] 牟龙江,赵进平. 格陵兰海海冰外缘线变化特征分析[J]. 地球科学进展, 2013, 28(6): 709-717.
[7] 张朝林, 宋长青. “中国地区整层大气甲烷柱总量及其垂直分布特征研究”研究成果介绍[J]. 地球科学进展, 2013, 28(11): 1285-1286.
[8] 崔月菊,杜建国,陈志,李静,谢超,周晓成,刘雷. 2010年玉树Ms 7.1地震前后大气物理化学遥感信息[J]. 地球科学进展, 2011, 26(7): 787-794.
[9] 文军,蓝永超,苏中波,田辉,史小康,张宇,王欣,刘蓉,张堂堂,康悦,吕少宁,张静辉. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-586.
[10] 任建奇,严卫,叶晶,韩丁. 云相态的卫星遥感研究进展[J]. 地球科学进展, 2010, 25(10): 1051-1060.
[11] 付红丽,赵进平. 白令海冰间湖的数值模拟及影响模拟准确度的关键因素[J]. 地球科学进展, 2009, 24(5): 538-548.
[12] 张廷军,晋 锐,高 峰. 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009, 24(10): 1073-1083.
[13] H.Ishikawa,K.Tanaka,Y.Oku,马耀明,胡泽勇,李茂善,马伟强. 利用场地观测计算地表通量[J]. 地球科学进展, 2006, 21(12): 1237-1243.
[14] 姚清林;强祖基;王弋平. 青藏高原地震前CO的排放与卫星热红外增温异常[J]. 地球科学进展, 2005, 20(5): 505-510.
[15] 王开存;周秀骥;李维亮;刘晶淼;王普才. 利用卫星遥感资料反演感热和潜热通量的研究综述[J]. 地球科学进展, 2005, 20(1): 42-048.
阅读次数
全文


摘要