地球科学进展 ›› 2006, Vol. 21 ›› Issue (6): 625 -632. doi: 10.11867/j.issn.1001-8166.2006.06.0625

学术论文 上一篇    下一篇

土壤中砷的形态分析和生物有效性研究进展
孙歆 1,2,韦朝阳 1,王五一 1   
  1. 1.中国科学院地理科学与资源研究所,北京 100101; 2.中国科学院研究生院,北京 100049
  • 收稿日期:2005-08-11 修回日期:2006-04-24 出版日期:2006-06-15
  • 通讯作者: 韦朝阳(1965-),男,安徽铜陵人,副研究员,博士,主要从事重金属环境与健康效应研究. E-mail:weicy@igsnrr.ac.cn
  • 基金资助:

    国家自然科学基金项目“不同生态型凤尾蕨对砷的吸收富集转化及其机理”(编号:40271099)和“尾矿中砷的生物有效性与植物提取机理”(编号:20477045);中国科学院地理科学与资源研究所知识创新工程领域前沿项目“蜈蚣草吸收富集砷的生态型差异及其影响因素”(编号:CXIOG-C04-02)资助.

Progress in the Study of Arsenic Species and Bioavailability in Soils —A Review

Sun Xin 1,2,Wei Chaoyang 1,Wang Wuyi 1   

  1. 1.Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 2.Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2005-08-11 Revised:2006-04-24 Online:2006-06-15 Published:2006-06-15

土壤砷污染是当今全球十分严重的环境与健康问题之一。土壤砷形态及生物有效性研究是开展污染诊断、评估环境健康风险及开展砷污染土壤修复的重要依据。目前土壤砷形态的研究方法包括化学选择性提取操作定义法、溶剂提取仪器测定或吸附材料选择性分离法和同步辐射X射线近边能谱(XANES)直接测定法,这些方法相互结合在土壤砷的形态转化研究中发挥着重要作用。目前关于生物有效性研究存在多种方法并存的局面,化学提取法相对经济、方便,但存在很大的局限性,往往不能真实反映土壤砷的有效态含量,只能作为环境危害程度识别的参考;植物指示法需选择敏感性植物方能有效地指示土壤砷对环境与健康的潜在危害;土壤动物与微生物指示法代表了未来开展砷污染早期预警的发展方向,具有广阔的应用前景。模拟肠胃液提取法(In Vitro Gastrointestinal Method)比较接近动物或人体对土壤砷污染的真实吸收状态,在环境健康风险评价中发挥着重要作用。目前国外已发展出采用兔、仔猪和猴的动物模型以研究经口摄入的生物有效性砷,但尚不清楚哪种动物模型更能准确反映砷对人体的生物有效性。

Arsenic contamination in soil has become a concern worldwide. The studies of arsenic forms/species and bioavailability are the foundation for pollution recognition, risk assessment and remediation criteria setting. Methods currently employed for arsenic fractionation and speciation include chemical selective extraction, instrumental detection or resin/cartridges separation after solvent extraction and synchrotron radiation XANES direct detection. The combination of the above various methods have played a core role in the study of arsenic bioavailability. Also, various methods have been used for measurement of arsenic bioavailability in soils. Chemical extraction is cost effective and the most convenient, but limited in not really reflecting the arsenic bioavailability from soils to animals or humans, and usually is used as reference for recognition of arsenic environmental hazards; Indicator plant method rely on successful selection of sensitive plants in order to give clue to the potential hazards of arsenic to environment and health; The population and structure as well as genetic changes of microorganisms exposed to arsenic in soils are direct in interpretation of arsenic toxicity, and are in priority in future application for risk assessment of arsenic contamination. In vitro gastrointestinal method is the most efficient in simulating the state and condition of animal and/or human gastrointestinal system, and is vital in application for risk assessment of arsenic contamination. However, correlation between in vitro and in vivo results is still needed for its accurate interpretation for arsenic risks. Rabbit, young swine and monkey have been commonly used in animal model (in vivo) for measurement of arsenic availability in soils via detection arsenic contents in their urines. However, it is not yet clear which is the most suitable for the reflection of arsenic risks to humans due to limited studies on such kind of studies with relation to human arsenic exposures.

中图分类号: 

[1] WHO. Arsenic, Environmental Health Criteria 18[R].Geneva: World Health Organization, 1981.

[2] Mandal B K, Suzuki K T. Arsenic round the world: A review [J]. Talanta, 2002, 58: 201-235.

[3] Sadiq M. Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations [J]. Water, Air, Soil Pollution,1997, 93: 117-136.

[4] Pongratz R. Arsenic speciation in environmental samples of contaminated soil[J]. The Science of the Total Environment, 1998, 224:133-141.

[5] Newton K, Amarasirivardena D, Xing B. Distribution of soil arsenic species, lead and arsenic bound to humic acid molar mass fractions in a comtaminated apple orchard [J]. Environmental Pollution, 2006,143:197-205.

[6] Wenzel W W, Kirchbaumer N, Prohaska T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure[J]. Analytica Chimica Acta, 2001, 436:309-323.

[7] Goh H K, Lim T T. Arsenic fractionation in a fine soil fraction and influence of various anions on its mobility in the subsurface environment[J]. Applied Geochemistry, 2005, 20:229-239.

[8] WHO Library Cataloguing-in-Publication Data(Environmental health criteria 224). Arsenic and Arsenic Compounds, IARC Monographs Suppl. 7[R].International Agency for Research on Cancer WHO, Lyon, 1987:100-106.

[9] Chang S, Jackson M L.Fractionation of soil phosphorus[J]. Soil Science, 1957,84:133-144.

[10] Tessier A, Campbell P G, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7):844-851.

[11] Shuman L M. Fractionation method for soil microelements[J]. Soil Science, 1985, 140:11-22.

[12] Gibson M J, Farmer J G. Multi-step sequential chemical extraction of heavy metals from urban soils[J]. Environment Pollutant (Series B:Chemical and Physical), 1986, 11:117-135.

[13] Miller W P, Martens D C, Zelany L W. Effect of the sequence in extraction of trace metals from soils[J]. Soil Science of American Journal, 1986, 50:598-601.

[14] Oughton D H, Salbu B, Riise G, et al. Radionuclide mobility and bioavailability in Norwegian and Soviet soils[J]. Analyst, 1992, 117:481-486.

[15] Herreweghe V S, Swennen R, Vandecasteele C, et al. Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples[J]. Environmental Pollution, 2003, 122:323-342.

[16] Fernandez E, Jimenez R, Lallena A M, et al. Evaluation of the BCR sequential extraction procedure applied for two unpolluted Spanish soils[J]. Environment Pollution, 2004, 131(3):355-364.

[17] Fernández A A, Cid P B, Gómez F E, et al. Comparison between Sequential Extraction Procedures and Single Extractions for Metal Partitioning in Sewage Sludge Samples[J]. Analyst,2000, (125) :1 353-1 357.

[18] B'Hymer C, Caruso J A. Arsenic and its speciation analysis using high-performance liquid chromatography and inductively coupled plasma mass spectrometry[J]. Journal of Chromatography A, 2004,1045:1-13.

[19] Shi J B, Tang Z Y, Jin Z X, et al. Determination of As() and As() in soils using sequential extraction combined with flow injection hydride generation atomic fluorescence detection[J]. Analytica Chimica Acta, 2003, 477:139-147.

[20] Alam M G, Tokunaga S, Maekawa T. Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate[J]. Chemosphere,2001, 43(8):1 035-1 041.

[21] Pizarro I, Gómez M, Cámara C, et al. Arsenic speciation in environmental and biological samples extraction and stability studies[J]. Analytica Chimica Acta, 2003, 495:85-98.

[22] Luo Xiaosan,Zhou Dongmei,Chen Huaiman. Research progress in the speciation analysis of heavy metals in soil[DB/OL]. Sciencepaper Online,http://www.paper.edu.cn,2005:1-13.[罗小三, 周东美, 陈怀满. 土壤中重金属形态分析研究进展[DB/OL].中国科技论文在线,http://www.paper.edu.cn,2005:1-13. ]

[23] Benramdane L, Bressolle F, Vallon J J. Arsenic speciation in humans and food products: A review[J]. Journal of Chromatographic Science, 1999, 37(9):330-344.

[24] He Xiaoqing,Liu Xiangsheng,Pan Yuanhai,et al. Speciation of arsenic by high-performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Modern Scientific Instruments,2004, 4:33-36.[何小青, 刘湘生, 潘元海,.HPLC-ICP-MS联用技术应用于砷的形态分析[J]. 现代科学仪器, 2004, 4:33-36.]

[JP3][25] Wu Shaowei,Shi Jianbo. Determination of As() and As() with HPLC-HG-AFS[J]. Journal of Hubel Institute for Nationalities(Natural Sciences Edition), 2003, 21(4):54-56.[吴少尉, 史建波. HPLC-HG-AFS测定As()As()的方法研究[J]. 湖北民族学院学报:自然科学版, 2003, 21(4):54-56.][ZK)][JP]

[26] Jose L G A, Daniel S R, Inmaculada G, et al. A comparison between ICP-MS and AFS detection for arsenic speciation in environmental samples[J]. Talanta, 2000, 51:257-268.

[27] Chappell J, Chiswell B, Olszowy H. Speciation of arsenic in a contaminated soil by solvent extraction[J]. Talanta, 1995, 42(3):323-329.

[28] Yang J K, Barnett M O, Zhuang J, et al. Adsorption, oxidation, and bioaccessibility of As(III) in soils[J]. Environmental Science and Technology,2005,39(18):7 102-7 110.

[29] Meng X G, Wang W. Speciation of Arsenic by Disposable Cartridges”[C]Posters of the Third International Conference on Arsenic Exposure and Health Effects: Society of Environmental Geochemistry and Health. University of Colorado at Denver,1998.

[30] Meng X G, Korfiatis G P, Jing C Y, et al. Redox transformations of arsenic and iron in water treatment sludge during aging and TCLP extraction[J]. Environmental Science and Technology, 2001, 35:3 476-3 481.

[31] Meng X G, Sunbaek B, George P K. Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride[J]. Water Research, 2000, 34(4):1 255-1 261.

[32] Chiu V Q, Hering J G. Arsenic adsorption and oxidation at manganite surfaces. 1. Method for simultaneous determination of adsorbed and dissolved arsenic species[J]. Environmental Science and Technology,2000,34:2 029-2 034.

[33] Semple T K, Doick J K, Jones C K. Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated[J]. Environmental Science and Technology, 2004, 38:228-231.

[34] Ruby M V, Schoof R, Brattin W, et al. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment[J]. Environmental Science and Technology, 1999, 33:3 697-3 705.

[35] Caussy D. Case studies of the impact of understanding bioavailability:Arsenic[J]. Ecotoxicology and Environment Safety,2003, 56(1):164-173.

[36] Tang Xiangyu,Zhu Yongguan. Advances in in vitro tests in evaluating bioavailability of heavy metals in contaminated soil via oral intake[J]. Journal of Environment and Health,2004,21(3):183-185.[唐翔宇,朱永官. 土壤中重金属对人体生物有效性的体外试验评估[J]. 环境与健康杂志,2004,21(3):183-185. ]

[37] Robin R R, Nicholas T B. An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media[J]. Environmental Science and Technology,1999,33(4):642-649.

[38] Flynn H C, McMahon V, Diaz G C, et al. Assessment of bioavailable arsenic and copper in soils and sediments from the Antofagasta region of northern Chile[J]. The Science of the Total Environment, 2002, 286:51-59.

[39] Liu Yurong, Dang Zhi, Shang Ai'an. Study on bioavailability of heavy metals in polluted soil using phytoindicating[J]. Environmental Pollution and Control, 2003, 25(4):215-218.[刘玉荣,党志,尚爱安. 污染土壤中重金属生物有效性的植物指示法研究[J]. 环境污染与防治, 2003, 25(4):215-218.]

[40] Nishital H, Haug R M, Alexander G V. Influence of organic matter on the availability of certain elements to barley seedlings grown by a modified neubauer method[J]. Plant and Soil, 1973, 39(1):161-176.

[41] Meng Zhaofu, Zhang Zengqiang, Xue Chengze, et al. Determination of bioavailablity of heavy metals in soil by wheat young seedings in stead of rye[J]. Agro-environmental Protection,2001,20(5):337-340.[孟昭福,张增强,薛澄泽,.替代黑麦幼苗测定土壤中重金属生物有效性的研究[J].农业环境保护,2001,20(5):337-340. ]

[42] Zhu Yongguan, Chen Baodong, Lin Aijun, et al. Heavy metal contamination in Pearl River Delta 2 Status and research priorities[J]. Acta Scientiae Circumstantiae,2005,25(12):1 575-1 579.[朱永官,陈保冬,林爱军,.珠江三角洲地区土壤重金属污染控制与修复研究的若干思考[J].环境科学学报,2005,25(12):1 575-1 579.]

[43] Roberts S M, Weimar W R, Vinson J R T, et al. Measurement of arsenic bioavailability in soil using a primate model[J]. Toxicological Sciences,2002,67:303-310

[44] Enterline P E, Henderson V L , Marsh G M. Exposure to Arsenic and Respiratory Cancer[J]. American Journal of Epidemiology,1987,125(6):929-938.

[45] Becker K, Schulz C, Kaus S, et al. German Environmental Survey 1998 (GerES III): Environmental pollutants in the urine of the German population[J]. International Journal Hygeian Environmental Health,2003,206(1):15-24.

[46] Spevacova V, Cejchanova M, Cerna M, et al. Population-based biomonitoring in the Czech Republic: Urinary arsenic[J]. Journal of Environmental Monitoring,2002,4(5):796-798.

[1] 王军,江琴. 长江经济带多灾种综合风险评价与防范的思考[J]. 地球科学进展, 2020, 35(8): 816-825.
[2] 黄存瑞, 王琼. 气候变化健康风险评估、早期信号捕捉及应对策略研究[J]. 地球科学进展, 2018, 33(11): 1105-1111.
[3] 潘敖然, 单慧媚, 彭三曦, 赵超然, 黄健, 闫志为. 基于热力学模拟河套平原高砷地下水中硫代砷形态分布特征 *[J]. 地球科学进展, 2018, 33(11): 1169-1180.
[4] 宗庆霞, 窦磊, 侯青叶, 杨忠芳, 游远航, 唐志敏. 基于土地利用类型的土壤重金属区域生态风险评价:以珠江三角洲经济区为例[J]. 地球科学进展, 2017, 32(8): 875-884.
[5] 刘希林, 庙成, 田春山, 邱锦安. 十年跨度中国滑坡和泥石流灾害风险评价对比分析[J]. 地球科学进展, 2016, 31(9): 926-936.
[6] 许 妍, 曹 可, 李 冕, 许自舟. 海岸带生态风险评价研究进展[J]. 地球科学进展, 2016, 31(2): 137-146.
[7] 黄勋, 唐川. 基于数值模拟的泥石流灾害定量风险评价[J]. 地球科学进展, 2016, 31(10): 1047-1055.
[8] 宋焱,徐颂军,张勇,廖秀英,张林英,杨秀,杨文槐,冯晓丹. 白云山地表水重金属健康风险不确定性评价[J]. 地球科学进展, 2013, 28(9): 1036-1042.
[9] 孙燕,周杨明,张秋文,易善桢. 生态系统健康:理论/概念与评价方法[J]. 地球科学进展, 2011, 26(8): 887-896.
[10] 张永民,赵士洞. 生态系统与人类健康[J]. 地球科学进展, 2008, 23(6): 644-650.
[11] 李泽琴,侯佳渝,王奖臻. 矿山环境土壤重金属污染潜在生态风险评价模型探讨[J]. 地球科学进展, 2008, 23(5): 509-516.
[12] 赵转军,南忠仁,王胜利,刘晓文,陶燕. 干旱区绿洲土壤共存重金属元素形态变化及生物有效性实验分析[J]. 地球科学进展, 2008, 23(11): 1193-1200.
[13] 姚士谋,管驰明,王书国,陈爽. 我国城市化发展的新特点及其区域空间建设策略[J]. 地球科学进展, 2007, 22(3): 271-280.
[14] 陈尚,李瑞香,马艳,王宗灵,朱明远,丁德文. 我国海洋生态调查指南编制说明[J]. 地球科学进展, 2007, 22(1): 74-81.
[15] 史培军,杜鹃,冀萌新,刘婧,王静爱. 中国城市主要自然灾害风险评价研究[J]. 地球科学进展, 2006, 21(2): 170-177.
阅读次数
全文


摘要