地球科学进展 ›› 2023, Vol. 38 ›› Issue (1): 44 -56. doi: 10.11867/j.issn.1001-8166.2022.090

综述与评述 上一篇    下一篇

土壤—植物系统硒的迁移转化机制研究进展
钟庆祥 1( ), 张豫 2, 陶贞 1( ), 贺一聪 1, 吴迪 1, 林培松 2   
  1. 1.中山大学地理科学与规划学院,广东省城市化与地理环境空间模拟重点实验室,广东 广州 510006
    2.嘉应学院地理科学与旅游学院,广东 梅州 514015
  • 收稿日期:2022-06-13 修回日期:2022-10-08 出版日期:2023-01-10
  • 通讯作者: 陶贞 E-mail:zhongqx6@mail2.sysu.edu.cn;taozhen@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目“雅砻江下游梯级筑坝对河流生源物质性质和输出的改变机制研究”(41771216);广州市科技计划项目“南沙滨海生态系统土壤碳汇功能的关键过程与调控机制”(202201011738)

Advance on Selenium Migration and Transformation Mechanism in Soil-plant Systems

Qingxiang ZHONG 1( ), Yu ZHANG 2, Zhen TAO 1( ), Yicong HE 1, Di WU 1, Peisong LIN 2   

  1. 1.School of Geography and Planning, Sun Yat-Sen University, Guangdong Key Laboratory for Urbanization and Geosimulation, Guangzhou 510006, China
    2.School of Geography and Tourism, Jiaying University, Meizhou Guangdong 514015, China
  • Received:2022-06-13 Revised:2022-10-08 Online:2023-01-10 Published:2023-02-02
  • Contact: Zhen TAO E-mail:zhongqx6@mail2.sysu.edu.cn;taozhen@mail.sysu.edu.cn
  • About author:ZHONG Qingxiang (1998-), male, Maoming City, Guangdong Province, Master student. Research area includes selenium biogeochemical cycle research. E-mail: zhongqx6@mail2.sysu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Study of the altering riverine biogenic matter transformation and its export fluxes with cascade damming in the lower reach of the Yalongjiang River”(41771216);Guangzhou Municipal Scientific Program “Key processes and regulation mechanisms of soil carbon sink in Nansha coastal ecosystem”(202201011738)

元素硒是许多生物(包括土壤微生物,植物、动物和人类)机体必需的微量营养元素之一,而且对植物、动物和人具有双重生物效应。半个多世纪以来土壤—植物系统元素硒的迁移、转化和富集过程一直备受关注。土壤硒的存在形态包括可溶态硒、可交换态及碳酸盐结合态硒、铁锰氧化物结合态硒、有机物结合态硒和残渣态硒5种形态,其中可溶态硒和可交换态及碳酸盐结合态硒具生物有效性,有机物结合态硒随着有机质分解可转化为可溶态硒而成为土壤潜在有效硒源。不同植物硒含量水平取决于区域土壤有效硒含量和不同植物的硒吸收和富集水平。因此,土壤硒的生物有效性是决定食物链硒含量的关键,同时土壤有效硒通过调节根际环境和植物代谢过程提高植物抗逆性。土壤—植物系统元素硒的迁移和转化是一个复杂的生物地球化学过程,受地壳运动、母岩性质、气候、地貌、土壤环境(物理、化学和微生物活动)条件、土壤硒含量及其化学性质、植物种类及其生理习性、田间管理过程等因素的耦合作用影响。为充分合理利用土壤硒资源,将来应加强植物体内,尤其是主要粮食作物、蔬菜、果树和地道药材叶片、果实中硒迁移、转化和富集研究,为缺硒地区硒的生物强化、富硒地区农作物种植选择和居民食品选择及其风险评价提供基础数据。

Selenium (Se) is an essential micronutrient for many organisms (including soil microorganisms, plants, animals, and humans), and has dual biological effects on plants, animals, and humans. The migration, transformation, and enrichment of Se in soil-plant systems have attracted considerable attention for more than half a century. There are five forms of soil Se: soluble Se (SOL-Se), exchangeable carbonate-bound Se (EXC-Se), iron-manganese oxide-bound Se (FMO-Se), organic matter-bound Se (OM-Se), and residual Se (RES-Se), of which SOL-Se and EXC-Se are characterized by bioavailability. OM-Se can be converted into soluble Se by the decomposition of organic matter and is a potentially effective selenium source in soil. The Se content of different plants depends on the soil-available Se content and the Se absorption and enrichment levels of different plants. Therefore, the bioavailability of soil Se plays a critical role in determining the Se content in the food chain, and soil-available Se can improve plant stress resistance by regulating the rhizosphere environment and metabolic processes. Soil-plant system Se migration is a complex biogeochemical process that is dominated by coupled crustal movement, parent rock properties, climate, geomorphology, soil environment (physico-chemical properties and microbial activity) conditions, soil Se content and chemical properties, plant species and biological habits, and field management processes. For the rational utilization of soil Se resources, research needs to focus on Se migration, transformation, and enrichment in plants, especially the main food crops, vegetables, fruit trees, and Authentic Chinese herbs. This study provides basic data for Se biofortification in Se-deficient areas, and crop selection, food selection, and risk assessment in Se-rich areas.

中图分类号: 

图1 全球土壤硒含量和分布 18
Fig. 1 Selenium content and distribution in global surface 18
图2 我国天然土壤表层硒含量变化(数据来源于参考文献[ 11 ])
Fig. 2 Selenium content in soil in different areas of Chinadata from reference 11 ])
表1 不同植物硒含量
Table 1 Selenium content in plants
表2 土壤硒赋存形态及性质
Table 2 Forms and properties of selenium in soil
图3 土壤—植物系统硒的迁移转化过程示意图
(a)根际土壤硒的迁移转化过程;(b)植物硒的迁移转化
Fig. 3 Selenium migration and transformation in soil-plant system
(a) Selenium migration and transformation in rhizosphere; (b) Selenium metabolism in plant
表3 土壤—植物系统硒含量、迁移转化过程及其生物有效性分析方法
Table 3 Methods for measurement and analysis of bioavalible selenium content in soil-plant system
方法 原理和特征 应用范围和优缺点
土壤硒组分提取

化学浸提法基于溶质在不同溶剂之间溶解度和离子交换强度的差异,萃取土壤样品中的不同结合态硒 34

DGT法基于离子扩散平衡和固定膜的选择性吸收来分离环境中的目标物 41

DMT法利用带正电荷的阴离子交换膜分离溶液中的离子和胶体颗粒

单一化学浸提法:主要用于快速判断土壤硒生物有效性水平 5 ;这一方法缺乏普适性 81
五步连续化学浸提法:侧重于土壤中有效硒和潜在有效硒的分析;被广泛接受。连续浸提过程中存在硒的再分配和再吸附问题
DGT法:模拟植物对土壤硒的动态吸收过程,具有普适性 DGT装置成本较高 81
DMT法:DMT分析过程中样品不被稀释,适用于低硒浓度的环境样品 82
植物硒组分提取

湿消解法利用混合酸进行植物样品消解,HG-AFS或ICP-MS进行测定

酶解法用特定的蛋白酶将有机硒从细胞蛋白中游离出来。液相萃取法通过有机溶剂或酸、碱溶液作为萃取溶剂,提取植物有机硒 83

湿消解法:用于植物组织总硒含量的提取;不能区分植物硒组分的结合形式
酶解法:提取植物有机硒,包括游离硒代氨基酸和含硒蛋白中的有机硒组分。提取过程硒形态稳定,回收率高
液相萃取法:提取游离的小分子有机硒;效率低,提取过程存在有机硒分解和硒形态转变的情况
同位素示踪 硒有6种稳定同位素(74Se、76Se、77Se、78Se、80Se和82Se)和2种放射性同位素(75Se和79Se) 通常用δ82/76Se值表征土壤硒迁移转化过程中发生的同位素分馏 28 84 - 85 和验证植物对不同形式硒的吸收、积累和转化
ARE系统 分析矿物质在土壤固相—土壤液相—根系—植物组织间迁移转化的过程机制 86 土柱实验:利用土柱实验和光谱分析数据,揭示土壤硒酸盐和亚硒酸盐在土壤中的吸附—解吸以及运移过程 87 - 88
搅拌流法:利用搅拌流法和模型拟合吸附曲线,分析锰氧化物对Se(Ⅳ)的吸附和氧化过程 60
抑制剂法:添加阴离子通道抑制剂或呼吸抑制剂,分析不同形式硒进入根细胞的生理机制和能量消耗 51
基因组分析:利用PCR技术对植株蛋白质进行测序与分析,以确定植物吸收和转运硒的方式与机理 47
1 SCHWARZ K, FOLTZS C M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration [J]. Nutrition Reviews, 1978,36(11):338-340.
2 HOU S, XUE T, TAN J,et al. Glutathione peroxidase and its physiological function in higher plant [J]. Chinese Science Bulletin,1994,39(20):1 744-1 749.
3 YANG H, YANG X F, NING Z P,et al. The beneficial and hazardous effects of selenium on the health of the soil-plant-human system: an overview[J]. Journal of Hazardous Materials,2022,422. DOI:10.1016/j.jhazmat.2021.126876 .
4 MEHDI Y, HORNICK J L, ISTASSE L,et al. Selenium in the environment, metabolism and involvement in body functions [J]. Molecules,2013,18(3):3 292-3 311.
5 ZHOU F, PENG Q, WANG M,et al. Advances in the evaluation of selenium bioavailability in soil-plant system [J]. Chinese Science Bulletin,2022,67(6):461-472.
6 RAYMAN M P. Selenium and human health [J]. The Lancet,2012,379(9 822):1 256-1 268.
7 NAVARRO-ALARCON M, CABRERA-VIQUE C. Selenium in food and the human body: a review [J]. Science of the Total Environment,2008,400(1/2/3):115-141.
8 KHANAM A, PLATEL K. Bioaccessibility of selenium, selenomethionine and selenocysteine from foods and influence of heat processing on the same [J]. Food Chemistry,2016,194:1 293-1 299.
9 LIU N N, WANG M, ZHOU F,et al. Selenium bioavailability in soil-wheat system and its dominant influential factors: a field study in Shaanxi Province, China [J]. Science of the Total Environment,2021,770. DOI: 10.1016/j.scitotenv.2020.144664 .
10 NATASHA, SHAHID M, NIAZI N K,et al. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health [J]. Environmental Pollution,2018,234:915-934.
11 ZHENG Daxian, LI Ribang, TAN Jian’an. A study on transmission of selenium in soil-plant system I. selenium in some natural soil in China [J]. Scientia Geographica Sinica,1985,5(3):209-217.
郑达贤,李日邦,谭见安. 土壤—植物系统硒传输研究Ⅰ.我国一些天然土壤中的硒 [J]. 地理科学,1985,5(3):209-217.
12 HILTNER L. Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung [J]. und Bruche Arb deut Landwirtsch Ges,1904,98:59-78.
13 CIEŚLIŃSKI G, van REES K C J, SZMIGIELSKA A M,et al. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation[J]. Plant and Soil,1998,203(1):109-117.
14 ZHAO Zhenhua. Principles of trace element geochemistry [M]. Beijing:Science Press,1997.
赵振华. 微量元素地球化学原理[M]. 北京:科学出版社,1997.
15 XIA Weiping, TAN Jian’an. A comparative study of selenium content in Chinese rocks [J]. Acta Scientiae Circumstantiae,1990,10(2):125-131.
夏卫平,谭见安. 中国一些岩类中硒的比较研究 [J]. 环境科学学报,1990,10(2):125-131.
16 ROSENFELD I, BEATH O A. Selenium: geobotany, biochemistry, toxicity, and nutrition [J]. Bulletin of the Torrey Botanical Club, 1965, 92(5): 414.
17 FORDYCE F M. Selenium deficiency and toxicity in the environment[M]// Essentials of medical geology. Dordrecht: Springer,2013:375-416.
18 JONES G D, DROZ B, GREVE P,et al. Selenium deficiency risk predicted to increase under future climate change [J]. PNAS,2017,114(11):2 848-2 853.
19 XING Guangxi, ZHU Jianguo. Soil trace elements and rare earth chemistry [M]. Beijing:Science Press,2003.
邢光熹,朱建国. 土壤微量元素和稀土元素化学 [M]. 北京:科学出版社,2003.
20 DINH Q T, CUI Z W, HUANG J,et al. Selenium distribution in the Chinese environment and its relationship with human health: a review [J]. Environment International,2018,112:294-309.
21 LIU H L, WANG X Q, ZHANG B M,et al. Concentration and distribution of selenium in soils of mainland China, and implications for human health [J]. Journal of Geochemical Exploration,2021,220. DOI:10.1016/j.gexplo.2020.106654 .
22 ZHAO Shaohua, YU Wantai, ZHANG Lu,et al. Biogeochemical cycling of selenium, nutrition adjustment and differentiation cause in environment [J]. Chinese Journal of Ecology,2005,24(10):1 197-1 203.
赵少华,宇万太,张璐,等. 环境中硒的生物地球化学循环和营养调控及分异成因[J]. 生态学杂志,2005,24(10):1 197-1 203.
23 ZANG Shichen, NI Shulin, LI Changlin,et al. Relationship between selenium content in 16 wild plants and soil selenium [J]. Forestry Science and Technology,1996,21(4):41-42.
臧世臣,倪树林,李长林,等. 16种野生植物硒含量与土壤硒的关系 [J]. 林业科技,1996,21(4):41-42.
24 WANG D, DINH Q T, ANHTHU T T,et al. Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil [J]. Chemosphere,2018,199:417-426.
25 WANG Huiyan, ZENG Daoming, GUO Zhijuan,et al. Selenium threshold for the delimitation of natural selenium-enriched land [J]. Environmental Science,2021,42(1):333-342.
王惠艳,曾道明,郭志娟,等. 天然富硒土地划定的富硒阈值 [J]. 环境科学,2021,42(1):333-342.
26 XIE Shanni, ZONG Lianggang, ZHANG Qihui,et al. Effects of three amendments on selenium availability of highly acidic and Se-rich soil in tea garden and their relative mechanisms [J]. Journal of Tea Science,2017,37(3):299-307.
谢珊妮,宗良纲,张琪惠,等. 3种改良剂对强酸性高硒茶园土壤硒有效性调控效果与机理 [J]. 茶叶科学,2017,37(3):299-307.
27 WANG Y H, SHI X Y, HUANG X X,et al. Linking microbial community composition to farming pattern in selenium-enriched region: potential role of microorganisms on Se geochemistry[J]. Journal of Environmental Sciences,2022,112:269-279.
28 SCHILLING K, BASU A, WANNER C,et al. Mass-dependent selenium isotopic fractionation during microbial reduction of seleno-oxyanions by phylogenetically diverse bacteria [J]. Geochimica et Cosmochimica Acta,2020,276:274-288.
29 GEERING H R, CARY E E, JONES L H P,et al. Solubility and redox criteria for the possible forms of selenium in soils [J]. Soil Science Society of America Journal,1968,32(1):35-40.
30 CHEN Q X, SHI W M, WANG X C. Selenium speciation and distribution characteristics in the rhizosphere soil of rice (Oryza sativa L.) seedlings [J]. Communications in Soil Science and Plant Analysis,2010,41(12):1 411-1 425.
31 CUTTER G A. Determination of selenium speciation in biogenic particles and sediments [J]. Analytical Chemistry,1985,57(14):2 951-2 955.
32 WANG S S, LIANG D L, WANG D,et al. Selenium fractionation and speciation in agriculture soils and accumulation in corn (Zea mays L.) under field conditions in Shaanxi Province, China [J]. Science of the Total Environment,2012,427/428:159-164.
33 KUSHWAHA A, GOSWAMI L, LEE J,et al. Selenium in soil-microbe-plant systems: sources, distribution, toxicity, tolerance, and detoxification [J]. Critical Reviews in Environmental Science and Technology,2022,52(13):2 383-2 420.
34 QU Jianguo, XU Boxing, GONG Shuchun. Sequential extraction techniques for determination of selenium speciation in soils and sediments [J]. Environmental Chemistry,1997,16(3):277-283.
瞿建国,徐伯兴,龚书椿. 连续浸提技术测定土壤和沉积物中硒的形态 [J]. 环境化学,1997,16(3):277-283.
35 QIN H B, ZHU J M, SU H. Selenium fractions in organic matter from Se-rich soils and weathered stone coal in selenosis areas of China [J]. Chemosphere,2012,86(6):626-633.
36 WHITE P J. Selenium metabolism in plants [J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2018,1 862(11):2 333-2 342.
37 GUSTAFSSON J P, JOHNSSON L. The association between selenium and humic substances in forested ecosystems—laboratory evidence [J]. Applied Organometallic Chemistry,1994,8(2):141-147.
38 WANG D, PENG Q, YANG W X,et al. DOM derivations determine the distribution and bioavailability of DOM-Se in selenate applied soil and mechanisms [J]. Environmental Pollution,2020,259. DOI:10.1016/j.envpol.2019.113899 .
39 LI Z, LIANG D L, PENG Q,et al. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: a review [J]. Geoderma,2017,295:69-79.
40 FIO J L, FUJII R, DEVEREL S J. Selenium mobility and distribution in irrigated and nonirrigated alluvial soils [J]. Soil Science Society of America Journal,1991,55(5):1 313-1 320.
41 PENG Q, WANG M K, CUI Z W,et al. Assessment of bioavailability of selenium in different plant-soil systems by Diffusive Gradients in Thin-films (DGT) [J]. Environmental Pollution,2017,225:637-643.
42 WELLS M, BASU P, STOLZ J F. The physiology and evolution of microbial selenium metabolism [J]. Metallomics: Integrated Biometal Science,2021, 13(6). DOI:10.1093/mtomcs/mfab024 .
43 FAN S L, WANG P, ZHANG H L,et al. Advances of selenium migration and microbial transformation in the environment and the application of selenium nanoparticles [J]. Chinese Science Bulletin,2020,65(26):2 853-2 862.
44 ZHOU X B, YANG J, KRONZUCKER H J,et al. Selenium biofortification and interaction with other elements in plants: a review [J]. Frontiers in Plant Science,2020,11. DOI:10.3389/fpls.2020.586421 .
45 WANG Qi. Mechanisms of organic selenium uptake, translocation and speciation transformation in rice and weat[D]. Beijing:China Agricultural University,2017.
王琪. 水稻和小麦对有机硒的吸收、转运及形态转化机制 [D]. 北京:中国农业大学,2017.
46 HU T, LI H F, LI J X,et al. Absorption and bio-transformation of selenium nanoparticles by wheat seedlings (Triticum aestivum L.) [J]. Frontiers in Plant Science,2018,9. DOI:10.3389/fpls.2018.00597 .
47 BARBERON M, BERTHOMIEU P, CLAIROTTE M,et al. Unequal functional redundancy between the two Arabidopsis thaliana high‐affinity sulphate transporters SULTR1;1 and SULTR1;2 [J]. New Phytologist,2008,180(3):608-619.
48 RENKEMA H, KOOPMANS A, KERSBERGEN L,et al. The effect of transpiration on selenium uptake and mobility in durum wheat and spring canola [J]. Plant and Soil,2012,354(1/2):239-250.
49 BOCCHINI M, D’AMATO R, CIANCALEONI S,et al. Soil selenium (Se) biofortification changes the physiological, biochemical and epigenetic responses to water stress in Zea mays L. by inducing a higher drought tolerance [J]. Frontiers in Plant Science,2018,9. DOI:10.3389/fpls.2018.00389. eCollection 2018 .
50 HASANUZZAMAN M, BHUYAN M H M B, RAZA A,et al. Selenium in plants: boon or bane?[J]. Environmental and Experimental Botany,2020,178. DOI:10.1016/j.envexpbot.2020.104170 .
51 ZHANG Lianhe, LI Youjun, MIAO Yanfang,et al. Effects of pH on the physiological mechanism of selenite uptake by excised roots of rice seedings [J]. Acta Pedologica Sinica,2010,47(3):523-528.
张联合,李友军,苗艳芳,等. pH对水稻离体根系吸收亚硒酸盐生理机制的影响 [J]. 土壤学报,2010,47(3):523-528.
52 KIKKERT J, BERKELAAR E. Plant uptake and translocation of inorganic and organic forms of selenium [J]. Archives of Environmental Contamination and Toxicology,2013,65(3):458-465.
53 TRIPPE III R C, PILON-SMITS E A H. Selenium transport and metabolism in plants: phytoremediation and biofortification implications [J]. Journal of Hazardous Materials,2021,404. DOI:10.1016/j.jhazmat.2020.124178 .
54 WINKEL L H E, VRIENS B, JONES G D,et al. Selenium cycling across soil-plant-atmosphere interfaces: a critical review [J]. Nutrients,2015,7(6):4 199-4 239.
55 JOHNSSON L. Selenium uptake by plants as a function of soil type, organic matter content and pH [J]. Plant and Soil,1991,133(1):57-64.
56 CHANG C Y, YIN R S, WANG X,et al. Selenium translocation in the soil-rice system in the Enshi seleniferous area, Central China [J]. The Science of the Total Environment,2019,669:83-90.
57 HUANG Q Q, WANG Q, LUO Z,et al. Effects of root iron plaque on selenite and selenate dynamics in rhizosphere and uptake by rice (Oryza sativa) [J]. Plant and Soil,2015,388(1/2):255-266.
58 FENG R W, WANG L Z, YANG J G,et al. Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium viaroot application in plants [J]. Journal of Hazardous Materials,2021,402. DOI:10.1016/j.jhazmat.2020.123570 .
59 SCOTT M J, MORGAN J J. Reactions at oxide surfaces. 2. oxidation of Se(IV) by synthetic birnessite [J]. Environmental Science and Technology,1996,30(6):1 990-1 996.
60 LI Z Y, YUAN Y J, MA L,et al. Simultaneous kinetics of selenite oxidation and sorption on δ-MnO2 in stirred-flow reactors [J]. International Journal of Environmental Research and Public Health,2021,18(6). DOI:10.3390/ijerph18062902 .
61 ROSENFELD C E, SABUDA M C, HINKLE M A G,et al. A fungal-mediated cryptic selenium cycle linked to manganese biogeochemistry [J]. Environmental Science and Technology,2020,54(6):3 570-3 580.
62 NAKAMARU Y, TAGAMI K, UCHIDA S. Distribution coefficient of selenium in Japanese agricultural soils [J]. Chemosphere,2005,58(10):1 347-1 354.
63 YANG Xiaodi, BI Shuping. Research progress of aluminum-organic matter complexes in environmental systems [J]. Chinese Journal of Inorganic Chemistry,2001,17(2):168-180.
杨小弟,毕树平. 环境中铝—有机配合物的分析研究进展 [J]. 无机化学学报,2001,17(2):168-180.
64 CHAN Y T, KUAN W H, CHEN T Y,et al. Adsorption mechanism of selenate and selenite on the binary oxide systems [J]. Water Research,2009,43(17):4 412-4 420.
65 ZHOU Xinbin, YU Shuhui, XIE Deti. Effects of pH and three kinds of anions on selenium absorption and desorption in purple soil [J]. Acta Pedologica Sinica,2015,52(5):1 069-1 077.
周鑫斌,于淑慧,谢德体. pH和三种阴离子对紫色土亚硒酸盐吸附—解吸的影响 [J]. 土壤学报,2015,52(5):1 069-1 077.
66 WANG D, ZHOU F, YANG W X,et al. Selenate redistribution during aging in different Chinese soils and the dominant influential factors [J]. Chemosphere,2017,182:284-292.
67 ANTONIADIS V, LEVIZOU E, SHAHEEN S M,et al. Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation—a review [J]. Earth-Science Reviews,2017,171:621-645.
68 JAYAWEERA G R, BIGGAR J W. Role of redox potential in chemical transformations of selenium in soils [J]. Soil Science Society of America Journal,1996,60(4):1 056-1 063.
69 ZHENG Daxian, LI Ribang, TAN Jian’an. The research on transportation of selenium in soil-plant system II. The equilidrium of Se in soil-liquid system of soil and the Se-uptake of plant [J]. Scientia Geographica Sinica,1986,6(1):22-33.
郑达贤,李日邦,谭见安. 土壤—植物系统硒传输的研究Ⅱ.土壤固—液相硒的平衡及植物的摄取 [J]. 地理科学,1986,6(1):22-33.
70 WIJNJA H, SCHULTHESS C P. Interaction of carbonate and organic anions with sulfate and selenate adsorption on an aluminum oxide [J]. Soil Science Society of America Journal,2000,64(3):898-908.
71 YAN Jia, ZONG Lianggang, YANG Ni,et al. Effects of pH and phosphate on Se(Ⅳ) adsorption by tea garden soil [J]. Journal of Agro-Environment Science,2014,33(5):935-942.
严佳,宗良纲,杨旎,等. 不同pH条件和P-Se交互作用对茶园土壤Se(Ⅳ)吸附行为的影响 [J]. 农业环境科学学报,2014,33(5):935-942.
72 YUAN L X, ZHU Y Y, LIN Z Q,et al. A novel selenocystine-accumulating plant in selenium-mine drainage area in Enshi, China [J]. PLoS ONE,2013,8(6). DOI:10.1371/journal.pone.0065615 .
73 WHITE P J. Selenium accumulation by plants [J]. Annals of Botany,2015,117(2):217-235.
74 ZHU D H, NIU Y X, FAN K K,et al. Selenium-oxidizing Agrobacterium sp. T3F4 steadily colonizes in soil promoting selenium uptake by pak choi (Brassica campestris) [J]. The Science of the Total Environment,2021,791. DOI:10.1016/j.scitotenv.2021.148294 .
75 SESHADRI B, BOLAN N S, NAIDU R. Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation [J]. Journal of Soil Science and Plant Nutrition,2015,15(2):524-548.
76 LUO W Q, LI J, MA X N,et al. Effect of arbuscular mycorrhizal fungi on uptake of selenate, selenite, and selenomethionine by roots of winter wheat [J]. Plant and Soil,2019,438(1/2):71-83.
77 PENG Q, WU M M, ZHANG Z K,et al. The interaction of arbuscular mycorrhizal fungi and phosphorus inputs on selenium uptake by alfalfa (Medicago sativa L.) and selenium fraction transformation in soil [J]. Frontiers in Plant Science,2020,11. DOI:10.3389/fpls.2020.00966 .
78 GOH K H, LIM T T. Geochemistry of inorganic arsenic and selenium in a tropical soil: effect of reaction time, pH, and competitive anions on arsenic and selenium adsorption [J]. Chemosphere,2004,55(6):849-859.
79 WU Jun, LIU Xiufang, XU Hansheng. Functions of selenium in plants [J]. Plant Physiology Communications,1999,35(5):417-423.
吴军,刘秀芳,徐汉生. 硒在植物生命活动中的作用 [J]. 植物生理学通讯,1999,35(5):417-423.
80 DHILLON K S, DHILLON S K, DOGRA R. Selenium accumulation by forage and grain crops and volatilization from seleniferous soils amended with different organic materials [J]. Chemosphere,2010,78(5):548-556.
81 PENG Q, WANG D, WANG M K,et al. Prediction of selenium uptake by pak choi in several agricultural soils based on diffusive gradients in thin-films technique and single extraction [J]. Environmental Pollution,2020,256. DOI:10.1016/j.envpol.2019.113414 .
82 WENG L P, VEGA F A, SUPRIATIN S,et al. Speciation of Se and DOC in soil solution and their relation to Se bioavailability [J]. Environmental Science & Technology,2011,45(1):262-267.
83 FANG Y, PAN X, ZHAO E M,et al. Isolation and identification of immunomodulatory selenium-containing peptides from selenium-enriched rice protein hydrolysates [J]. Food Chemistry,2019,275:696-702.
84 XU W P, QIN H B, ZHU J M,et al. Selenium isotope fractionation during adsorption onto montmorillonite and kaolinite [J]. Applied Clay Science,2021,211. DOI:10.1016/j.clay.2021.106189 .
85 WASSERMAN N L, SCHILLING K, JOHNSON T M,et al. Selenium isotope shifts during the oxidation of selenide-bearing minerals [J]. ACS Earth and Space Chemistry,2021,5(5):1 140-1 149.
86 YIN X B, ZHAO Q G, YIN Y L,et al. The review of key scientific issues of functional agriculture and development suggestions for “14th Five-Year Plan” [J]. Chinese Science Bulletin,2022,67(6):497-510.
87 SVECOVA L, DOSSOT M, CREMEL S,et al. Sorption of selenium oxyanions on TiO2 (rutile) studied by batch or column experiments and spectroscopic methods [J]. Journal of Hazardous Materials,2011,189(3):764-772.
88 LIU Guannan, XUE Wei, SUN Chunmei,et al. Selenite transport in soils with various physico-chemical properties [J]. Journal of Agro-Environment Science,2016,35(3):485-491.
刘冠男,薛薇,孙春美,等. 亚硒酸盐在不同理化性质土壤中运移规律研究[J]. 农业环境科学学报,2016,35(3):485-491.
89 LV Q Z, LIANG X M, NONG K Y,et al. Advances in research on the toxicological effects of selenium [J]. Bulletin of Environmental Contamination and Toxicology,2021,106(5):715-726.
90 XU J Y, JIA W, HU C X,et al. Selenium as a potential fungicide could protect oilseed rape leaves from Sclerotinia sclerotiorum infection [J]. Environmental Pollution,2020,257. DOI:10.1016/j.envpol.2019.113495 .
91 CHENG Q, JIA W, HU C X,et al. Enhancement and improvement of selenium in soil to the resistance of rape stem against Sclerotinia sclerotiorum and the inhibition of dissolved organic matter derived from rape straw on mycelium [J]. Environmental Pollution (Barking, Essex: 1987),2020,265(Part A). DOI:10.1016/j.envpol.2020.114827 .
92 FENG R W, WEI C Y, TU S X. The roles of selenium in protecting plants against abiotic stresses [J]. Environmental and Experimental Botany,2013,87:58-68.
93 LIU Y, LV H Q, YANG N,et al. Roles of root cell wall components and root plaques in regulating elemental uptake in rice subjected to selenite and different speciation of antimony [J]. Environmental and Experimental Botany,2019,163:36-44.
94 CUI J H, LIU T X, LI Y D,et al. Selenium reduces cadmium uptake into rice suspension cells by regulating the expression of lignin synthesis and cadmium-related genes [J]. Science of the Total Environment,2018,644:602-610.
95 SARDAR R, AHMED S, SHAH A A,et al. Selenium nanoparticles reduced cadmium uptake, regulated nutritional homeostasis and antioxidative system in Coriandrum sativum grown in cadmium toxic conditions [J]. Chemosphere,2022,287. DOI:10.1016/j.chemosphere.2021.132332 .
96 MALERBA M, CERANA R. Effect of selenium on the responses induced by heat stress in plant cell cultures [J]. Plants,2018,7(3). DOI:10.3390/plants7030064 .
97 D’AMATO R, de FEUDIS M, GUIDUCCI M,et al. Zea mays L. grain: increase in nutraceutical and antioxidant properties due to Se fortification in low and high water regimes [J]. Journal of Agricultural and Food Chemistry,2019,67(25):7 050-7 059.
98 GOLOB A, KAVČIČ J, STIBILJ V,et al. The effect of selenium and UV radiation on leaf traits and biomass production in Triticum aestivum L. [J]. Ecotoxicology and Environmental Safety,2017,136:142-149.
99 ELKELISH A A, SOLIMAN M H, ALHAITHLOUL H A,et al. Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism [J]. Plant Physiology and Biochemistry,2019,137:144-153.
100 RADY M M, BELAL H E E, GADALLAH F M,et al. Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system [J]. Scientia Horticulturae,2020,266. DOI:10.1016/j.scienta.2020.109290 .
[1] 张金波,程谊,蔡祖聪. 土壤调配氮素迁移转化的机理[J]. 地球科学进展, 2019, 34(1): 11-19.
[2] 马 强,姬丙艳,张亚峰,任文恺,代 璐,黄秉雄. 青海东部土壤及生物体中硒的地球化学特征[J]. 地球科学进展, 2012, 27(10): 1148-1152.
[3] 赵转军,南忠仁,王胜利,刘晓文,陶燕. 干旱区绿洲土壤共存重金属元素形态变化及生物有效性实验分析[J]. 地球科学进展, 2008, 23(11): 1193-1200.
[4] 孙歆,韦朝阳,王五一. 土壤中砷的形态分析和生物有效性研究进展[J]. 地球科学进展, 2006, 21(6): 625-632.
[5] 陈云增,杨浩,张振克,秦明周. 水体沉积物环境质量基准建立方法研究进展[J]. 地球科学进展, 2006, 21(1): 53-61.
[6] 毕春娟,陈振楼,郑祥民,许世远. 根际环境重金属地球化学行为及其生物有效性研究进展[J]. 地球科学进展, 2001, 16(3): 387-393.
[7] 曾治权; 刘祖滨; 仇艾夫; 李宝代. 地磁生物学[J]. 地球科学进展, 1993, 8(3): 86-87.
阅读次数
全文


摘要