1 |
NOTT J. Tropical cyclones, global climate change and the role of Quaternary studies [J]. Journal of Quaternary Science, 2011, 26(5): 468-473.
|
2 |
SARKAR T K, SALAZAR P M, MOKOLE E L. Echoing across the years: a history of early radar evolution [J]. IEEE Microwave Magazine, 2016, 17(10): 46-60.
|
3 |
DAVIS G K. History of the NOAA satellite program[J]. Journal of Applied Remote Sensing, 2007, 1(1). DOI: 10.1117/1.2642347 .
|
4 |
LU Naimeng, GU Songyan. Review and prospect on the development of meteorological satellites [J]. Journal of Remote Sensing, 2016, 20(5): 832-841.
|
|
卢乃锰, 谷松岩. 气象卫星发展回顾与展望[J]. 遥感学报, 2016, 20(5): 832-841.
|
5 |
LIU K B, SHEN C M, LOUIE K S. A 1, 000-year history of typhoon landfalls in Guangdong, Southern China, reconstructed from Chinese historical documentary records [J]. Annals of the Association of American Geographers, 2001, 91(3): 453-464.
|
6 |
CHAUDHURI A K. Climbing ripple structure and associated storm-lamination from a Proterozoic carbonate platform succession: their environmental and petrogenetic significance [J]. Journal of Earth System Science, 2005, 114(3): 199-209.
|
7 |
RAN Zongyuan, XIAO Qian, SHE Zhenbing, et al. Tempestite sequence of carbonate rocks of the Wumishan Formation in Zhoukoudian area, Beijing [J]. Journal of Palaeogeography, 2022, 24(4): 634-648.
|
|
冉宗媛, 肖倩, 佘振兵, 等. 北京周口店雾迷山组碳酸盐岩风暴沉积序列研究[J]. 古地理学报, 2022, 24(4): 634-648.
|
8 |
ZHAO Can, CHEN Xiaohong, LI Xubing, et al. Characteristics of tempestite of Ediacaran dengying formation, in the eastern Yangtze gorges area and its geological significance [J]. Acta Geologica Sinica, 2013, 87(12): 1 901-1 912.
|
|
赵灿, 陈孝红, 李旭兵, 等. 峡东地区埃迪卡拉系灯影组风暴岩的发现及其环境意义[J]. 地质学报, 2013, 87(12): 1 901-1 912.
|
9 |
AMORIM K B, AFONSO J W L, de MORAES L J, et al. Sedimentary facies, fossil distribution and depositional setting of the late Ediacaran Tamengo Formation (Brazil) [J]. Sedimentology, 2020, 67(7): 3 422-3 450.
|
10 |
XIAO Q, SHE Z B, WANG G Q, et al. Terminal ediacaran carbonate tempestites in the eastern Yangtze Gorges area, South China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 547. DOI: 10.1016/j.palaeo.2020.109681 .
|
11 |
JIN Xin, SONG Jinmin, LIU Shugen, et al. Characteristics and geological implications of Dengying Formation tempestites in the periphery of the Sichuan Basin [J]. Natural Gas Industry, 2021, 41(10): 39-49.
|
|
金鑫, 宋金民, 刘树根, 等. 四川盆地周缘灯影组风暴沉积特征及其地质意义[J]. 天然气工业, 2021, 41(10): 39-49.
|
12 |
YAN Qinshang. Overview of the storm-generated deposits on nearshore zone and open shelf [J]. Oceanologia et Limnologia Sinica, 1984, 15(1): 14-20.
|
|
严钦尚. 论滨岸和浅海的风暴沉积[J]. 海洋与湖沼, 1984, 15(1): 14-20.
|
13 |
MENG Xianghua, QIAO Xiufu, GE Ming. Study on ancient shallow sea carbonate storm deposits(tempestite)in North China and dingjiatan model of facies sequences [J]. Acta Sedimentologica Sinica, 1986, 4(2): 1-18, 130-133, 142.
|
|
孟祥化, 乔秀夫, 葛铭. 华北古浅海碳酸盐风暴沉积和丁家滩相序模式[J]. 沉积学报, 1986, 4(2): 1-18, 130-133, 142.
|
14 |
LIU Baojun, ZHANG Jiqing, XU Xiaosong. On the calcareous tempestites in the Lower Permian of Silong, Xingwen, Sichuan [J]. Acta Geological Sinica, 1986, 60(1): 55-67, 121-122.
|
|
刘宝珺, 张继庆, 许效松. 四川兴文四龙下二叠统碳酸盐风暴岩[J]. 地质学报, 1986, 60(1): 55-67, 121-122.
|
15 |
LI Pingri, HUANG Guangqing, TAN Huizong, et al. Storm sedimentation in the Pearl River estuary [M]. Guangzhou: Guangdong Science & Technology Press, 2002.
|
|
李平日, 黄光庆, 谭惠忠, 等. 珠江口地区风暴潮沉积的研究 [M]. 广州: 广东科技出版社, 2002.
|
16 |
CHEN J T, LEE H S. Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits (Shandong Province, China): differential liquefaction and fluidization triggered by storm-wave loading [J]. Sedimentary Geology, 2013, 288: 81-94.
|
17 |
YANG Y, ZHOU L, NORMANDEAU A, et al. Exploring records of typhoon variability in Eastern China over the past 2000 years [J]. GSA Bulletin, 2020, 132(11/12): 2 243-2 252.
|
18 |
DARAEI M, BAYET-GOLL A, GEYER G, et al. Late Cambrian climate change recorded by a shift from an arid carbonate platform to a storm-dominated cool-water platform at the Gondwana margin (Alborz Zone, Iran) [J]. Geological Journal, 2023, 58(2): 795-824.
|
19 |
MORTON R A, GELFENBAUM G, JAFFE B E. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples [J]. Sedimentary Geology, 2007, 200(3/4): 184-207.
|
20 |
GOSLIN J, CLEMMENSEN L B. Proxy records of Holocene storm events in coastal barrier systems: storm-wave induced markers [J]. Quaternary Science Reviews, 2017, 174: 80-119.
|
21 |
FÜRSICH F T, OSCHMANN W. Shell beds as tools in basin analysis: the Jurassic of Kachchh, western India [J]. Journal of the Geological Society, 1993, 150(1): 169-185.
|
22 |
ETIENNE S, PARIS R. Boulder accumulations related to storms on the south coast of the Reykjanes Peninsula (Iceland) [J]. Geomorphology, 2010, 114(1/2): 55-70.
|
23 |
AGUILERA O, de ARAÚJO O M O, LOPES R T, et al. Miocene tropical storms: carbonate framework approaches and geochemistry proxies in a reservoir model [J]. Marine and Petroleum Geology, 2023, 154. DOI: 10.1016/j.marpetgeo.2023.106333 .
|
24 |
YAO Q, LIU K B, RODRIGUES E, et al. A geochemical record of late-holocene hurricane events from the Florida Everglades [J]. Water Resources Research, 2020, 56(8). DOI: 10.1029/2019WR026857 .
|
25 |
JIANG K X, LIN C M, ZHANG X, et al. Storm-driven variations in depositional environments modify pyrite sulfur isotope records [J]. Earth and Planetary Science Letters, 2023, 610. DOI: 10.1016/j.epsl.2023.118118 .
|
26 |
HAQUE M M, YAMADA M, UCHIYAMA S, et al. Depositional setup and characteristics of the storm deposit by the 2007 Cyclone Sidr on Kuakata Coast, Bangladesh [J]. Marine Geology, 2021, 442. DOI: 10.1016/j.margeo.2021.106652 .
|
27 |
PEREIRA L G, FORNARI M, ERTHAL F, et al. Multivariate taphonomic analysis of mollusk shell concentrations in Holocene deposits of southern Brazil: an integrated approach [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562. DOI: 10.1016/j.palaeo.2020.110085 .
|
28 |
XU Guodong, FAN Daidu, LIU K B. Advances in the study of paleotempestology [J]. Advances in Earth Science, 2007, 22(12): 1 274-1 280.
|
|
徐过冬, 范代读, Liu Kam-Biu. 古风暴学研究进展[J]. 地球科学进展, 2007, 22(12): 1 274-1 280.
|
29 |
GAO Shu, JIA Jianjun, YANG Yang, et al. Obtaining typhoon information from sedimentary records in coastal-shelf waters [J]. Haiyang Xuebao, 2019, 41(10): 141-160.
|
|
高抒, 贾建军, 杨阳, 等. 陆架海岸台风沉积记录及信息提取[J]. 海洋学报, 2019, 41(10): 141-160.
|
30 |
GRUNDVÅG S A, JELBY M E, OLAUSSEN S, et al. The role of shelf morphology on storm-bed variability and stratigraphic architecture, Lower Cretaceous, Svalbard [J]. Sedimentology, 2021, 68(1): 196-237.
|
31 |
TANG J P, WU H, XING F, et al. Formation and transport of fluid mud triggered by typhoon events in front of the subaqueous Changjiang Delta [J]. Marine Geology, 2023, 460. DOI: 10.1016/j.margeo.2023.107052 .
|
32 |
LAMBERT W J, AHARON P, RODRIGUEZ A B. Catastrophic hurricane history revealed by organic geochemical proxies in coastal lake sediments: a case study of Lake Shelby, Alabama (USA) [J]. Journal of Paleolimnology, 2008, 39(1): 117-131.
|
33 |
DAS O, WANG Y, DONOGHUE J, et al. Reconstruction of paleostorms and paleoenvironment using geochemical proxies archived in the sediments of two coastal lakes in northwest Florida [J]. Quaternary Science Reviews, 2013, 68: 142-153.
|
34 |
JAHAN S, WANG Y, BURNETT W C, et al. Evaluating organic geochemical proxies for application to coastal lake sediments along the Gulf Coast of Florida for paleotempestology [J]. Quaternary Science Reviews, 2021, 266. DOI: 10.1016/j.quascirev.2021.107077 .
|
35 |
AIGNER T. Storm depositional systems: dynamic stratigraphy in modern and ancient shallow-marine sequences: lecture notes in Earth sciences [M]. Berlin: Springer, 1985.
|
36 |
SALISBURY R D, ATWOOD W W. The geography of the region about Devil’s Lake and the dalles of the Wisconsin: with some notes on its surface geology [M]// Bulletin No.5 and No.1 of the educational series of the wisconsin geological and natural history survey. Madison Wisconsin: the State, 1900.
|
37 |
HAYES M O. Hurricanes as geologic agents, South Texas Coast [J]. AAPG Bulletin, 1967, 51: 937-956.
|
38 |
PERKINS R D, ENOS P. Hurricane betsy in the Florida-Bahama area: geologic effects and comparison with hurricane donna [J]. The Journal of Geology, 1968, 76(6): 710-717.
|
39 |
BRENCHLEY P J, NEWALL G, STANISTREET I G. A storm surge origin for sandstone beds in an epicontinental platform sequence, Ordovician, Norway [J]. Sedimentary Geology, 1979, 22(3/4): 185-217.
|
40 |
Jr DOTT R H, BOURGEOIS J. Hummocky stratification: significance of its variable bedding sequences [J]. Geological Society of America Bulletin, 1982, 93: 663-680.
|
41 |
REN Mei’e, ZHANG Renshun, YANG Juhai, et al. The influence of storm tide on mud plain coast—with special reference to Jiangsu Province [J]. Marine Geology & Quaternary Geology, 1983, 3(4): 1-24.
|
|
任美锷, 张忍顺, 杨巨海, 等. 风暴潮对淤泥质海岸的影响: 以江苏省淤泥质海岸为例[J]. 海洋地质与第四纪地质, 1983, 3(4): 1-24.
|
42 |
ZHANG Guodong, WANG Yiyou, ZHU Jingchang, et al. Modern coastal storm deposits of Putuo Island and Zhujiajian Island, Zhoushan [J]. Acta Sedimentologica Sinica, 1987, 5(2): 17-28, 146-147.
|
|
张国栋, 王益友, 朱静昌, 等. 现代滨岸风暴沉积: 以舟山普陀岛、朱家尖岛为例[J]. 沉积学报, 1987, 5(2): 17-28, 146-147.
|
43 |
HILL P R, NADEAU O C. Storm-dominated sedimentation on the inner shelf of the Canadian Beaufort Sea [J]. Journal of Sedimentary Research, 1989, 59: 455-468.
|
44 |
XU Shiyuan, SHAO Xusheng, CHEN Zhongyuan, et al. Storm deposits in the Changjiang delta [J]. Science in China (Series B), 1989, 19(7): 767-773.
|
|
许世远, 邵虚生, 陈中原, 等. 长江三角洲风暴沉积系列研究[J]. 中国科学(B辑), 1989, 19(7): 767-773.
|
45 |
ZHAO Xitao, LI Bo, LU Gangyi, et al. The Holocene storm deposits and coastal dune in Xiyuan, Funing, Jiangsu [J]. Science in China (Series B), 1992, 22(9): 994-1 001, 1 009.
|
|
赵希涛, 李波, 鲁刚毅, 等. 江苏阜宁西园全新世风暴沉积与海岸沙丘的发现及其意义[J]. 中国科学(B辑), 1992, 22(9): 994-1 001, 1 009.
|
46 |
LIU K B, FEARN M L. Lake-sediment record of late Holocene hurricane activities from coastal Alabama [J]. Geology, 1993, 21(9): 793-796.
|
47 |
HUANG Guangqing. Storm signatures in Holocene sediments of Hong Kong [J]. Acta Geographica Sinica, 1998, 53(3): 216-227.
|
|
黄光庆. 香港全新世沉积物中的风暴潮记录[J]. 地理学报, 1998, 53(3): 216-227.
|
48 |
ZONG Y Q, TOOLEY M J. Evidence of mid-Holocene storm-surge deposits from Morecambe Bay, northwest England: a biostratigraphical approach [J]. Quaternary International, 1999, 55(1): 43-50.
|
49 |
DONNELLY J P, WOODRUFF J D. Intense hurricane activity over the past 5, 000 years controlled by El Niño and the West African monsoon [J]. Nature, 2007, 447(7 143): 465-468.
|
50 |
ANDRADE C, TRIGO R M, FREITAS M C, et al. Comparing historic records of storm frequency and the North Atlantic Oscillation (NAO) chronology for the Azores region [J]. The Holocene, 2008, 18(5): 745-754.
|
51 |
DEGEAI J P, DEVILLERS B, DEZILEAU L, et al. Major storm periods and climate forcing in the Western Mediterranean during the Late Holocene [J]. Quaternary Science Reviews, 2015, 129: 37-56.
|
52 |
ZHOU L, GAO S, JIA J J, et al. Extracting historic cyclone data from coastal dune deposits in eastern Hainan Island, China [J]. Sedimentary Geology, 2019, 392. DOI: 10.1016/j.sedgeo.2019.105524 .
|
53 |
YU Fengling, SWITZER A D, ZHENG Zhuo, et al. Sedimentary records as an indicator for palaeotyphoon hazards from the Rongjiang River delta, Chaoshan Plain, southern China [J]. Quaternary Sciences, 2013, 33(6): 1 171-1 182.
|
|
余凤玲, SWITZER A D, 郑卓, 等. 榕江河口冲积平原的沉积特征及其对灾害气候事件的响应[J]. 第四纪研究, 2013, 33(6): 1 171-1 182.
|
54 |
LI P Y, LI M K, GAN H Y, et al. A preliminary study on sediment records of possible typhoon in the northern South China Sea during the past 6500 years [J]. The Holocene, 2021, 31(7): 1 221-1 228.
|
55 |
YANG Y, MASELLI V, NORMANDEAU A, et al. Latitudinal response of storm activity to abrupt climate change during the last 6, 500 years [J]. Geophysical Research Letters, 2020, 47(19). DOI: 10.1029/2020GL089859 .
|
56 |
YAO Q, LIU K B, ZHANG Z Q, et al. What are the most effective proxies in identifying storm-surge deposits in paleotempestology? A quantitative evaluation from the sand-limited, peat-dominated environment of the Florida coastal Everglades [J]. Geochemistry, Geophysics, Geosystems, 2023, 24(3). DOI: 10.1029/2022GC010708 .
|
57 |
LIU K B, FEARN M L. Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwesternFlorida from lake sediment records [J]. Quaternary Research, 2000, 54(2): 238-245.
|
58 |
WANG Wei, LI Pingri, TAN Huizhong, et al. Depositional characteristics and development model of a Chenier built up by storm surges on the coast of the northern South China Sea [J]. Acta Geologica Sinica, 2010, 84(12): 1 829-1 838.
|
|
王为, 李平日, 谭惠忠, 等. 南海北部长湾风暴潮贝壳堤的沉积特征及发育模式[J]. 地质学报, 2010, 84(12): 1 829-1 838.
|
59 |
TOOMEY M R, CURRY W B, DONNELLY J P, et al. Reconstructing 7000 years of North Atlantic hurricane variability using deep-sea sediment cores from the western Great Bahama Bank [J]. Paleoceanography, 2013, 28(1): 31-41.
|
60 |
YANG Zhaoxiang, XUE Chengfeng, YANG Yang, et al. A 100-year reconstruction of typhoon events on the inner shelf of the East China Sea: coupling of meteorological observations and sedimentary records [J]. Haiyang Xuebao, 2020, 42(7): 119-129.
|
|
杨照祥, 薛成凤, 杨阳, 等. 百年尺度东海内陆架风暴事件重建: 器测记录与沉积记录耦合[J]. 海洋学报, 2020, 42(7): 119-129.
|
61 |
WANG Yuanqi, YANG Yang, ZHOU Liang, et al. Interpreting the origin of coastal boulders on a coral reef flat at Xiaodonghai of Hainan Island based on storm wave energy analysis [J]. Journal of Tropical Oceanography, 2021, 40(4): 110-121.
|
|
王媛琪, 杨阳, 周亮, 等. 基于风暴水流能量分布对海南岛小东海珊瑚巨砾成因的分析[J]. 热带海洋学报, 2021, 40(4): 110-121.
|
62 |
LIAO Ganbiao, FAN Daidu. Perspectives on the linkage between typhoon activity and global warming from recent research advances in paleotempestology [J]. Chinese Science Bulletin, 2008, 53(13): 1 489-1 502.
|
|
廖淦标, 范代读. 全球变暖是否导致台风增强: 古风暴学研究进展与启示[J]. 科学通报, 2008, 53(13): 1 489-1 502.
|
63 |
van HENGSTUM P J, DONNELLY J P, KINGSTON A W, et al. Low-frequency storminess signal at Bermuda linked to cooling events in the North Atlantic region [J]. Paleoceanography, 2015, 30(2): 52-76.
|
64 |
ZHOU X, LIU Z H, YAN Q, et al. Enhanced tropical cyclone intensity in the western North Pacific during warm periods over the last two millennia [J]. Geophysical Research Letters, 2019, 46(15): 9 145-9 153.
|
65 |
LU J, LI A C, DONG J, et al. The effect of Typhoon Talim on the distribution of heavy metals on the inner shelf of the East China Sea [J]. Continental Shelf Research, 2021, 229. DOI: 10.1016/j.csr.2021.104547 .
|
66 |
YANG Y, PIPER D J W, XU M, et al. Northwestern Pacific tropical cyclone activity enhanced by increased Asian dust emissions during the Little Ice Age [J]. Nature Communications, 2022, 13. DOI: 10.1038/s41467-022-29386-2 .
|
67 |
CAI Ruixi, ZHANG Yufan, ZHANG Tao, et al. Study of indicators and methods for identifying typhoon deposits in the muddy belt of inner shelf of the East China Sea [J]. Haiyang Xuebao, 2023, 45(9): 58-71.
|
|
蔡瑞兮, 张宇凡, 张涛, 等. 东海内陆架泥质区台风沉积辨识的指标与方法研究[J]. 海洋学报, 2023, 45(9): 58-71.
|
68 |
PAGE M J, TRUSTRUM N A, ORPIN A R, et al. Storm frequency and magnitude in response to Holocene climate variability, Lake Tutira, North-Eastern New Zealand [J]. Marine Geology, 2010, 270(1/2/3/4): 30-44.
|
69 |
GUY P A. Mud dispersal across a Cretaceous prodelta: storm-generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies [J]. Sedimentology, 2014, 61(3): 609-647.
|
70 |
JELBY M E, GRUNDVÅG S A, HELLAND-HANSEN W, et al. Tempestite facies variability and storm-depositional processes across a wide ramp: towards a polygenetic model for hummocky cross-stratification [J]. Sedimentology, 2020, 67(2): 742-781.
|
71 |
DIETZ M E, LIU K B, BIANCHETTE T A, et al. Differentiating hurricane deposits in coastal sedimentary records: two storms, one layer, but different processes [J]. Environmental Research Communications, 2021, 3(10). DOI: 10.1088/2515-7620/ac26dd .
|
72 |
DUMAS S, ARNOTT R W C. Origin of hummocky and swaley cross-stratification—the controlling influence of unidirectional current strength and aggradation rate [J]. Geology, 2006, 34(12): 1 073-1 076.
|
73 |
BOWMAN A P, JOHNSON H D. Storm-dominated shelf-edge delta successions in a high accommodation setting: the palaeo-Orinoco Delta (Mayaro Formation), Columbus Basin, South-East Trinidad [J]. Sedimentology, 2014, 61(3): 792-835.
|
74 |
BENAMRI S, COSTA P J M, ZAGHLOUL M N, et al. Provenance and sedimentary processes on Pleistocene storm deposits in Harhoura (Northern Coastal Atlantic, Morocco): new constraints from a source to sink perspective [J]. Marine Geology, 2023, 457. DOI: 10.1016/j.margeo.2023.106992 .
|
75 |
KITAMURA A, YUKA Y, KENJI H, et al. Identifying storm surge deposits in the muddy intertidal zone of Ena Bay, Central Japan [J]. Marine Geology, 2020, 426. DOI: 10.1016/j.margeo.2020.106228 .
|
76 |
SABATIER P, DEZILEAU L, COLIN C, et al. 7000 years of paleostorm activity in the NW Mediterranean Sea in response to Holocene climate events [J]. Quaternary Research, 2012, 77(1): 1-11.
|
77 |
MOSKALEWICZ D, SZCZUCIŃSKI W, MROCZEK P, et al. Sedimentary record of historical extreme storm surges on the gulf of Gdańsk Coast, Baltic Sea [J]. Marine Geology, 2020, 420. DOI: 10.1016/j.margeo.2019.106084 .
|
78 |
WOODRUFF J D, DONNELLY J P, OKUSU A. Exploring typhoon variability over the mid-to-late Holocene: evidence of extreme coastal flooding from Kamikoshiki, Japan [J]. Quaternary Science Reviews, 2009, 28(17/18): 1 774-1 785.
|
79 |
RAMÍREZ-HERRERA M T, LAGOS M, HUTCHINSON I, et al. Extreme wave deposits on the Pacific coast of Mexico: Tsunamis or storms?—a multi-proxy approach [J]. Geomorphology, 2012, 139/140: 360-371.
|
80 |
van SOELEN E E, BROOKS G R, LARSON R A, et al. Mid- to late-Holocene coastal environmental changes in southwest Florida, USA [J]. The Holocene, 2012, 22(8): 929-938.
|
81 |
TIAN Y, FAN D J, ZHANG X L, et al. Event deposits of intense typhoons in the muddy wedge of the East China Sea over the past 150 years [J]. Marine Geology, 2019, 410: 109-121.
|
82 |
RODRIGUES E, COHEN M C L, LIU K B, et al. The effect of global warming on the establishment of mangroves in coastal Louisiana during the Holocene [J]. Geomorphology, 2021, 381. DOI: 10.1016/j.geomorph.2021.107648 .
|
83 |
ZHENG L W, DING X D, LIU J T, et al. Isotopic evidence for the influence of typhoons and submarine canyons on the sourcing and transport behavior of biospheric organic carbon to the deep sea [J]. Earth and Planetary Science Letters, 2017, 465: 103-111.
|
84 |
YU X X, LIU X T, WEI G J, et al. Holocene climate regulates multiple sulfur isotope compositions of pyrite in the East China Sea via sedimentation rate [J]. Marine and Petroleum Geology, 2024, 161. DOI: 10.1016/j.marpetgeo.2023.106687 .
|
85 |
FIKE D A, BRADLEY A S, ROSE C V. Rethinking the ancient sulfur cycle [J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 593-622.
|
86 |
LANG X G, TANG W B, MA H R, et al. Local environmental variation obscures the interpretation of pyrite sulfur isotope records [J]. Earth and Planetary Science Letters, 2020, 533. DOI: 10.1016/j.epsl.2019.116056 .
|
87 |
LIU X T, FIKE D, LI A C, et al. Pyrite sulfur isotopes constrained by sedimentation rates: evidence from sediments on the East China Sea inner shelf since the late Pleistocene [J]. Chemical Geology, 2019, 505: 66-75.
|
88 |
LIU J R, ANTLER G, PELLERIN A, et al. Isotopically “heavy” pyrite in marine sediments due to high sedimentation rates and non-steady-state deposition [J]. Geology, 2021, 49(7): 816-821.
|
89 |
LIU J R, PELLERIN A, ANTLER G, et al. Early diagenesis of sulfur in Bornholm Basin sediments: the role of upward diffusion of isotopically “heavy” sulfide [J]. Geochimica et Cosmochimica Acta, 2021, 313: 359-377.
|
90 |
PASQUIER V, SANSJOFRE P, RABINEAU M, et al. Pyrite sulfur isotopes reveal glacial-interglacial environmental changes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(23): 5 941-5 945.
|
91 |
PASQUIER V, BRYANT R N, FIKE D A, et al. Strong local, not global, controls on marine pyrite sulfur isotopes [J]. Science Advances, 2021, 7(9). DOI: 10.1126/sciadv.abb7403 .
|
92 |
PASQUIER V, FIKE D A, HALEVY I. Sedimentary pyrite sulfur isotopes track the local dynamics of the Peruvian oxygen minimum zone [J]. Nature Communications, 2021, 12. DOI: 10.1038/s41467-021-24753-x .
|
93 |
ALLER R C, MADRID V, CHISTOSERDOV A, et al. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: implications for oceanic isotope cycles and the sedimentary record [J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4 671-4 692.
|
94 |
GAINES R R, HAMMARLUND E U, HOU X G, et al. Mechanism for Burgess Shale-type preservation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(14): 5 180-5 184.
|
95 |
ZHAO Fangchen, ZHU Maoyan, HU Shixue. Diverse responses of Cambrian organisms to sedimentary events: evidence from the Chengjiang lagerst tte of eastern Yunnan [J]. Acta Palaeontologica Sinica, 2012, 51(3): 265-280.
|
|
赵方臣, 朱茂炎, 胡世学. 不同生活方式的物种对快速沉积埋藏事件的反应: 来自寒武纪早期澄江生物群中的证据[J]. 古生物学报, 2012, 51(3): 265-280.
|
96 |
MARRINER N, KANIEWSKI D, MORHANGE C, et al. Tsunamis in the geological record: making waves with a cautionary tale from the Mediterranean [J]. Science Advances, 2017, 3(10). DOI: 10.1126/sciadv.1700485 .
|
97 |
DONATO S V, REINHARDT E G, BOYCE J I, et al. Identifying tsunami deposits using bivalve shell taphonomy [J]. Geology, 2008, 36(3): 199-202.
|
98 |
CARON V. Contrasted textural and taphonomic properties of high-energy wave deposits cemented in beachrocks (St. Bartholomew Island, French West Indies) [J]. Sedimentary Geology, 2011, 237(3/4): 189-208.
|
99 |
CARON V. Geomorphic and sedimentologic evidence of extreme wave events recorded by beachrocks: a case study from the island of St. Bartholomew (Lesser Antilles) [J]. Journal of Coastal Research, 2012, 28(4): 811-828.
|
100 |
PUGA-BERNABÉU Á, AGUIRRE J. Contrasting storm-versus tsunami-related shell beds in shallow-water ramps [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 471: 1-14.
|