地球科学进展 ›› 2024, Vol. 39 ›› Issue (3): 292 -303. doi: 10.11867/j.issn.1001-8166.2024.0017

新学科?新技术?新发现 上一篇    下一篇

避免异参同效的抽水井表皮层溶质运移方程推导
蒯沐钦( ), 黄璟胜( ), 童晨晨, 王晨, 肖烨熙   
  1. 河海大学 水文水资源学院,江苏 南京 210098
  • 收稿日期:2023-11-07 修回日期:2024-02-07 出版日期:2024-03-10
  • 通讯作者: 黄璟胜 E-mail:921106930@qq.com;cshuang0318@hhu.edu.cn
  • 基金资助:
    国家自然科学基金(52379062)

Derivation of Solute Transport Equation for the Skin of an Extraction Well without Equifinality

Muqin KUAI( ), Ching-Sheng HUANG( ), Chenchen TONG, Chen WANG, Yexi XIAO   

  1. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
  • Received:2023-11-07 Revised:2024-02-07 Online:2024-03-10 Published:2024-04-01
  • Contact: Ching-Sheng HUANG E-mail:921106930@qq.com;cshuang0318@hhu.edu.cn
  • About author:KUAI Muqin, Master student, research areas include groundwater mechanism and numerical simulation. E-mail: 921106930@qq.com
  • Supported by:
    the National Natural Science Foundation Program of China(52379062)

抽水井表皮层溶质运移控制方程受到异参同效的影响,存在参数估计的多解性问题。提出一个新的抽水井表皮层溶质运移方程(新瞬态Robin边界条件),并以径向收敛示踪试验为例构建其溶质运移模型。当抽水井为完整井时,通过拉普拉斯变换和有限傅立叶余弦变换得到模型的解析解;当抽水井为非完整井时,应用有限元法构建数值解。结果表明,表皮层溶质运移控制方程导致所估计的表皮层宽度( w )和形成层垂向弥散度( α z )是在0.5 m≤ w ≤1.0 m和0.08 m≤ α z ≤0.10 m范围内的任意组合,偏离实际值。反之,当表皮层佩克莱数( w 和表皮层径向弥散度的比值)小于1时,新瞬态Robin边界条件能够准确反映表皮层的影响,消除 w α z 的多解性。参数估计值( w =0.31 m、 α z =0.17 m)唯一,接近实际值。新模型已成功用于野外试验。

The governing equation of solute transport in the well skin produces multiple parameter estimates because of the equifinality of modeling radially convergent tracer tests. A new transport equation for the skin of an extraction well (i.e., a new transient Robin boundary condition) is proposed. A new analytical model was developed to test a fully penetrating extraction well. The analytical solution of the model was obtained using the Laplace transform and finite Fourier cosine transform. A finite element solution was acquired for the test in a partially penetrating extraction well. Results suggest the skin governing equation produces the estimates of the skin width w and formation vertical dispersivity αz are arbitrary values chosen from the ranges of 0.5 m≤w≤1 m and 0.08 m≤αz ≤0.1 m. These ranges exclude the default values. In contrast, the new Robin boundary condition accurately reflects the skin effect when the Peclet number, defined as the ratio of w to the longitudinal dispersivity of the skin, is less than 1. The present solution relying on this boundary condition predicts the single optimal estimates of w and αz . The estimates (w=0.31 m, αz =0.17 m) approach their default values. The present solution applies to field tests.

中图分类号: 

图1 两种径向收敛示踪试验溶质运移的模拟方法及其参数估计可靠度对比
(a)实际的三维溶质运移;(b)简化的二维径向溶质运移;(c)传统模型的表皮层细网格;(d)新模型的表皮层无网格;(e)低可靠度的参数估计;(f)高可靠度的参数估计
Fig. 1 Comparison between two models simulating solute transport in radially convergent tracer tests
(a) Actual three-dimensional solute transport; (b) Simplified two-dimensional solute transport;(c) Conventional model’s find skin grid; (d) New model’s meshless skin; (e) Unreliable parameter estimation; (f) Reliable parameter estimation
图2 不同表皮层迟滞因子和佩克莱数影响下的无量纲浓度时空分布
(a)~(b)负表皮层和正表皮层的无量纲浓度空间分布;(c)新单层解析解的预测误差随佩克莱数的变化
Fig. 2 Spatiotemporal distributions of the dimensionless concentration for different values of the skin retardation factor and Peclet number
(a)~(b) Spatial dimensionless concentration for negative skin and positive skin;(c) Prediction error of the new single-zone analytical solution under different Peclet numbers
图3 新单层解析解与浓度穿透曲线噪声数据的拟合
(a)标准化敏感系数的时域分布;(b)~(c)表皮层参数的标准误差等值线
Fig. 3 Curve fitting between the present analytical solution and noisy data of breakthrough curves
(a) Temporal normalized sensitivity coefficient; (b)~(c) Contour of standard error of estimate for skin parameters
图4 实测浓度穿透曲线数据与新单层解析解和双层半解析解预测的结果比较
Fig. 4 Comparison of the breakthrough curve data with the breakthrough curves plotted by the new single-zone analytical solution and the two-zone semi-analytical solution
图5 完整抽水井和非完整抽水井案例的无量纲浓度时空分布
(a)~(b)不同含水层厚度下的无量纲浓度空间分布
Fig. 5 Spatiotemporal distributions of the dimensionless concentration induced by fully-penetrating and partially-penetrating pumping wells
(a)~(b) Spatial dimensionless concentration for different aquifer thicknesses
1 HUANG Wanbin, YAN Chunhua, ZHANG Xiaonan, et al. The impact of urbanization on groundwater quantity,quality,hydrothermal changes and its countermeasures[J]. Advances in Earth Science, 2020, 35(5): 497-512.
黄婉彬,鄢春华,张晓楠,等. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.]
2 QIN Ronggao, QIU Renmin, LI Ming, et al. Review of study on groundwater contamination risk assessment in vadose zone-aquifer[J]. Advances in Earth Science, 2020, 35(2): 111-123.
覃荣高,邱仁敏,黎明,等. 包气带—含水层地下水污染风险评估研究进展[J]. 地球科学进展, 2020, 35(2): 111-123.]
3 TANG Guopin, NIU Yuzhen. Study on the evolution trend of urban groundwater pollution in China[J]. Sichuan Water Resources, 2021, 42(1): 80-83.
唐国品,牛玉珍. 中国城市地下水污染演变趋势研究[J]. 四川水利, 2021, 42(1): 80-83.]
4 XIA Bing, GAO Hongyuan, XU Liangcai,et al. Research on groundwater pollution prevention and control technology in metal mining area[J]. China Metal Bulletin, 2022(10): 192-194.
夏冰,高红远,徐良才,等. 金属矿区地下水污染防治技术研究[J]. 中国金属通报, 2022(10): 192-194.]
5 MA Baoqiang, WANG Xiao, TANG Chao,et al. Overview of the characteristics of global groundwater resources development,utilization and the main environmental problems[J]. Natural Resources Information, 2022(8): 1-6.
马宝强,王潇,汤超,等. 全球地下水资源开发利用特点及主要环境问题概述[J]. 自然资源情报, 2022(8): 1-6.]
6 LU Hongjian, WANG Zhuoran. Research progress in groundwater simulation methods and application softwares[J]. Ground Water, 2022, 44(6): 49-52.
卢洪健,王卓然. 地下水模拟方法与应用软件研究进展[J]. 地下水, 2022, 44(6): 49-52.]
7 DENG H, ZHOU S F, HE Y, et al. Efficient calibration of groundwater contaminant transport models using Bayesian optimization[J]. Toxics, 2023, 11(5). DOI:10.3390/toxics11050438 .
8 SUN N Z, YANG S L, YEH W W G. A proposed stepwise regression method for model structure identification[J]. Water Resources Research, 1998, 34(10): 2 561-2 572.
9 MOENCH A F. Convergent radial dispersion: a Laplace transform solution for aquifer tracer testing[J]. Water Resources Research, 1989, 25(3): 439-447.
10 CHEN Xiangbiao. Application of groundwater tracer connectivity test on hydrogeological investigation[J]. Water Conservancy Science and Technology and Economy, 2014, 20(7): 93-95.
陈相彪. 地下水示踪连通试验在水文地质勘察中的应用[J]. 水利科技与经济, 2014, 20(7): 93-95.]
11 PANG Mingxin, XIE Fuxing, YUAN Shuai, et al. Failure law of shaft lining in thick topsoil and fiber monitoring analysis[J]. Safety in Coal Mines, 2022, 53(5): 211-217.
庞明鑫,谢福星,袁帅,等. 厚表土立井井壁变形破坏规律及光纤监测分析[J]. 煤矿安全, 2022, 53(5): 211-217.]
12 WEN Z, ZHAN H B, HUANG G H, et al. Constant-head test in a leaky aquifer with a finite-thickness skin[J]. Journal of Hydrology, 2011, 399(3/4): 326-334.
13 HUANG C S, TONG C C, HU W S, et al. Analysis of radially convergent tracer test in a two-zone confined aquifer with vertical dispersion effect: asymmetrical and symmetrical transports[J]. Journal of Hazardous Materials, 2019, 377: 8-16.
14 ZHANG Kaixin, HUANG Chingsheng, WANG Chen, et al. A new analytical method for modeling radially divergent solute transport in two-zone confined aquifers with negative skin effects[J]. Advances in Earth Science, 2023, 38(4): 429-440.
张开鑫,黄璟胜,王晨,等. 基于负表皮层影响的径向溶质运移模型构建与新求解方法[J]. 地球科学进展, 2023, 38(4): 429-440.]
15 WANG C, HUANG C S, TONG C C, et al. Parameter correlation study on two new analytical solutions for radially divergent tracer tests in two-zone confined aquifers with vertical dispersion effect[J]. Advances in Water Resources, 2023, 179. DOI:10.1016/j.advwatres.2023.104506 .
16 LI Xu. Thoretical investigation and numerical simulation of solute transport in heterogeneous porous media near a pumping or injection well[D]. Wuhan: China University of Geosciences(Wuhan),2020.
李旭. 抽/注水井附近非均质介质中溶质运移机理及数值模拟研究[D]. 武汉:中国地质大学(武汉),2020.]
17 CHEN J S. Analytical model for fully three-dimensional radial dispersion in a finite-thickness aquifer[J]. Hydrological Processes, 2010, 24(7): 934-945.
18 CHEN J S, LIANG C P, GAU H S, et al. Mathematical model for formation decontamination by pumping with well bore mixing[J]. Applied Mathematical Modelling, 2006, 30(5): 446-457.
19 CHEN J S, LIU C W, LIAO C M. A novel analytical power series solution for solute transport in a radially convergent flow field[J]. Journal of Hydrology, 2002, 266(1/2): 120-138.
20 BARUA G, BORA S N. Hydraulics of a partially penetrating well with skin zone in a confined aquifer[J]. Advances in Water Resources,2010,33(12):1 575-1 587.
21 LI Haixue, CHENG Xuxue, HAN Shuangbao, et al. Application of stratified pumping test in hydrogeological exploration of larger thickness aquifers[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(5): 174-181.
李海学,程旭学,韩双宝,等. 分层抽水在大厚度含水层水文地质勘查中的应用[J]. 南水北调与水利科技, 2020, 18(5): 174-181.]
22 张绚华. 一种新型井下放射性示踪剂释放方法及其装置:CN102392633B[P]. 2014-07-16.
23 CHEN J S, LIU C W, CHEN C S, et al. A Laplace transform solution for tracer tests in a radially convergent flow field with upstream dispersion[J]. Journal of Hydrology, 1996, 183(3/4): 263-275.
24 WANG Yulin, XIE Kanghe, HUANG Dazhong, et al. A mathematical model and its semi-analytical solution for the flow of anisotropic confined aquifer with two radial layers considering heterogeneity of well skin[J]. Chinese Journal of Engineering Mathematics, 2016, 33(3): 221-233.
王玉林,谢康和,黄大中,等. 非均质表皮层径向双层承压井流数学模型的半解析解[J]. 工程数学学报, 2016, 33(3): 221-233.]
25 HUANG C S, YANG S Y, YEH H D. Technical Note: approximate solution of transient drawdown for constant-flux pumping at a partially penetrating well in a radial two-zone confined aquifer[J]. Hydrology and Earth System Sciences, 2015, 19(6): 2 639-2 647.
26 STEHFEST H. Algorithm 368:numerical inversion of Laplace transforms[D5][J]. Communications of the ACM, 1970, 13(1): 47-49.
27 WOLFRAM R. Mathematica[Z]. Version 11.0. Champaign,Illinois: Wolfram Research, Inc., 2016.
28 MCELWEE C D, BUTLER J J, BOHLING G C,et al. Sensitivity analysis of slug tests Part 2. observation wells[J]. Journal of Hydrology, 1995, 164(1/2/3/4): 69-87.
29 WANG Yulin, XIE Kanghe, LI Chuanxun. Mathematical model and analytical solution for flow in confined aquifer due to groundwater permeating through bottom of pumping well in overlying aquiclude[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(2): 439-444.
王玉林,谢康和,李传勋. 未穿透覆盖层的自流井渗流模型与解析解[J]. 地下空间与工程学报, 2020, 16(2): 439-444.]
[1] 张开鑫, 黄璟胜, 王晨, 童晨晨, 王子成. 基于负表皮层影响的径向溶质运移模型构建与新求解方法[J]. 地球科学进展, 2023, 38(4): 429-440.
阅读次数
全文


摘要