地球科学进展 ›› 2023, Vol. 38 ›› Issue (1): 32 -43. doi: 10.11867/j.issn.1001-8166.2022.100

综述与评述 上一篇    下一篇

深海底边界层动力特征及其沉积效应研究进展
吕丹妮( ), 张艳伟( ), 刘志飞, 赵玉龙, 阮威涵   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2022-06-20 修回日期:2022-11-10 出版日期:2023-01-10
  • 通讯作者: 张艳伟 E-mail:2011469@tongji.edu.cn;ywzhang@tongji.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“强台风触发深海浊流垂直结构的高分辨率锚系观测研究”(41876048);国家自然科学基金重大研究计划集成项目“南海深海沉积过程与机制”(91528304)

Research Progress on the Dynamics of the Deep-sea Bottom Boundary Layer and Its Sedimentation Effect

Danni LÜ( ), Yanwei ZHANG( ), Zhifei LIU, Yulong ZHAO, Weihan RUAN   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2022-06-20 Revised:2022-11-10 Online:2023-01-10 Published:2023-02-02
  • Contact: Yanwei ZHANG E-mail:2011469@tongji.edu.cn;ywzhang@tongji.edu.cn
  • About author:LÜ Danni (1997-), female, Jingxi City, Guangxi Zhuang Autonomous Region, Ph.D student. Research areas include observation on ocean dynamics in the deep ocean. E-mail: 2011469@tongji.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “High-resolution mooring observation on vertical structure of typhoon-triggered deep-sea turbidity currents”(41876048);“Deep-sea sedimentation process and mechanism in the South China Sea”(91528304)

深海底边界层动力特征直接调控深海沉积过程,属于深海科学最关键的能量和物质交换层。虽然根据有限的观测发现深海海底边界层动力特征受控于海洋多尺度运动,与深海底边界层理论结果存在较大差异,但深海底边界层多时空变化特征对深海沉积过程的影响仍缺少系统的定量研究。结合已有的理论、现场观测、水槽实验与数值模拟结果,针对以下要点进行回顾和总结: 深海底边界层流场的基本特征及湍流特性; 潮汐、内波、中尺度涡以及大尺度环流的深海底边界层动力特征及其沉积效应。可为进一步开展以深海底边界层动力观测为基础的深海沉积动力学研究提供参考。

The dynamics of the deep-sea Bottom Boundary Layer (BBL) directly control the deep-sea sedimentation process, making it the most important energy and material exchange layer in deep-sea science. According to existing sporadic observations, BBL dynamics controlled by multi-scale motions in the ocean differ greatly from current theories, and there remains a lack of systematic quantitative studies on the deep-sea sedimentation process influenced by BBL dynamics. Based on the theoretical framework, sporadic in-situ observations, and numerical and laboratory research, the following points are reviewed and summarized herein: Basic characteristics of BBL flow and its turbulent characteristics; Effects of tides, internal waves, mesoscale eddies, and large-scale circulation on the BBL dynamics in the deep sea. This review provides a background for further research on deep-sea sediment dynamics based on observations of BBL dynamic processes.

中图分类号: 

图1 BBL流场与沉积动力模型涉及的参数及其关系 11
Fig. 1 Parameters and their relationships involved in hydrodynamic and sediment dynamic models 11
图2 底边界层理论中各子层(层厚不按比例绘制)的底切应力大小分布 14 - 15
Fig. 2 Theoretical bottom shear stress distribution within different sublayerslayer thickness isn’t shown on scaleof bottom boundary layer 14 - 15
图3 沉积物颗粒在BBL湍流相干结构作用下的再悬浮机制 30
△y△x表示发夹涡大小和它在一个湍流猝发周期经过长度的相对比值
Fig. 3 Resuspension mechanism of sediment under the turbulence coherent structure of BBL 30
y and △ x represent the relative ratio of the size of hairpin vortex to the distance it traveled during a turbulent burst period
图4 沉降—输运—侵蚀关系图 31
Fig. 4 Depositiontransport and erosion diagram 31
图5 旋转—无潮流案例Ek与旋转—潮流案例D的数值模拟结果 36
(a)平均流速 u ˉ 剖面,案例Ek和案例D的BBL厚度模拟结果在图上用虚线标出;(b)湍流强度随深度的变化,用流速脉动值的均方根 u r m s ' 表示;(c)湍流强度与平均流速的比值 u r m s ' / u ˉ 随深度的变化。图中插图是一个潮周期内案例Ek和案例D中摩擦流速 u* u r m s ' / u ˉ 的时间序列。 Re τ 是湍流雷诺数(涡黏度 ν T 和分子黏度 ν的比值)
Fig. 5 Numerical simulation results of rotating no-tides case Ek and rotating tides case D 36
(a) The profile of averaged velocity u ˉ , the bottom boundary layer thickness of case Ek and D are marked as dotted line; (b) Variation of turbulence intensity with depth, which is expressed by the root mean square of velocity fluctuation u r m s ' ; (c) Variation of the ratio of turbulence intensity to average velocity u r m s ' / u ˉ with depth. The inset in this figure is the time series of u * and u r m s ' / u ˉ of case Ek and D respectively during a tide period. Re τ is the turbulent Reynolds number (the ratio of eddy viscosity to molecular viscosity)
图6 振荡流沿坡向上(a)和向下(b)时倾斜地形上BBL流场密度结构 38
Fig. 6 Sketch of BBL density structure near sloping topography when tidal currents flowsaupslope andbdownslope 38
图7 流体从陆坡BBL中脱离的示意图 44 - 45
Fig. 7 Sketch of slope bottom boundary layer detachment 44 - 45
图8 冷涡与暖涡作用下的底混合层厚度 H m 剖面 56
箭头表示对流,横坐标表示与涡核的水平距离,纵坐标表示距底高度
Fig. 8 The profile of the bottom mixed layer thickness computed for cyclonic and anticyclonic flow 56
The arrows in this figure represent convection, the abscissa represents horizontal distance from the core of the eddy and the ordinate represents distance from the bottom
图9 流体从BBL脱离的一种可能机制 58
Fig. 9 A possible process of Bottom Boundary Layer detachment 58
图10 对深海BBL进行原位观测研究的代表性站位分布
南海北部站位为本文作者正在研究的站位,相关成果尚未发表
Fig. 10 Distribution of representative in-situ observation site of deep-sea bottom boundary layer
Site in the northern South China Sea is the one author is studying, the related results haven’t been published yet
图11 HEBBLE深海BBL的低频运动与叠加于其上的高频运动 66
时间序列经过低通滤波,截止频率为24 h
Fig. 11 Low-frequency motion and superposed high-frequency motion record in the deep-sea Bottom Boundary Layer inside the HEBBLE study area 66
The time series in the graph is low-pass filtered with a cut-off frequency of 24 hours
表1 观测深海 BBL沉积动力过程常用仪器
Table 1 Instruments commonly used to observe the dynamic process in the deep-sea bottom boundary layer
1 MCCAVE I N. The benthic boundary layer [M]. New York and London: Springer U.S., 1976.
2 WANG Pinxian, JIAN Zhimin. Exploring the deep South China Sea: retrospects and prospects [J]. Science China: Earth Sciences, 2019, 49(10): 1 590-1 606.
汪品先, 翦知湣. 探索南海深部的回顾与展望[J]. 中国科学: 地球科学, 2019, 49(10): 1 590-1 606.
3 LIU Z F, ZHAO Y L, COLIN C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153: 238-273.
4 HÜNEKE H, MULDER T. Deep-sea sediments [M]. Amsterdam: Elsevier, 2014.
5 GEYER W R, MACCREADY P. The estuarine circulation[J]. Annual Review of Fluid Mechanics, 2014, 46: 175-197.
6 TROWBRIDGE J H, LENTZ S J. The bottom boundary layer[J]. Annual Review of Marine Science, 2018, 10: 397-420.
7 DANOVARO R, CORINALDESI C, DELL’ ANNO A, et al. The deep-sea under global change[J]. Current Biology, 2017, 27(11). DOI:10.1016/j.cub.2017.02.046 .
8 HOLLISTER C D. HEBBLE epilogue[J]. Marine Geology, 1991, 99(3/4): 445-460.
9 AGHSAEE P, BOEGMAN L. Experimental investigation of sediment resuspension beneath internal solitary waves of depression[J]. Journal of Geophysical Research: Oceans, 2015, 120(5): 3 301-3 314.
10 MELLOR G L, YAMADA T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 1982, 20(4): 851-875.
11 MCLEAN S R. Theoretical modelling of deep ocean sediment transport[J]. Marine Geology, 1985, 66(1/2/3/4): 243-265.
12 WANG Pinxian. Decadal survey in the South China Sea: prospects of deep-sea technologies[J]. Science and Technology Foresight, 2022, 1(2): 9-19.
汪品先. 从南海10年展望深海科技前景[J]. 前瞻科技, 2022, 1(2): 9-19.
13 BOWDEN K F. Physical problems of the benthic boundary layer[J]. Geophysical Surveys, 1978, 3(3): 255-296.
14 ALI A, LEMCKERT C J. A traversing system to measure bottom boundary layer hydraulic properties[J]. Estuarine, Coastal and Shelf Science, 2009, 83(4): 425-433.
15 FALLER A J, KAYLOR R E. A numerical study of the instability of the laminar ekman boundary layer[J]. Journal of the Atmospheric Sciences, 1966, 23(5): 466-480.
16 ZHANG Wenyuan. Bottom boundary layer[M]// Encyclopedia of marine science, Amsterdam: Springer Netherlands, 2014.
17 SALON S, CRISE A, van LOON A J. Dynamics of the Bottom Boundary Layer[M]// REBESCO M, CAMERLENGHI A. Developments in Sedimentology. Oxford: Elsevier, 2008.
18 LUECK R S T, LAURENT L, MOUM J N. Turbulence in the Benthic Boundary Layer[M]// COCHRAN J K, BOKUNIEWICZ H, YAGER P, et al. Encyclopedia of ocean sciences (third edition). Oxford: Academic Press, 2019.
19 WEN Mingzheng, SHAN Hongxian, ZHANG Shaotong, et al. Resuspension of sediments along the bottom boundary layer: a review[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 177-188.
文明征, 单红仙, 张少同, 等. 海底边界层沉积物再悬浮的研究进展[J]. 海洋地质与第四纪地质, 2016, 36(1): 177-188.
20 LOZOVATSKY I D, SHAPOVALOV S M. Thickness of the mixed bottom layer in the Northern Atlantic[J]. Oceanology, 2012, 52(4): 447-452.
21 PERLIN A, MOUM J N, KLYMAK J M, et al. Organization of stratification, turbulence, and veering in bottom Ekman layers[J]. Journal of Geophysical Research: Oceans, 2007, 112(C5). DOI:10.1029/2004JC002641 .
22 MCCAVE I N. Nepheloid Layers[M]// COCHRAN J K, BOKUNIEWICZ H, YAGER P. Encyclopedia of ocean sciences (third edition), Oxford: Academic Press, 2019.
23 STAHR F R. Transport and bottom boundary layerobservations of the North Atlantic Deep Western Boundary Current at the Blake Outer Ridge[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1999, 46(1/2): 205-243.
24 ARMI L, MILLARD Jr R C. The bottom boundary layer of the deep ocean[J]. Journal of Geophysical Research, 1976, 81(27): 4 983-4 990.
25 JIANG Donghui, GAO Shu. Recent progress in sediment transport research for marine environments[J]. Advances in Earth Science, 2003, 18(1): 100-108.
蒋东辉, 高抒. 海洋环境沉积物输运研究进展[J]. 地球科学进展, 2003, 18(1): 100-108.
26 THEODORSEN T. Mechanism of turbulence[C]// Proceedings of the 2nd midwestern conference on fluid mechanics, columbus, 1952:1-19.
27 GORDON C M. Intermittent momentum transport in a geophysical boundary layer[J]. Nature, 1974, 248(5 447): 392-394.
28 HEATHERSHAW A D. “Bursting” phenomena in the sea[J]. Nature, 1974, 248(5 447): 394-395.
29 EITEL-AMOR G, ÖRLÜ R, SCHLATTER P, et al. Hairpin vortices in turbulent boundary layers[J]. Physics of Fluids, 2015, 27(2). DOI:10.1063/1.4907783 .
30 RASHIDI M. Particle-turbulence interaction in a boundary layer[J]. International Journal of Multiphase Flow, 1990, 16(6): 935-949.
31 MCCAVE I N. Sedimentary processes deposition from suspension[M]// Encyclopedia of geology. Amsterdam: Elsevier, 2005: 8-17.
32 WEATHERLY G L, BLUMSACK S L, BIRD A A. On the effect of diurnal tidal currents in determining the thickness of the turbulent ekman bottom boundary layer[J]. Journal of Physical Oceanography, 1980, 10(2): 297-300.
33 SAKAMOTO K. Instabilities of the tidally induced bottom boundary layer in the rotating frame and their mixing effect[J]. Dynamics of Atmospheres and Oceans, 2006, 41(3/4): 191-211.
34 SAKAMOTO K, AKITOMO K. The tidally induced bottom boundary layer in a rotating frame: similarity of turbulence[J]. Journal of Fluid Mechanics, 2008, 615: 1-25.
35 SAKAMOTO K, AKITOMO K. The tidally induced bottom boundary layer in the rotating frame: development of the turbulent mixed layer under stratification[J]. Journal of Fluid Mechanics, 2009, 619: 235-259.
36 TURNEWITSCH R, DALE A, LAHAJNAR N, et al. Can neap-spring tidal cycles modulate biogeochemical fluxes in the abyssal near-seafloor water column?[J]. Progress in Oceanography, 2017, 154: 1-24. DOI:10.1016/j.pocean.2017.04.006 .
37 ENDOH T. Observational evidence for tidal straining over a sloping continental shelf[J]. Continental Shelf Research, 2016, 117: 12-19.
38 SCHULZ K, UMLAUF L. Residual transport of suspended material by tidal straining near sloping topography[J]. Journal of Physical Oceanography, 2016, 46: 2 083-2 102.
39 THOMSEN L. Processes in the benthic boundary layer at the Iberian continental margin and their implication for carbon mineralization[J]. Progress in Oceanography, 2002, 52(2/3/4): 315-329.
40 WANG Haonan, JIA Yonggang, JI Chunsheng, et al. Internal tide-induced turbulent mixing and suspended sediment transport at the bottom boundary layer of the South China Sea slope[J]. Journal of Marine Systems, 2022, 230. DOI:10.1016/j.jmarsys.2022.103723 .
41 GAYEN B, SARKAR S. Turbulence during the generation of internal tide on a critical slope[J]. Physical Review Letters, 2010, 104(21). DOI:10.1103/PhysRevLett.104.218502 .
42 GAYEN B, SARKAR S. Direct and large-eddy simulations of internal tide generation at a near-critical slope[J]. Journal of Fluid Mechanics, 2011, 681: 48-79.
43 XIE X H, LIU Q, ZHAO Z X, et al. Deep Sea Currents driven by breaking internal tides on the continental slope[J]. Geophysical Research Letters, 2018, 45(12): 6 160-6 166.
44 GARRETT C. The role of secondary circulation in boundary mixing[J]. Journal of Geophysical Research: Oceans, 1990, 95(C3): 3 181-3 188.
45 MCPHEE-SHAW E. Boundary-interior exchange: reviewing the idea that internal-wave mixing enhances lateral dispersal near continental margins[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2006, 53(1/2): 42-59.
46 HAREN H V, CHI W C, YANG C F, et al. Deep Sea floor observations of typhoon driven enhanced ocean turbulence[J]. Progress in Oceanography, 2020, 184. DOI:10.1016/j.pocean.2020.102315 .
47 ZHANG Y W, LIU Z F, ZHAO Y L, et al. Effect of surface mesoscale eddies on deep-sea currents and mixing in the northeastern South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 6-14.
48 JIA Y G, TIAN Z C, SHI X F, et al. Deep-sea sediment resuspension by internal solitary waves in the northern South China Sea[J]. Scientific Reports, 2019, 9(1). DOI:10.1016/j.pocean.2020.102315 .
49 BOEGMAN L, STASTNA M. Sediment resuspension and transport by internal solitary waves[J]. Annual Review of Fluid Mechanics, 2019. DOI: 10.1146/annurev-fluid-122316-045049 .
50 BOEGMAN L, IVEY G N. Flow separation and resuspension beneath shoaling nonlinear internal waves[J]. Journal of Geophysical Research: Oceans, 2009, 114(C2). DOI:10.1029/2007JC004411 .
51 ZHANG Zhengguang. Mesoscale eddy[D]. Qingdao: Ocean University of China, 2014.
张正光. 中尺度涡[D]. 青岛: 中国海洋大学, 2014.
52 ZHENG Quanan, XIE Lingling, ZHENG Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2017, 35(2): 131-158.
郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131-158.
53 ZHANG Z W, ZHAO W, TIAN J W, et al. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation[J]. Journal of Geophysical Research: Oceans, 2013, 118(12): 6 479-6 494.
54 ZHANG Z, TIAN J, QIU B, et al. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea [J]. Scientific Reports, 2016, 6. DOI:10.1038/srep24349 .
55 LI D W, WEI Z X, WANG Y G, et al. Characteristics and temporal variations of near-bottom currents near the Dongsha Island in the northern South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(4): 80-89.
56 PEGGION G. The effect of the benthic boundary layer on the physics of intense mesoscale eddies [D]. Gainesville: The Florida State University, 1985.
57 PEGGION G. On the interaction of the bottom boundary layer and deep rings[J]. Marine Geology, 1991, 99(3/4): 329-342.
58 THORPE S A. The dynamics of the boundary layers of the deep ocean[J]. Science Progress, 1988, 72(2 286): 189-206.
59 ARMI L, D’ASARO E. Flow structures of the benthic ocean[J]. Journal of Geophysical Research: Oceans, 1980, 85(C1): 469-484.
60 D’ASARO E. Velocity structure of the benthic ocean[J]. Journal of Physical Oceanography, 1982, 12(4): 313-322.
61 WASHBURN L, SWENSON M S, LARGIER J L, et al. Cross-shelf sediment transport by an anticyclonic eddy off northern California[J]. Science, 1993, 261(5 128): 1 560-1 564.
62 ZHANG Y W, LIU Z F, ZHAO Y L, et al. Mesoscale eddies transport deep-sea sediments[J]. Scientific Reports, 2014, 4. DOI:10.1038/srep05937 .
63 CHEN Hui, ZHANG Wenyan, XIE Xinong, et al. Sediment dynamics driven by contour currents and mesoscale eddies along continental slope: a case study of the northern South China Sea[J]. Marine Geology, 2019, 409: 48-66.
64 KELLEY E A, WEATHERLY G L, EVANS J C. Correlation between surface gulf stream and bottom flow new 5000 meters depth[J]. Journal of Physical Oceanography, 1982, 12(10): 1 150-1 153.
65 KELLEY E A, WEATHERLY G L. Abyssal eddies near the gulf stream[J]. Journal of Geophysical Research: Oceans, 1985, 90(C2): 3 151-3 159.
66 GRANT W D III. A description of the bottom boundary layer at the HEBBLE site: low-frequency forcing, bottom stress and temperature structure[J]. Marine Geology, 1985, 66(1/2/3/4): 219-241.
67 RICHARDSON M J, WIMBUSH M, MAYER L. Exceptionally strong near-bottom flows on the continental rise of nova Scotia [J]. Science, 1981, 213(4 510): 887-888.
68 WEATHERLY G L. An estimate of bottom frictional dissipation by Gulf Stream fluctuations[J]. Journal of Marine Research, 1984, 42(2): 289-301.
69 GARDNER W D, TUCHOLKE B E, RICHARDSON M J, et al. Benthic storms, nepheloid layers, and linkage with upper ocean dynamics in the western North Atlantic[J]. Marine Geology, 2017, 385: 304-327.
70 SPINRAD R W, ZANEVELD J R V. An analysis of the optical features of the near-bottom and bottom nepheloid layers in the area of the Scotian Rise[J]. Journal of Geophysical Research: Oceans, 1982, 87(C12): 9 553-9 561.
71 WEATHERLY G L. Storms and flow reversals at the HEBBLE site[J]. Marine Geology, 1985, 66(1/2/3/4): 205-218.
72 GROSS T F III. Characterization of deep-sea storms[J]. Marine Geology, 1991, 99(3/4): 281-301.
73 van WEERING T C E. Benthic processes and dynamics at the NW Iberian margin: an introduction[J]. Progress in Oceanography, 2002, 52(2/3/4): 123-128.
74 VITORINO J. Winter dynamics on the northern Portuguese shelf. Part 2: bottom boundary layers and sediment dispersal[J]. Progress in Oceanography, 2002, 52(2/3/4): 155-170.
75 THOMSEN L. Spatial and temporal variability of particulate matter in the benthic boundary layer at the N.W. European Continental Margin (Goban Spur)[J]. Progress in Oceanography, 1998, 42(1/2/3/4): 61-76.
76 SMITH JR K L. Long time-series monitoring of an abyssal site in the NE Pacific: an introduction[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1998, 45(4/5): 573-586.
77 CONNOLLY T P, MCGILL P R, HENTHORN R G, et al. Near-bottom Currents at station M in the abyssal northeast Pacific[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2020, 173. DOI:10.1016/j.dsr2.2020.104743 .
78 BEAULIEU S. Temporal variability in currents and the benthic boundary layer at an abyssal station off central California[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1998, 45(4/5): 587-615.
79 KLEIN H. Near-bottom Currents and bottom boundary layer variability over manganese nodule fields in the Peru basin, se-Pacific[J]. Deutsche Hydrografische Zeitschrift, 1996, 48(2): 147-160.
80 ZHAO Jiuqiang, ZHANG Yanwei, LIU Zhifei, et al. Seasonal variability of tides in the deep northern South China Sea[J]. Science China: Earth Sciences, 2019, 49(4): 717-730.
赵玖强, 张艳伟, 刘志飞, 等. 南海北部深海潮汐的季节性变化特征[J]. 中国科学: 地球科学, 2019, 49(4): 717-730.
81 ALFORD M H, PEACOCK T, MACKINNON J A, et al. The formation and fate of internal waves in the South China Sea[J]. Nature, 2015, 521(7 550): 65-69.
82 QUAN Q, CAI Z Y, JIN G, et al. Topographic rossby waves in the abyssal South China Sea[J]. Journal of Physical Oceanography, 2021. DOI: 10.1175/JPO-D-20-0187.1 .
83 DING Zhongjun, LIAO Yulei, REN Yugang. Research on the technological development of deep sea observation and monitoring equipment [M]. Harbin: Harbin Engineering University Press, 2020.
丁忠军, 廖煜雷, 任玉刚. 深海观测监测装备技术发展研究[M]. 哈尔滨: 哈尔滨工程大学出版社, 2020.
84 JI Chunsheng, JIA Yonggang, ZHU Junjiang, et al. R & D and application of the Abyssal Bottom Boundary Layer Observation System(ABBLOS)[J]. Earth Science Frontiers, 2022, 29(5): 265-274.
季春生, 贾永刚, 朱俊江, 等. 深海海底边界层原位观测系统研发与应用[J]. 地学前缘, 2022, 29(5): 265-274.
85 LI Jianru, XU Jingping, LIU Zhifei. Applications of tripods to deep-sea observation[J]. Advances in Earth Science, 2013, 28(5): 559-565.
李建如, 徐景平, 刘志飞. 底基三脚架在深海观测中的应用[J]. 地球科学进展, 2013, 28(5): 559-565.
[1] 刘景昱,方念乔. 海因里希事件与类海因里希事件[J]. 地球科学进展, 2019, 34(6): 618-628.
[2] 侯笛,张俊杰,邢磊,周阳. 长链烷基二醇在海洋环境重建中的研究进展[J]. 地球科学进展, 2019, 34(2): 140-147.
[3] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[4] 王大伟, 白宏新, 吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展, 2018, 33(1): 52-65.
[5] 赵绍华, 刘志飞. 海洋沉积物陆源碎屑粒度分析预处理方法研究[J]. 地球科学进展, 2017, 32(7): 769-780.
[6] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
[7] 胡正莹,王汝建,李文宝. 南塔斯曼海隆2 Ma以来碳酸钙沉积记录及其对环流系统和轨道周期的响应[J]. 地球科学进展, 2013, 28(2): 269-281.
[8] 王寿刚,王汝建,陈建芳,陈志华,程振波,汪卫国,黄元辉. 白令海与西北冰洋表层沉积物中四醚膜类脂物研究及其生态和环境指示意义[J]. 地球科学进展, 2013, 28(2): 282-295.
[9] 宋国栋,刘素美. 海洋环境中的厌氧铵氧化研究进展[J]. 地球科学进展, 2012, 27(5): 529-538.
[10] 向 荣,刘 芳,陈 忠,颜 文,陈木宏. 冷泉区底栖有孔虫研究进展[J]. 地球科学进展, 2010, 25(2): 193-202.
[11] 魏玉利,王 鹏,赵美训,张传伦. 黑潮源区沉积物微生物多样性初步研究[J]. 地球科学进展, 2010, 25(2): 212-219.
[12] 高会旺,祁建华,石金辉,石广玉,冯士筰. 亚洲沙尘的远距离输送及对海洋生态系统的影响[J]. 地球科学进展, 2009, 24(1): 1-10.
[13] 杨群慧,周怀阳,季福武,王虎,杨伟芳. 海底生物扰动作用及其对沉积过程和记录的影响[J]. 地球科学进展, 2008, 23(9): 932-941.
[14] 杨文光,郑洪波,王可,谢昕,陈国成,梅西. 南海东北部MD05-2905站36 ka BP以来的陆源碎屑沉积特征与东亚季风的演化[J]. 地球科学进展, 2007, 22(10): 1012-1018.
[15] 金海燕,翦知湣. 南海北部ODP 1144站中更新世气候转型期有孔虫稳定同位素古气候意义[J]. 地球科学进展, 2007, 22(9): 914-921.
阅读次数
全文


摘要