地球科学进展 ›› 2024, Vol. 39 ›› Issue (3): 279 -291. doi: 10.11867/j.issn.1001-8166.2024.024

事件沉积与灾害历史 上一篇    下一篇

海岸泥质风暴沉积物研究现状与展望
江凯禧 1( ), 苏明 1, 林春明 2, 刘佳威 1, 雷亚平 1, 王策 1, 陈慧 1, 马文斌 1   
  1. 1.中山大学 海洋科学学院,广东 珠海 519083
    2.南京大学 地球科学与工程学院,江苏 南京 210023
  • 收稿日期:2023-12-08 修回日期:2024-02-16 出版日期:2024-03-10
  • 基金资助:
    广东省自然科学基金资助

Research Progress and Prospect of the Coastal Muddy Storm Deposit

Kaixi JIANG 1( ), Ming SU 1, Chunming LIN 2, Jiawei LIU 1, Yaping LEI 1, Ce WANG 1, Hui CHEN 1, Wenbin MA 1   

  1. 1.School of Marine Science, Sun Yat-sen University, Zhuhai Guangdong 519083, China
    2.School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
  • Received:2023-12-08 Revised:2024-02-16 Online:2024-03-10 Published:2024-04-01
  • About author:JIANG Kaixi, Assistant professor, research area includes sedimentary geochemistry. E-mail: haokaisi5535553@163.com
  • Supported by:
    the Natural Science Foundation of Guangdong Province, China

从前寒武纪至今,各年代地层中普遍存在风暴沉积物,它们记录了地史时期曾经发生的极端气象事件。古风暴沉积物研究被认为能在预测未来极端气象事件演变趋势方面提供关键的长时间尺度信息,而准确识别风暴沉积物是这项研究的重要基础。在先前的研究中,学者们主要关注相对容易识别的砂质风暴沉积物、碳酸盐(钙质)风暴沉积物、风暴砾石与巨砾以及风暴贝壳层,而对较难识别的泥质风暴沉积物缺乏深入研究。近年来,国内外研究人员在海岸泥质风暴沉积物的判识方法和指标、沉积过程以及古风暴历史重建等方面取得了不少重要进展。这对于完善对风暴沉积记录类型的认识以及进行高分辨率的古风暴活动历史重建十分重要。为此,着重回顾了近年来有关海岸泥质风暴沉积物判识方法体系的研究进展,发现综合运用元素地球化学、同位素地球化学和有机地球化学的敏感指标是准确识别泥质风暴沉积物的关键,但仍需深入探究泥质风暴沉积物地球化学判识指标与风暴沉积动力过程的响应机理,建议优先关注不同沉积环境泥质风暴沉积物的系统性对比研究、野外原位观测及室内沉积模拟,并强化跨学科交叉合作。

Storm deposits ranging from the Precambrian era to the present day are found extensively in stratigraphic layers spanning almost all ages. These deposits serve as good records preserving information on paleo-extreme weather events that transpired throughout this extensive timeframe. Research on palaeostorm deposits is crucial for supplying vital long-term information for forecasting the evolutionary trends of future extreme weather events. The precise recognition of storm deposits is the pivotal foundation of this research. In previous research, the primary emphasis has been placed on easily discernible sandy storm deposits, carbonate (calcareous) storm deposits, storm pebbles, cobbles, and shell beds associated with storms because of their relative ease of identification. However, there has been a notable absence of investigations on muddy storm deposits, which presents challenges for identification. In recent years, significant progress has been made by researchers in refining the methods and indicators for identifying coastal muddy storm deposits, understanding depositional processes, and reconstructing paleostorm history. These advancements have played a crucial role in enhancing our comprehension of storm sediment classifications and in reconstructing the detailed history of paleostorm activity at high resolution. This study focuses on reviewing the recent advances in identification indices for coastal muddy storm deposits. We found that the integrated use of elemental, isotopic, and organic geochemistry serves as a sensitive indicator critical for the identification of muddy storm deposits. However, further research is required on the response mechanisms between the geochemical identification indicators of muddy storm sediments and the dynamics of storm deposition processes. It is emphasized that systematic comparative studies of muddy storm sedimentation in different sedimentary environments, field in situ observations, and laboratory simulations, as well as the strengthening of interdisciplinary collaboration, are worthy of priority as research focuses and directions for the future.

中图分类号: 

图1 全新世海洋环境背景下形成的3种类型风暴沉积物
(a)海岸湿地泥质风暴沉积物 24 ;(b)海岸平原下切河谷泥质风暴沉积物 25 ;(c)海岸砂质风暴沉积物 26 ;(d)潟湖风暴贝壳层 27
Fig. 1 Three types of storm sediments formed in the Holocene marine depositional environments
(a) Muddy storm deposit from coastal wetland 24 ; (b) Muddy storm deposit from coastal plain incised valley 25 ; (c) Coastal sand storm deposits 26 ; (d) The storm shell bed found in a lagoon 27
图2 泥质风暴沉积物中δ13Corg 值、δ15Norg 值及C/N值的正负偏移特征及成因解释(据参考文献[ 34 ]修改)
(a) δ 13C org值和δ 15N org值异常正偏移,C/N值异常负偏移;(b) δ 13C org值和δ 15N org值异常负偏移,C/N值异常正偏移
Fig. 2 Positive and negative shifts of δ13Corgδ15Norg isotopes and C/N ratios in muddy storm sediments and their corresponding genesismodified after reference 34 ])
(a) δ 13C org and δ 15N org showed anomalous positive shifts and C/N ratios showed anomalous negative shifts; (b) δ 13C org and δ 15N org showed anomalous negative shifts and C/N ratios showed anomalous positive shifts
图3 中国东部沿海平原晚第四纪钱塘江下切河谷古河口湾环境泥质风暴沉积物δ34Spyr 组成特征
(a) 泥质风暴沉积物δ 34S pyr的垂向剖面;(b) 单个风暴事件不同作用阶段对沉积物δ 34S pyr的影响模型
Fig. 3 Pyrite sulfur isotopic composition in the muddy storm deposit in the paleo-estuary setting in the Late Quaternary Qiantang RiverQRincised valley on the East China coastal plain
(a) Depth profile of δ 34S pyr in the muddy storm deposit; (b) Illustrative model depicting the impact of a storm event on the preservation of δ 34S pyr in sediment
图4 云南下寒武统筇竹寺组澄江化石产出层岩芯样品黄铁矿硫同位素垂向分布特征(据参考文献[ 94 ]修改)
(a) 疑似风暴泥岩以硫同位素正异常为特征,正常沉积背景下的泥岩以硫同位素负异常为特征; (b) 疑似风暴泥岩层的硫同位素垂向正偏移分布特征
Fig. 4 The vertical distribution of the pyrite sulfurδ34Sin core samples from the fossiliferous part of the Chengjiang of the Lower Cambrian Qiongzhusi FormationYunnan ProvinceChinamodified after reference 94 ])
(a) Inferred muddy storm deposits are characterized by positive values and the background sediments are characterized by negative values; (b) Distribution of δ 34S pyrite values across a single inferred muddy storm deposit
1 NOTT J. Tropical cyclones, global climate change and the role of Quaternary studies [J]. Journal of Quaternary Science, 2011, 26(5): 468-473.
2 SARKAR T K, SALAZAR P M, MOKOLE E L. Echoing across the years: a history of early radar evolution [J]. IEEE Microwave Magazine, 2016, 17(10): 46-60.
3 DAVIS G K. History of the NOAA satellite program[J]. Journal of Applied Remote Sensing, 2007, 1(1). DOI: 10.1117/1.2642347 .
4 LU Naimeng, GU Songyan. Review and prospect on the development of meteorological satellites [J]. Journal of Remote Sensing, 2016, 20(5): 832-841.
卢乃锰, 谷松岩. 气象卫星发展回顾与展望[J]. 遥感学报, 2016, 20(5): 832-841.
5 LIU K B, SHEN C M, LOUIE K S. A 1, 000-year history of typhoon landfalls in Guangdong, Southern China, reconstructed from Chinese historical documentary records [J]. Annals of the Association of American Geographers, 2001, 91(3): 453-464.
6 CHAUDHURI A K. Climbing ripple structure and associated storm-lamination from a Proterozoic carbonate platform succession: their environmental and petrogenetic significance [J]. Journal of Earth System Science, 2005, 114(3): 199-209.
7 RAN Zongyuan, XIAO Qian, SHE Zhenbing, et al. Tempestite sequence of carbonate rocks of the Wumishan Formation in Zhoukoudian area, Beijing [J]. Journal of Palaeogeography, 2022, 24(4): 634-648.
冉宗媛, 肖倩, 佘振兵, 等. 北京周口店雾迷山组碳酸盐岩风暴沉积序列研究[J]. 古地理学报, 2022, 24(4): 634-648.
8 ZHAO Can, CHEN Xiaohong, LI Xubing, et al. Characteristics of tempestite of Ediacaran dengying formation, in the eastern Yangtze gorges area and its geological significance [J]. Acta Geologica Sinica, 2013, 87(12): 1 901-1 912.
赵灿, 陈孝红, 李旭兵, 等. 峡东地区埃迪卡拉系灯影组风暴岩的发现及其环境意义[J]. 地质学报, 2013, 87(12): 1 901-1 912.
9 AMORIM K B, AFONSO J W L, de MORAES L J, et al. Sedimentary facies, fossil distribution and depositional setting of the late Ediacaran Tamengo Formation (Brazil) [J]. Sedimentology, 2020, 67(7): 3 422-3 450.
10 XIAO Q, SHE Z B, WANG G Q, et al. Terminal ediacaran carbonate tempestites in the eastern Yangtze Gorges area, South China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 547. DOI: 10.1016/j.palaeo.2020.109681 .
11 JIN Xin, SONG Jinmin, LIU Shugen, et al. Characteristics and geological implications of Dengying Formation tempestites in the periphery of the Sichuan Basin [J]. Natural Gas Industry, 2021, 41(10): 39-49.
金鑫, 宋金民, 刘树根, 等. 四川盆地周缘灯影组风暴沉积特征及其地质意义[J]. 天然气工业, 2021, 41(10): 39-49.
12 YAN Qinshang. Overview of the storm-generated deposits on nearshore zone and open shelf [J]. Oceanologia et Limnologia Sinica, 1984, 15(1): 14-20.
严钦尚. 论滨岸和浅海的风暴沉积[J]. 海洋与湖沼, 1984, 15(1): 14-20.
13 MENG Xianghua, QIAO Xiufu, GE Ming. Study on ancient shallow sea carbonate storm deposits(tempestite)in North China and dingjiatan model of facies sequences [J]. Acta Sedimentologica Sinica, 1986, 4(2): 1-18, 130-133, 142.
孟祥化, 乔秀夫, 葛铭. 华北古浅海碳酸盐风暴沉积和丁家滩相序模式[J]. 沉积学报, 1986, 4(2): 1-18, 130-133, 142.
14 LIU Baojun, ZHANG Jiqing, XU Xiaosong. On the calcareous tempestites in the Lower Permian of Silong, Xingwen, Sichuan [J]. Acta Geological Sinica, 1986, 60(1): 55-67, 121-122.
刘宝珺, 张继庆, 许效松. 四川兴文四龙下二叠统碳酸盐风暴岩[J]. 地质学报, 1986, 60(1): 55-67, 121-122.
15 LI Pingri, HUANG Guangqing, TAN Huizong, et al. Storm sedimentation in the Pearl River estuary [M]. Guangzhou: Guangdong Science & Technology Press, 2002.
李平日, 黄光庆, 谭惠忠, 等. 珠江口地区风暴潮沉积的研究 [M]. 广州: 广东科技出版社, 2002.
16 CHEN J T, LEE H S. Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits (Shandong Province, China): differential liquefaction and fluidization triggered by storm-wave loading [J]. Sedimentary Geology, 2013, 288: 81-94.
17 YANG Y, ZHOU L, NORMANDEAU A, et al. Exploring records of typhoon variability in Eastern China over the past 2000 years [J]. GSA Bulletin, 2020, 132(11/12): 2 243-2 252.
18 DARAEI M, BAYET-GOLL A, GEYER G, et al. Late Cambrian climate change recorded by a shift from an arid carbonate platform to a storm-dominated cool-water platform at the Gondwana margin (Alborz Zone, Iran) [J]. Geological Journal, 2023, 58(2): 795-824.
19 MORTON R A, GELFENBAUM G, JAFFE B E. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples [J]. Sedimentary Geology, 2007, 200(3/4): 184-207.
20 GOSLIN J, CLEMMENSEN L B. Proxy records of Holocene storm events in coastal barrier systems: storm-wave induced markers [J]. Quaternary Science Reviews, 2017, 174: 80-119.
21 FÜRSICH F T, OSCHMANN W. Shell beds as tools in basin analysis: the Jurassic of Kachchh, western India [J]. Journal of the Geological Society, 1993, 150(1): 169-185.
22 ETIENNE S, PARIS R. Boulder accumulations related to storms on the south coast of the Reykjanes Peninsula (Iceland) [J]. Geomorphology, 2010, 114(1/2): 55-70.
23 AGUILERA O, de ARAÚJO O M O, LOPES R T, et al. Miocene tropical storms: carbonate framework approaches and geochemistry proxies in a reservoir model [J]. Marine and Petroleum Geology, 2023, 154. DOI: 10.1016/j.marpetgeo.2023.106333 .
24 YAO Q, LIU K B, RODRIGUES E, et al. A geochemical record of late-holocene hurricane events from the Florida Everglades [J]. Water Resources Research, 2020, 56(8). DOI: 10.1029/2019WR026857 .
25 JIANG K X, LIN C M, ZHANG X, et al. Storm-driven variations in depositional environments modify pyrite sulfur isotope records [J]. Earth and Planetary Science Letters, 2023, 610. DOI: 10.1016/j.epsl.2023.118118 .
26 HAQUE M M, YAMADA M, UCHIYAMA S, et al. Depositional setup and characteristics of the storm deposit by the 2007 Cyclone Sidr on Kuakata Coast, Bangladesh [J]. Marine Geology, 2021, 442. DOI: 10.1016/j.margeo.2021.106652 .
27 PEREIRA L G, FORNARI M, ERTHAL F, et al. Multivariate taphonomic analysis of mollusk shell concentrations in Holocene deposits of southern Brazil: an integrated approach [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562. DOI: 10.1016/j.palaeo.2020.110085 .
28 XU Guodong, FAN Daidu, LIU K B. Advances in the study of paleotempestology [J]. Advances in Earth Science, 2007, 22(12): 1 274-1 280.
徐过冬, 范代读, Liu Kam-Biu. 古风暴学研究进展[J]. 地球科学进展, 2007, 22(12): 1 274-1 280.
29 GAO Shu, JIA Jianjun, YANG Yang, et al. Obtaining typhoon information from sedimentary records in coastal-shelf waters [J]. Haiyang Xuebao, 2019, 41(10): 141-160.
高抒, 贾建军, 杨阳, 等. 陆架海岸台风沉积记录及信息提取[J]. 海洋学报, 2019, 41(10): 141-160.
30 GRUNDVÅG S A, JELBY M E, OLAUSSEN S, et al. The role of shelf morphology on storm-bed variability and stratigraphic architecture, Lower Cretaceous, Svalbard [J]. Sedimentology, 2021, 68(1): 196-237.
31 TANG J P, WU H, XING F, et al. Formation and transport of fluid mud triggered by typhoon events in front of the subaqueous Changjiang Delta [J]. Marine Geology, 2023, 460. DOI: 10.1016/j.margeo.2023.107052 .
32 LAMBERT W J, AHARON P, RODRIGUEZ A B. Catastrophic hurricane history revealed by organic geochemical proxies in coastal lake sediments: a case study of Lake Shelby, Alabama (USA) [J]. Journal of Paleolimnology, 2008, 39(1): 117-131.
33 DAS O, WANG Y, DONOGHUE J, et al. Reconstruction of paleostorms and paleoenvironment using geochemical proxies archived in the sediments of two coastal lakes in northwest Florida [J]. Quaternary Science Reviews, 2013, 68: 142-153.
34 JAHAN S, WANG Y, BURNETT W C, et al. Evaluating organic geochemical proxies for application to coastal lake sediments along the Gulf Coast of Florida for paleotempestology [J]. Quaternary Science Reviews, 2021, 266. DOI: 10.1016/j.quascirev.2021.107077 .
35 AIGNER T. Storm depositional systems: dynamic stratigraphy in modern and ancient shallow-marine sequences: lecture notes in Earth sciences [M]. Berlin: Springer, 1985.
36 SALISBURY R D, ATWOOD W W. The geography of the region about Devil’s Lake and the dalles of the Wisconsin: with some notes on its surface geology [M]// Bulletin No.5 and No.1 of the educational series of the wisconsin geological and natural history survey. Madison Wisconsin: the State, 1900.
37 HAYES M O. Hurricanes as geologic agents, South Texas Coast [J]. AAPG Bulletin, 1967, 51: 937-956.
38 PERKINS R D, ENOS P. Hurricane betsy in the Florida-Bahama area: geologic effects and comparison with hurricane donna [J]. The Journal of Geology, 1968, 76(6): 710-717.
39 BRENCHLEY P J, NEWALL G, STANISTREET I G. A storm surge origin for sandstone beds in an epicontinental platform sequence, Ordovician, Norway [J]. Sedimentary Geology, 1979, 22(3/4): 185-217.
40 Jr DOTT R H, BOURGEOIS J. Hummocky stratification: significance of its variable bedding sequences [J]. Geological Society of America Bulletin, 1982, 93: 663-680.
41 REN Mei’e, ZHANG Renshun, YANG Juhai, et al. The influence of storm tide on mud plain coast—with special reference to Jiangsu Province [J]. Marine Geology & Quaternary Geology, 1983, 3(4): 1-24.
任美锷, 张忍顺, 杨巨海, 等. 风暴潮对淤泥质海岸的影响: 以江苏省淤泥质海岸为例[J]. 海洋地质与第四纪地质, 1983, 3(4): 1-24.
42 ZHANG Guodong, WANG Yiyou, ZHU Jingchang, et al. Modern coastal storm deposits of Putuo Island and Zhujiajian Island, Zhoushan [J]. Acta Sedimentologica Sinica, 1987, 5(2): 17-28, 146-147.
张国栋, 王益友, 朱静昌, 等. 现代滨岸风暴沉积: 以舟山普陀岛、朱家尖岛为例[J]. 沉积学报, 1987, 5(2): 17-28, 146-147.
43 HILL P R, NADEAU O C. Storm-dominated sedimentation on the inner shelf of the Canadian Beaufort Sea [J]. Journal of Sedimentary Research, 1989, 59: 455-468.
44 XU Shiyuan, SHAO Xusheng, CHEN Zhongyuan, et al. Storm deposits in the Changjiang delta [J]. Science in China (Series B), 1989, 19(7): 767-773.
许世远, 邵虚生, 陈中原, 等. 长江三角洲风暴沉积系列研究[J]. 中国科学(B辑), 1989, 19(7): 767-773.
45 ZHAO Xitao, LI Bo, LU Gangyi, et al. The Holocene storm deposits and coastal dune in Xiyuan, Funing, Jiangsu [J]. Science in China (Series B), 1992, 22(9): 994-1 001, 1 009.
赵希涛, 李波, 鲁刚毅, 等. 江苏阜宁西园全新世风暴沉积与海岸沙丘的发现及其意义[J]. 中国科学(B辑), 1992, 22(9): 994-1 001, 1 009.
46 LIU K B, FEARN M L. Lake-sediment record of late Holocene hurricane activities from coastal Alabama [J]. Geology, 1993, 21(9): 793-796.
47 HUANG Guangqing. Storm signatures in Holocene sediments of Hong Kong [J]. Acta Geographica Sinica, 1998, 53(3): 216-227.
黄光庆. 香港全新世沉积物中的风暴潮记录[J]. 地理学报, 1998, 53(3): 216-227.
48 ZONG Y Q, TOOLEY M J. Evidence of mid-Holocene storm-surge deposits from Morecambe Bay, northwest England: a biostratigraphical approach [J]. Quaternary International, 1999, 55(1): 43-50.
49 DONNELLY J P, WOODRUFF J D. Intense hurricane activity over the past 5, 000 years controlled by El Niño and the West African monsoon [J]. Nature, 2007, 447(7 143): 465-468.
50 ANDRADE C, TRIGO R M, FREITAS M C, et al. Comparing historic records of storm frequency and the North Atlantic Oscillation (NAO) chronology for the Azores region [J]. The Holocene, 2008, 18(5): 745-754.
51 DEGEAI J P, DEVILLERS B, DEZILEAU L, et al. Major storm periods and climate forcing in the Western Mediterranean during the Late Holocene [J]. Quaternary Science Reviews, 2015, 129: 37-56.
52 ZHOU L, GAO S, JIA J J, et al. Extracting historic cyclone data from coastal dune deposits in eastern Hainan Island, China [J]. Sedimentary Geology, 2019, 392. DOI: 10.1016/j.sedgeo.2019.105524 .
53 YU Fengling, SWITZER A D, ZHENG Zhuo, et al. Sedimentary records as an indicator for palaeotyphoon hazards from the Rongjiang River delta, Chaoshan Plain, southern China [J]. Quaternary Sciences, 2013, 33(6): 1 171-1 182.
余凤玲, SWITZER A D, 郑卓, 等. 榕江河口冲积平原的沉积特征及其对灾害气候事件的响应[J]. 第四纪研究, 2013, 33(6): 1 171-1 182.
54 LI P Y, LI M K, GAN H Y, et al. A preliminary study on sediment records of possible typhoon in the northern South China Sea during the past 6500 years [J]. The Holocene, 2021, 31(7): 1 221-1 228.
55 YANG Y, MASELLI V, NORMANDEAU A, et al. Latitudinal response of storm activity to abrupt climate change during the last 6, 500 years [J]. Geophysical Research Letters, 2020, 47(19). DOI: 10.1029/2020GL089859 .
56 YAO Q, LIU K B, ZHANG Z Q, et al. What are the most effective proxies in identifying storm-surge deposits in paleotempestology? A quantitative evaluation from the sand-limited, peat-dominated environment of the Florida coastal Everglades [J]. Geochemistry, Geophysics, Geosystems, 2023, 24(3). DOI: 10.1029/2022GC010708 .
57 LIU K B, FEARN M L. Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwesternFlorida from lake sediment records [J]. Quaternary Research, 2000, 54(2): 238-245.
58 WANG Wei, LI Pingri, TAN Huizhong, et al. Depositional characteristics and development model of a Chenier built up by storm surges on the coast of the northern South China Sea [J]. Acta Geologica Sinica, 2010, 84(12): 1 829-1 838.
王为, 李平日, 谭惠忠, 等. 南海北部长湾风暴潮贝壳堤的沉积特征及发育模式[J]. 地质学报, 2010, 84(12): 1 829-1 838.
59 TOOMEY M R, CURRY W B, DONNELLY J P, et al. Reconstructing 7000 years of North Atlantic hurricane variability using deep-sea sediment cores from the western Great Bahama Bank [J]. Paleoceanography, 2013, 28(1): 31-41.
60 YANG Zhaoxiang, XUE Chengfeng, YANG Yang, et al. A 100-year reconstruction of typhoon events on the inner shelf of the East China Sea: coupling of meteorological observations and sedimentary records [J]. Haiyang Xuebao, 2020, 42(7): 119-129.
杨照祥, 薛成凤, 杨阳, 等. 百年尺度东海内陆架风暴事件重建: 器测记录与沉积记录耦合[J]. 海洋学报, 2020, 42(7): 119-129.
61 WANG Yuanqi, YANG Yang, ZHOU Liang, et al. Interpreting the origin of coastal boulders on a coral reef flat at Xiaodonghai of Hainan Island based on storm wave energy analysis [J]. Journal of Tropical Oceanography, 2021, 40(4): 110-121.
王媛琪, 杨阳, 周亮, 等. 基于风暴水流能量分布对海南岛小东海珊瑚巨砾成因的分析[J]. 热带海洋学报, 2021, 40(4): 110-121.
62 LIAO Ganbiao, FAN Daidu. Perspectives on the linkage between typhoon activity and global warming from recent research advances in paleotempestology [J]. Chinese Science Bulletin, 2008, 53(13): 1 489-1 502.
廖淦标, 范代读. 全球变暖是否导致台风增强: 古风暴学研究进展与启示[J]. 科学通报, 2008, 53(13): 1 489-1 502.
63 van HENGSTUM P J, DONNELLY J P, KINGSTON A W, et al. Low-frequency storminess signal at Bermuda linked to cooling events in the North Atlantic region [J]. Paleoceanography, 2015, 30(2): 52-76.
64 ZHOU X, LIU Z H, YAN Q, et al. Enhanced tropical cyclone intensity in the western North Pacific during warm periods over the last two millennia [J]. Geophysical Research Letters, 2019, 46(15): 9 145-9 153.
65 LU J, LI A C, DONG J, et al. The effect of Typhoon Talim on the distribution of heavy metals on the inner shelf of the East China Sea [J]. Continental Shelf Research, 2021, 229. DOI: 10.1016/j.csr.2021.104547 .
66 YANG Y, PIPER D J W, XU M, et al. Northwestern Pacific tropical cyclone activity enhanced by increased Asian dust emissions during the Little Ice Age [J]. Nature Communications, 2022, 13. DOI: 10.1038/s41467-022-29386-2 .
67 CAI Ruixi, ZHANG Yufan, ZHANG Tao, et al. Study of indicators and methods for identifying typhoon deposits in the muddy belt of inner shelf of the East China Sea [J]. Haiyang Xuebao, 2023, 45(9): 58-71.
蔡瑞兮, 张宇凡, 张涛, 等. 东海内陆架泥质区台风沉积辨识的指标与方法研究[J]. 海洋学报, 2023, 45(9): 58-71.
68 PAGE M J, TRUSTRUM N A, ORPIN A R, et al. Storm frequency and magnitude in response to Holocene climate variability, Lake Tutira, North-Eastern New Zealand [J]. Marine Geology, 2010, 270(1/2/3/4): 30-44.
69 GUY P A. Mud dispersal across a Cretaceous prodelta: storm-generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies [J]. Sedimentology, 2014, 61(3): 609-647.
70 JELBY M E, GRUNDVÅG S A, HELLAND-HANSEN W, et al. Tempestite facies variability and storm-depositional processes across a wide ramp: towards a polygenetic model for hummocky cross-stratification [J]. Sedimentology, 2020, 67(2): 742-781.
71 DIETZ M E, LIU K B, BIANCHETTE T A, et al. Differentiating hurricane deposits in coastal sedimentary records: two storms, one layer, but different processes [J]. Environmental Research Communications, 2021, 3(10). DOI: 10.1088/2515-7620/ac26dd .
72 DUMAS S, ARNOTT R W C. Origin of hummocky and swaley cross-stratification—the controlling influence of unidirectional current strength and aggradation rate [J]. Geology, 2006, 34(12): 1 073-1 076.
73 BOWMAN A P, JOHNSON H D. Storm-dominated shelf-edge delta successions in a high accommodation setting: the palaeo-Orinoco Delta (Mayaro Formation), Columbus Basin, South-East Trinidad [J]. Sedimentology, 2014, 61(3): 792-835.
74 BENAMRI S, COSTA P J M, ZAGHLOUL M N, et al. Provenance and sedimentary processes on Pleistocene storm deposits in Harhoura (Northern Coastal Atlantic, Morocco): new constraints from a source to sink perspective [J]. Marine Geology, 2023, 457. DOI: 10.1016/j.margeo.2023.106992 .
75 KITAMURA A, YUKA Y, KENJI H, et al. Identifying storm surge deposits in the muddy intertidal zone of Ena Bay, Central Japan [J]. Marine Geology, 2020, 426. DOI: 10.1016/j.margeo.2020.106228 .
76 SABATIER P, DEZILEAU L, COLIN C, et al. 7000 years of paleostorm activity in the NW Mediterranean Sea in response to Holocene climate events [J]. Quaternary Research, 2012, 77(1): 1-11.
77 MOSKALEWICZ D, SZCZUCIŃSKI W, MROCZEK P, et al. Sedimentary record of historical extreme storm surges on the gulf of Gdańsk Coast, Baltic Sea [J]. Marine Geology, 2020, 420. DOI: 10.1016/j.margeo.2019.106084 .
78 WOODRUFF J D, DONNELLY J P, OKUSU A. Exploring typhoon variability over the mid-to-late Holocene: evidence of extreme coastal flooding from Kamikoshiki, Japan [J]. Quaternary Science Reviews, 2009, 28(17/18): 1 774-1 785.
79 RAMÍREZ-HERRERA M T, LAGOS M, HUTCHINSON I, et al. Extreme wave deposits on the Pacific coast of Mexico: Tsunamis or storms?—a multi-proxy approach [J]. Geomorphology, 2012, 139/140: 360-371.
80 van SOELEN E E, BROOKS G R, LARSON R A, et al. Mid- to late-Holocene coastal environmental changes in southwest Florida, USA [J]. The Holocene, 2012, 22(8): 929-938.
81 TIAN Y, FAN D J, ZHANG X L, et al. Event deposits of intense typhoons in the muddy wedge of the East China Sea over the past 150 years [J]. Marine Geology, 2019, 410: 109-121.
82 RODRIGUES E, COHEN M C L, LIU K B, et al. The effect of global warming on the establishment of mangroves in coastal Louisiana during the Holocene [J]. Geomorphology, 2021, 381. DOI: 10.1016/j.geomorph.2021.107648 .
83 ZHENG L W, DING X D, LIU J T, et al. Isotopic evidence for the influence of typhoons and submarine canyons on the sourcing and transport behavior of biospheric organic carbon to the deep sea [J]. Earth and Planetary Science Letters, 2017, 465: 103-111.
84 YU X X, LIU X T, WEI G J, et al. Holocene climate regulates multiple sulfur isotope compositions of pyrite in the East China Sea via sedimentation rate [J]. Marine and Petroleum Geology, 2024, 161. DOI: 10.1016/j.marpetgeo.2023.106687 .
85 FIKE D A, BRADLEY A S, ROSE C V. Rethinking the ancient sulfur cycle [J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 593-622.
86 LANG X G, TANG W B, MA H R, et al. Local environmental variation obscures the interpretation of pyrite sulfur isotope records [J]. Earth and Planetary Science Letters, 2020, 533. DOI: 10.1016/j.epsl.2019.116056 .
87 LIU X T, FIKE D, LI A C, et al. Pyrite sulfur isotopes constrained by sedimentation rates: evidence from sediments on the East China Sea inner shelf since the late Pleistocene [J]. Chemical Geology, 2019, 505: 66-75.
88 LIU J R, ANTLER G, PELLERIN A, et al. Isotopically “heavy” pyrite in marine sediments due to high sedimentation rates and non-steady-state deposition [J]. Geology, 2021, 49(7): 816-821.
89 LIU J R, PELLERIN A, ANTLER G, et al. Early diagenesis of sulfur in Bornholm Basin sediments: the role of upward diffusion of isotopically “heavy” sulfide [J]. Geochimica et Cosmochimica Acta, 2021, 313: 359-377.
90 PASQUIER V, SANSJOFRE P, RABINEAU M, et al. Pyrite sulfur isotopes reveal glacial-interglacial environmental changes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(23): 5 941-5 945.
91 PASQUIER V, BRYANT R N, FIKE D A, et al. Strong local, not global, controls on marine pyrite sulfur isotopes [J]. Science Advances, 2021, 7(9). DOI: 10.1126/sciadv.abb7403 .
92 PASQUIER V, FIKE D A, HALEVY I. Sedimentary pyrite sulfur isotopes track the local dynamics of the Peruvian oxygen minimum zone [J]. Nature Communications, 2021, 12. DOI: 10.1038/s41467-021-24753-x .
93 ALLER R C, MADRID V, CHISTOSERDOV A, et al. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: implications for oceanic isotope cycles and the sedimentary record [J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4 671-4 692.
94 GAINES R R, HAMMARLUND E U, HOU X G, et al. Mechanism for Burgess Shale-type preservation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(14): 5 180-5 184.
95 ZHAO Fangchen, ZHU Maoyan, HU Shixue. Diverse responses of Cambrian organisms to sedimentary events: evidence from the Chengjiang lagerst tte of eastern Yunnan [J]. Acta Palaeontologica Sinica, 2012, 51(3): 265-280.
赵方臣, 朱茂炎, 胡世学. 不同生活方式的物种对快速沉积埋藏事件的反应: 来自寒武纪早期澄江生物群中的证据[J]. 古生物学报, 2012, 51(3): 265-280.
96 MARRINER N, KANIEWSKI D, MORHANGE C, et al. Tsunamis in the geological record: making waves with a cautionary tale from the Mediterranean [J]. Science Advances, 2017, 3(10). DOI: 10.1126/sciadv.1700485 .
97 DONATO S V, REINHARDT E G, BOYCE J I, et al. Identifying tsunami deposits using bivalve shell taphonomy [J]. Geology, 2008, 36(3): 199-202.
98 CARON V. Contrasted textural and taphonomic properties of high-energy wave deposits cemented in beachrocks (St. Bartholomew Island, French West Indies) [J]. Sedimentary Geology, 2011, 237(3/4): 189-208.
99 CARON V. Geomorphic and sedimentologic evidence of extreme wave events recorded by beachrocks: a case study from the island of St. Bartholomew (Lesser Antilles) [J]. Journal of Coastal Research, 2012, 28(4): 811-828.
100 PUGA-BERNABÉU Á, AGUIRRE J. Contrasting storm-versus tsunami-related shell beds in shallow-water ramps [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 471: 1-14.
[1] 吕丹妮, 张艳伟, 刘志飞, 赵玉龙, 阮威涵. 深海底边界层动力特征及其沉积效应研究进展[J]. 地球科学进展, 2023, 38(1): 32-43.
[2] 刘景昱,方念乔. 海因里希事件与类海因里希事件[J]. 地球科学进展, 2019, 34(6): 618-628.
[3] 侯笛,张俊杰,邢磊,周阳. 长链烷基二醇在海洋环境重建中的研究进展[J]. 地球科学进展, 2019, 34(2): 140-147.
[4] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[5] 王大伟, 白宏新, 吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展, 2018, 33(1): 52-65.
[6] 赵绍华, 刘志飞. 海洋沉积物陆源碎屑粒度分析预处理方法研究[J]. 地球科学进展, 2017, 32(7): 769-780.
[7] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
[8] 胡正莹,王汝建,李文宝. 南塔斯曼海隆2 Ma以来碳酸钙沉积记录及其对环流系统和轨道周期的响应[J]. 地球科学进展, 2013, 28(2): 269-281.
[9] 王寿刚,王汝建,陈建芳,陈志华,程振波,汪卫国,黄元辉. 白令海与西北冰洋表层沉积物中四醚膜类脂物研究及其生态和环境指示意义[J]. 地球科学进展, 2013, 28(2): 282-295.
[10] 宋国栋,刘素美. 海洋环境中的厌氧铵氧化研究进展[J]. 地球科学进展, 2012, 27(5): 529-538.
[11] 向 荣,刘 芳,陈 忠,颜 文,陈木宏. 冷泉区底栖有孔虫研究进展[J]. 地球科学进展, 2010, 25(2): 193-202.
[12] 魏玉利,王 鹏,赵美训,张传伦. 黑潮源区沉积物微生物多样性初步研究[J]. 地球科学进展, 2010, 25(2): 212-219.
[13] 高会旺,祁建华,石金辉,石广玉,冯士筰. 亚洲沙尘的远距离输送及对海洋生态系统的影响[J]. 地球科学进展, 2009, 24(1): 1-10.
[14] 杨群慧,周怀阳,季福武,王虎,杨伟芳. 海底生物扰动作用及其对沉积过程和记录的影响[J]. 地球科学进展, 2008, 23(9): 932-941.
[15] 杨文光,郑洪波,王可,谢昕,陈国成,梅西. 南海东北部MD05-2905站36 ka BP以来的陆源碎屑沉积特征与东亚季风的演化[J]. 地球科学进展, 2007, 22(10): 1012-1018.
阅读次数
全文


摘要