1 |
PANKHURST R J, RAPELA C W, FANNING C M, et al. Gondwanide continental collision and the origin of Patagonia[J]. Earth-Science Reviews, 2006, 76(3/4): 235-257.
|
2 |
XU Zhiqin, ZHENG Bihai, WANG Qin. From accretion to collision: situation and outlook[J]. Acta Geologica Sinica, 2021, 95(1): 75-97.
|
|
许志琴, 郑碧海, 王勤. 从洋—陆俯冲到陆—陆碰撞: 回眸与展望[J]. 地质学报, 2021, 95(1): 75-97.
|
3 |
ZHENG Yongfei. Plate tectonics in the twenty-first century[J]. Science China Earth Science, 2023, 66(1): 1-40.
|
|
郑永飞. 21世纪板块构造[J]. 中国科学: 地球科学, 2023, 66(1): 1-40.
|
4 |
GHOSH S K, SENGUPTA S. Progressive development of structures in a ductile shear zone[J]. Journal of Structural Geology, 1987, 9(3): 277-287.
|
5 |
HOLDSWORTH R E. Progressive deformation structures associated with ductile thrusts in the Moine Nappe, Sutherland, N. Scotland[J]. Journal of Structural Geology, 1990, 12(4): 443-452.
|
6 |
BONAMICI C E, TIKOFF B, GOODWIN L B. Anatomy of a 10 km scale sheath fold, Mount Hay ridge, Arunta region, central Australia: the structural record of deep crustal flow[J]. Tectonics, 2011, 30(6). DOI:10.1029/2011TC002873 .
|
7 |
FOSSEN H, CAVALCANTE G C G. Shear zones—a review[J]. Earth-Science Reviews, 2017, 171: 434-455.
|
8 |
DERIKVAND S, ALMASI A. Kinematic vorticity, finite strain, and deformation thermometry analyses of the exhumed mylonites in the Samen ductile shear zone (Sanandaj-Sirjan Metamorphic Belt, Iran)[J]. Journal of Structural Geology, 2022, 154. DOI:10.1016/j.jsg.2021.104500 .
|
9 |
GOSCOMBE B. Intense non-coaxial shear and the development of mega-scale sheath folds in the Arunta Block, Central Australia[J]. Journal of Structural Geology, 1991, 13(3): 299-318.
|
10 |
JOLIVET L, BEYSSAC O, GOFFÉ B, et al. Oligo-Miocene midcrustal subhorizontal shear zone in Indochina[J]. Tectonics, 2001, 20(1): 46-57.
|
11 |
CARRERAS J, DRUGUET E, GRIERA A. Shear zone-related folds[J]. Journal of Structural Geology, 2005, 27(7): 1 229-1 251.
|
12 |
CARRERAS J, DRUGUET E. Complex fold patterns developed by progressive deformation[J]. Journal of Structural Geology, 2019, 125: 195-201.
|
13 |
RAHL J M, SKEMER P. Microstructural evolution and rheology of quartz in a mid-crustal shear zone[J]. Tectonophysics, 2016, 680: 129-139.
|
14 |
GROß P, PLEUGER J, HANDY M R, et al. Evolving temperature field in a fossil subduction channel during the transition from subduction to collision (Tauern Window, Eastern Alps)[J]. Journal of Metamorphic Geology, 2021, 39(2): 247-269.
|
15 |
DONG Yunpeng, ZHANG Guowei. Some ideas and advances in studies of tectonics and dynamics of orogenic belt and foreland basin[J]. Advances in Earth Science, 1997, 12(1): 1-6.
|
|
董云鹏, 张国伟. 造山带与前陆盆地结构构造及动力学研究思路和进展[J]. 地球科学进展, 1997, 12(1): 1-6.
|
16 |
LI Jianghai, HOU Guiting, LIU Shouji. The early Precambrian collisional orogenic process and plate tectonics: chance and challenge of Precambrian geology[J]. Advances in Earth Science, 2006, 21(8): 843-848.
|
|
李江海, 侯贵廷, 刘守偈. 早期碰撞造山过程与板块构造: 前寒武纪地质研究的机遇和挑战[J]. 地球科学进展, 2006, 21(8): 843-848.
|
17 |
ZHAO G C, CAWOOD P A, WILDE S A, et al. Review of global 2.1~1.8 Ga orogens: implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59(1/2/3/4): 125-162.
|
18 |
ZHAO G C, SUN M, WILDE S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202.
|
19 |
LIU S W, ZHAO G C, WILDE S A, et al. Th-U-Pb monazite geochronology of the Lüliang and Wutai Complexes: constraints on the tectonothermal evolution of the Trans-North China Orogen[J]. Precambrian Research, 2006, 148(3/4): 205-224.
|
20 |
KUSKY T M, SANTOSH M. The Columbia connection in North China[J]. Geological Society, London, Special Publications, 2009, 323(1): 49-71.
|
21 |
ZHAI M G, SANTOSH M. The early Precambrian odyssey of the North China Craton: a synoptic overview[J]. Gondwana Research, 2011, 20(1): 6-25.
|
22 |
ZHAO G C, ZHAI M G. Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications[J]. Gondwana Research, 2013, 23(4): 1 207-1 240.
|
23 |
WILDE S A, ZHAO G C, SUN M. Development of the North China Craton during the late archaean and its final amalgamation at 1.8 Ga: some speculations on its position within a global palaeoproterozoic supercontinent[J]. Gondwana Research, 2002, 5(1): 85-94.
|
24 |
FAURE M, TRAP P, LIN W, et al. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt—new insights from the Lüliangshan-Hengshan-Wutaishan and Fuping massifs[J]. Episodes, 2007, 30(2): 96-107.
|
25 |
ZHAO G C, CAWOOD P A, LI S Z, et al. Amalgamation of the North China Craton: key issues and discussion[J]. Precambrian Research, 2012, 222/223: 55-76.
|
26 |
LI S Z, ZHAO G C, WILDE S A, et al. Deformation history of the Hengshan-Wutai-Fuping Complexes: implications for the evolution of the Trans-North China Orogen[J]. Gondwana Research, 2010, 18(4): 611-631.
|
27 |
SANTOSH M. Assembling North China Craton within the Columbia supercontinent: the role of double-sided subduction[J]. Precambrian Research, 2010, 178(1/2/3/4): 149-167.
|
28 |
TRAP P, FAURE M, LIN W, et al. Paleoproterozoic tectonic evolution of the Trans-North China Orogen: toward a comprehensive model[J]. Precambrian Research, 2012, 222/223: 191-211.
|
29 |
ZHANG J, ZHAO G C, LI S Z, et al. Structural pattern of the Wutai Complex and its constraints on the tectonic framework of the Trans-North China Orogen[J]. Precambrian Research, 2012, 222/223: 212-229.
|
30 |
KUSKY T M, POLAT A, WINDLEY B F, et al. Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis: a record of outward growth of Precambrian continents[J]. Earth-Science Reviews, 2016, 162: 387-432.
|
31 |
ZHAO G C, WILDE S A, GUO J H, et al. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton[J]. Precambrian Research, 2010, 177(3/4): 266-276.
|
32 |
KRÖNER A, WILDE S A, ZHAO G C, et al. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of Northern China: evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton[J]. Precambrian Research, 2006, 146(1/2): 45-67.
|
33 |
XU N Q, ZHAO G C, ZHANG H C G, et al. Phase equilibria modelling and zircon U-Pb ages of the Paleoproterozoic high-pressure mafic granulites in the Jianping Complex and tectonic implications[J]. Precambrian Research, 2021, 367. DOI:10.1016/j.precamres.2021.106460 .
|
34 |
WANG J P, KUSKY T, WANG L, et al. Structural relationships along a Neoarchean arc-continent collision zone, North China Craton[J]. Geological Society of America Bulletin, 2017, 129(1/2): 59-75.
|
35 |
ZHONG Y T, KUSKY T M, WANG L. Giant sheath-folded nappe stack demonstrates extreme subhorizontal shear strain in an Archean Orogen[J]. Geology, 2022, 50(5): 577-582.
|
36 |
TRAP P, FAURE M, LIN W, et al. The Zanhuang Massif, the second and eastern suture zone of the Paleoproterozoic Trans-North China Orogen[J]. Precambrian Research, 2009, 172(1/2): 80-98.
|
37 |
WANG Y. Structural evolution and 40Ar/39Ar dating of the Zanhuang metamorphic domain in the North China Craton: constraints on Paleoproterozoic tectonothermal overprinting[J]. Precambrian Research, 2003, 122(1/2/3/4): 159-182.
|
38 |
ZHANG J, ZHAO G C, LI S Z, et al. Deformation history of the Hengshan Complex: implications for the tectonic evolution of the Trans-North China Orogen[J]. Journal of Structural Geology, 2007, 29(6): 933-949.
|
39 |
ZHANG J, ZHAO G C, LI S Z, et al. Polyphase deformation of the Fuping Complex, Trans-North China Orogen: structures, SHRIMP U-Pb zircon ages and tectonic implications[J]. Journal of Structural Geology, 2009, 31(2): 177-193.
|
40 |
TRAP P, FAURE M, LIN W, et al. Late Paleoproterozoic (1900-1800 Ma) nappe stacking and polyphase deformation in the Hengshan-Wutaishan area: implications for the understanding of the Trans-North-China Belt, North China Craton[J]. Precambrian Research, 2007, 156(1/2): 85-106.
|
41 |
TRAP P, FAURE M, LIN W, et al. Syn-collisional channel flow and exhumation of Paleoproterozoic high pressure rocks in the Trans-North China Orogen: the critical role of partial-melting and orogenic bending[J]. Gondwana Research, 2011, 20(2/3): 498-515.
|
42 |
HE L C, ZHANG J, ZHAO G C, et al. Macro- and microstructural analysis of the Zhujiafang ductile shear zone, Hengshan Complex: tectonic nature and geodynamic implications of the evolution of Trans-North China Orogen[J]. GSA Bulletin, 2021, 133(5/6): 1 237-1 255.
|
43 |
LIU J H, LI Z M G, ZHANG Q W L, et al. New 40Ar/39Ar geochronology data of the Fuping and Wutai Complexes: further constraints on the thermal evolution of the Trans-North China Orogen[J]. Precambrian Research, 2021, 354. DOI:10.1016/j.precamres.2020.106046 .
|
44 |
GONG W B, HU J M, WU S J, et al. Possible southwestward extrusion of the Ordos Block in the Late Paleoproterozoic: constraints from kinematic and geochronologic analysis of peripheral ductile shear zones[J]. Precambrian Research, 2014, 255: 716-733.
|
45 |
ZHAO Y F, HU J M, GONG W B, et al. Indentation tectonics of the Fanshi Block in the Trans-North China Orogen[J]. Precambrian Research, 2019, 331. DOI:10.1016/j.precamres.2019.105356 .
|
46 |
LI Y J, ZHU G, GU C C, et al. Structural evolution of the Paleoproterozoic Trans-North China Orogen: evidence from the Xiaoqinling region, central China[J]. Precambrian Research, 2018, 316: 244-274.
|
47 |
DENG X Q, PENG T P, ZHAO T P. Geochronology and geochemistry of the late Paleoproterozoic aluminous A-type granite in the Xiaoqinling area along the southern margin of the North China Craton: petrogenesis and tectonic implications[J]. Precambrian Research, 2016, 285: 127-146.
|
48 |
DENG Xiaoqin, PENG Touping, ZHAO Taiping, et al. Petrogenesis of the Late Paleoproterozoic (~1.84 Ga) Yuantou A-type granite in the southern margin of the North China Craton and its tectonic implications[J]. Acta Petrologica Sinica, 2019, 35(8): 2 455-2 469.
|
|
邓小芹, 彭头平, 赵太平, 等. 华北克拉通南缘古元古代末(~1.84 Ga)垣头A-型花岗岩成因及其构造意义[J]. 岩石学报, 2019, 35(8): 2 455-2 469.
|
49 |
YU X Q, LIU J L, LI C L, et al. Zircon U-Pb dating and Hf isotope analysis on the Taihua Complex: constraints on the formation and evolution of the Trans-North China Orogen[J]. Precambrian Research, 2013, 230: 31-44.
|
50 |
WANG G D, WANG H, CHEN H X, et al. Metamorphic evolution and zircon U-Pb geochronology of the Mts. Huashan amphibolites: insights into the Palaeoproterozoic amalgamation of the North China Craton[J]. Precambrian Research, 2014, 245: 100-114.
|
51 |
WANG G D, WANG H Y C, CHEN H X, et al. Metamorphic P-T-t paths of pelitic granulites of the Taihua metamorphic complex in the Mts. Huashan area and tectonothermal implications for the Palaeoproterozoic Trans-North China Orogen[J]. Precambrian Research, 2017, 290: 147-162.
|
52 |
SHI Yu, YU Jinhai, XU Xisheng, et al. U-Pb ages and Hf isotope compositions of zircons of Taihua Group in Xiaoqinling area, Shaanxi Province[J]. Acta Petrologica Sinica, 2011, 27(10): 3 095-3 108.
|
|
时毓, 于津海, 徐夕生, 等. 陕西小秦岭地区太华群的锆石U-Pb年龄和Hf同位素组成[J]. 岩石学报, 2011, 27(10): 3 095-3 108.
|
53 |
WANG G D, WANG H Y C, CHEN H X, et al. Geochronology and geochemistry of the TTG and potassic granite of the Taihua complex, Mts. Huashan: implications for crustal evolution of the southern North China Craton[J]. Precambrian Research, 2017, 288: 72-90.
|
54 |
DIWU C R, SUN Y, ZHAO Y, et al. Early Paleoproterozoic (2.45~2.20 Ga) magmatic activity during the period of global magmatic shutdown: implications for the crustal evolution of the southern North China Craton[J]. Precambrian Research, 2014, 255: 627-640.
|
55 |
YIN C Q, ZHAO G C, WEI C J, et al. Metamorphism and partial melting of high-pressure pelitic granulites from the Qianlishan Complex: constraints on the tectonic evolution of the Khondalite Belt in the North China Craton[J]. Precambrian Research, 2014, 242: 172-186.
|
56 |
WANG X, ZHANG J, YIN C Q, et al. A syn- to post-collisional tectonic transition in the Khondalite Belt, North China Craton: constraints from 1.95-1.93Ga adakitic granitoids in the Daqingshan Complex[J]. Precambrian Research, 2022, 374. DOI:10.1016/j.precamres.2022.106648 .
|
57 |
FAURE M, LIN W, MONIÉ P, et al. Palaeoproterozoic arc magmatism and collision in Liaodong Peninsula (north-east China)[J]. Terra Nova, 2004, 16(2): 75-80.
|
58 |
LIU F L, ZHANG J, LIU C H. Archean to Paleoproterozoic evolution of the North China Craton: preface[J]. Precambrian Research, 2017, 303: 1-9.
|
59 |
ZHAO G C, WILDE S A, CAWOOD P A, et al. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 2001, 107(1/2): 45-73.
|
60 |
QIAN J H, WEI C J. P-T-t evolution of garnet amphibolites in the Wutai-Hengshan area, North China Craton: insights from phase equilibria and geochronology[J]. Journal of Metamorphic Geology, 2016, 34(5): 423-446.
|
61 |
LU C S, QIAN J H, YIN C Q, et al. Ultrahigh temperature metamorphism recorded in the Lüliang Complex, Trans-North China Orogen: P-T-t evolution and heating mechanism[J]. Precambrian Research, 2022. DOI:10.1016/j.precamres.2022.106900 .
|
62 |
ZHAO G C, HE Y H, SUN M. The Xiong’er volcanic belt at the southern margin of the North China Craton: petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent[J]. Gondwana Research, 2009, 16(2): 170-181.
|
63 |
ZHAO J, ZHANG C L, GUO X J, et al. The late-Paleoproterozoic I- and A-type granites in Lüliang Complex, North China Craton: new evidence on post-collisional extension of Trans-North China Orogen[J]. Precambrian Research, 2018, 318: 70-88.
|
64 |
PENG P, WANG X P, LAI Y, et al. Large-scale liquid immiscibility and fractional crystallization in the 1780 Ma Taihang dyke swarm: implications for genesis of the bimodal Xiong’er volcanic province[J]. Lithos, 2015, 236/237: 106-122.
|
65 |
WANG Y J, ZHAO G C, CAWOOD P A, et al. Geochemistry of Paleoproterozoic (∼1 770 Ma) mafic dikes from the Trans-North China Orogen and tectonic implications[J]. Journal of Asian Earth Sciences, 2008, 33(1/2): 61-77.
|
66 |
DIWU Chunrong, LIU Xiang, SUN Yong. The composition and evolution of the Taihua Complex in the southern North China Craton[J]. Acta Petrologica Sinica, 2018, 34(4): 999-1 018.
|
|
第五春荣, 刘祥, 孙勇. 华北克拉通南缘太华杂岩组成及演化[J]. 岩石学报, 2018, 34(4): 999-1 018.
|
67 |
JIA X L, ZHAI M G, XIAO W J, et al. Late Neoarchean to early Paleoproterozoic tectonic evolution of the southern North China Craton: evidence from geochemistry, zircon geochronology and Hf isotopes of felsic gneisses from the Taihua Complex[J]. Precambrian Research, 2019, 326: 222-239.
|
68 |
ZHAO T P, ZHAI M G, XIA B, et al. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: constraints on the initial formation age of the cover of the North China Craton[J]. Chinese Science Bulletin, 2004, 49(23): 2 495-2 502.
|
69 |
LI Y J, ZHU G, GU C C, et al. Post-collisional orogen-parallel extension in the Trans-North China Orogen: evidence from syn-kinematic pegmatite dikes[J]. Precambrian Research, 2022, 368. DOI:10.1016/j.precamres.2021.106503 .
|
70 |
XUE S, XU Y, LING M X, et al. Geochemical constraints on genesis of Paleoproterozoic A-type granite in the south margin of North China Craton[J]. Lithos, 2018, 304/305/306/307: 489-500.
|
71 |
ZHANG G W, BAI Y B, SUN Y, et al. Composition and evolution of the archaean crust in central Henan, China[J]. Precambrian Research, 1985, 27(1/2/3): 7-35.
|
72 |
DONG Y P, SANTOSH M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1-40.
|
73 |
DONG Y P, SUN S S, SANTOSH M, et al. Cross Orogenic Belts in Central China: implications for the tectonic and paleogeographic evolution of the East Asian continental collage[J]. Gondwana Research, 2022, 109: 18-88.
|
74 |
ZHANG J J, ZHENG Y D. Multistage extension and age dating of the Xiaoqinling metamorphic core complex, central China[J]. Acta Geologica Sinica (English Edition), 1999, 73(2): 139-147.
|
75 |
LI Y J, ZHU G, SU N, et al. The Xiaoqinling metamorphic core complex: a record of Early Cretaceous backarc extension along the southern part of the North China Craton[J]. GSA Bulletin, 2020, 132(3/4): 617-637.
|
76 |
DING Lixue, MA Changqian, LI Jianwei, et al. LA-ICPMS zircon U-Pb ages of the Lantian and Muhuguan granitoid plutons, southern margin of the North China Craton: implications for tectonic setting[J]. Geochimica, 2010, 39(5): 401-413.
|
|
丁丽雪, 马昌前, 李建威, 等. 华北克拉通南缘蓝田和牧护关花岗岩体: LA-ICPMS锆石U-Pb年龄及其构造意义[J]. 地球化学, 2010, 39(5): 401-413.
|
77 |
MAO J W, XIE G Q, PIRAJNO F, et al. Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: shrimp zircon U-Pb ages and tectonic implications[J]. Australian Journal of Earth Sciences, 2010, 57(1): 51-78.
|
78 |
HU J, JIANG S Y, ZHAO H X, et al. Geochemistry and petrogenesis of the Huashan granites and their implications for the Mesozoic tectonic settings in the Xiaoqinling gold mineralization belt, NW China[J]. Journal of Asian Earth Sciences, 2012, 56: 276-289.
|
79 |
LI J W, BI S J, SELBY D, et al. Giant Mesozoic gold provinces related to the destruction of the North China Craton[J]. Earth and Planetary Science Letters, 2012, 349/350: 26-37.
|
80 |
STIPP M, STÜNITZ H, HEILBRONNER R, et al. The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 ℃[J]. Journal of Structural Geology, 2002, 24(12): 1 861-1 884.
|
81 |
MANCKTELOW N S, PENNACCHIONI G. The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites[J]. Journal of Structural Geology, 2004, 26(1): 47-69.
|
82 |
PASSCHIER C W, TROUW R A J. Microtectonics[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.
|
83 |
FALEIROS F M, Da CRUZ CAMPANHA G A, Da SILVEIRA BELLO R M, et al. Quartz recrystallization regimes, c-axis texture transitions and fluid inclusion reequilibration in a prograde greenschist to amphibolite facies mylonite zone (Ribeira Shear Zone, SE Brazil)[J]. Tectonophysics, 2010, 485(1/2/3/4): 193-214.
|
84 |
ALSOP G I, HOLDSWORTH R E. Sheath folds as discriminators of bulk strain type[J]. Journal of Structural Geology, 2006, 28(9): 1 588-1 606.
|
85 |
ALSOP G I, HOLDSWORTH R E. Shear zone folds: records of flow perturbation or structural inheritance?[J]. Geological Society, London, Special Publications, 2004, 224(1): 177-199.
|
86 |
MUDRUK S V, BALAGANSKY V V, RAEVSKY A B, et al. Complex shape of the Palaeoproterozoic Serpovidny refolded mega-sheath fold in northern Fennoscandia revealed by magnetic and structural data[J]. Journal of Structural Geology, 2022, 154. DOI:10.1016/j.jsg.2021.104492 .
|
87 |
HIBBARD J, KARIG D E. Sheath-like folds and progressive fold deformation in tertiary sedimentary rocks of the Shimanto accretionary complex, Japan[J]. Journal of Structural Geology, 1987, 9(7): 845-857.
|
88 |
Dell’ERTOLE D, SCHELLART W P. The development of sheath folds in viscously stratified materials in simple shear conditions: an analogue approach[J]. Journal of Structural Geology, 2013, 56: 129-141.
|
89 |
BERTHÉ D, BRUN J P. Evolution of folds during progressive shear in the South Armorican shear zone, France[J]. Journal of Structural Geology, 1980, 2(1/2): 127-133.
|
90 |
ALSOP G I, CHEER D A, STRACHAN R A, et al. Progressive fold and fabric evolution associated with regional strain gradients: a case study from across a Scandian ductile thrust nappe, Scottish Caledonides[J]. Geological Society, London, Special Publications, 2010, 335(1): 255-274.
|
91 |
FAZIO E, ORTOLANO G, VISALLI R, et al. Strain localization and sheath fold development during progressive deformation in a ductile shear zone: a case study of macro-to micro-scale structures from the Aspromonte Massif, Calabria[J]. Italian Journal of Geosciences, 2018, 137(2): 208-218.
|
92 |
ZHANG Guowei, MENG Qingren, LAI Shaocong. Tectonics and structure of Qinling orogenic belt[J]. Science in China (Series B), 1995, 38(11): 1 379-1 394.
|
93 |
ZHANG Ruiying, SUN Yong. Formation and evolution of Early Precambrian basement in the southern North China Craton[J]. Acta Petrologica Sinica, 2017, 33(10): 3 027-3 041.
|
|
张瑞英, 孙勇. 华北克拉通南部早前寒武纪基底形成与演化[J]. 岩石学报, 2017, 33(10): 3 027-3 041.
|
94 |
KUSKY T M, LI J H. Paleoproterozoic tectonic evolution of the North China Craton[J]. Journal of Asian Earth Sciences, 2003, 22(4): 383-397.
|
95 |
QIAN J H, WEI C J, YIN C Q. Paleoproterozoic P-T-t evolution in the Hengshan-Wutai-Fuping area, North China Craton: evidence from petrological and geochronological data[J]. Precambrian Research, 2017, 303: 91-104.
|
96 |
CHEN H X, LIU J H, ZHANG Q W L, et al. A long-lived tectono-metamorphic event in the late Paleoproterozoic: evidence from SIMS U-Th-Pb dating of monazite from metapelite in central-south Trans-North China Orogen[J]. Precambrian Research, 2020, 336. DOI:10.1016/j.precamres.2019.105497 .
|
97 |
LIU C H, ZHAO G C, LIU F L, et al. The timing of crustal thickening constrained by metamorphic zircon U-Pb-Hf and trace element signatures in the Lüliang Complex, Trans-North China Orogen[J]. Precambrian Research, 2021, 367. DOI:10.1016/j.precamres.2021.106440 .
|
98 |
ZHANG J H, WANG H C, GUO J H, et al. Geochemistry, geochronology and metamorphism of high-pressure mafic granulites in the Huai’an Complex, North China Craton: implications for the tectonic evolution of the Paleoproterozoic orogeny[J]. Precambrian Research, 2023, 387.DOI: 10.1016/j.precamres.2023.106973 .
|
99 |
WANG Guodong, WANG Hao, CHEN Hongxu, et al. U-Pb dating of zircons from metamorphic rocks of the Taihua metamorphic complex, Mt. Huashan, southern margin of the trans-north China Orogen[J]. Acta Geologica Sinica, 2012, 86(9): 1 541-1 551.
|
|
王国栋, 王浩, 陈泓旭, 等. 华北中部造山带南缘华山地区太华变质杂岩中锆石U-Pb定年[J]. 地质学报, 2012, 86(9): 1 541-1 551.
|
100 |
WANG Guodong, LU Junsheng, WANG Hao, et al. LA-ICP-MS U-Pb dating of zircons and 40Ar/39Ar dating of amphiboles of the Taihua Metamorphic Complex, Mt. Huashan, southern terminal of the Palaeoprotorozoic Trans-North China Orogen[J]. Acta Petrologica Sinica, 2013, 29(9): 3 099-3 114.
|
|
王国栋, 卢俊生, 王浩, 等. 华山太华变质杂岩中LA-ICP-MS锆石U-Pb定年及角闪石40Ar/39Ar定年[J]. 岩石学报, 2013, 29(9): 3 099-3 114.
|
101 |
HUANG X L, WILDE S A, ZHONG J W. Episodic crustal growth in the southern segment of the Trans-North China Orogen across the Archean-Proterozoic boundary[J]. Precambrian Research, 2013, 233: 337-357.
|
102 |
LU Junsheng, WANG Guodong, WANG Hao, et al. Metamorphic evolution of the Lushan terrane in the Precambrian Taihua Complex, Henan Province[J]. Acta Petrologica Sinica, 2014, 30(10): 3 062-3 074.
|
|
卢俊生, 王国栋, 王浩, 等. 河南鲁山太华变质杂岩前寒武纪变质作用[J]. 岩石学报, 2014, 30(10): 3 062-3 074.
|
103 |
CHEN Hongxu, WANG Hao, PENG Tao, et al. SIMS U-Pb ages of zircon and tectonic significance of Taihua metamorphic complex in the eastern Luoning, the southern terminal of Trans-North China Orogen[J]. Journal of Earth Sciences and Environment, 2016, 38(6): 822-834.
|
|
陈泓旭, 王浩, 彭涛, 等. 华北中部造山带南缘洛宁东部太华变质杂岩SIMS锆石U-Pb年龄及其地质意义[J]. 地球科学与环境学报, 2016, 38(6): 822-834.
|
104 |
JIANG Zongsheng, WANG Guodong, XIAO Lingling, et al. Paleoproterozoic metamorphic P-T-t path and tectonic significance of the Luoning metamorphic complex at the southern terminal of the Trans-North China Orogen, Henan Province[J]. Acta Petrologica Sinica, 2011, 27(12): 3 701-3 717.
|
|
蒋宗胜, 王国栋, 肖玲玲, 等. 河南洛宁太华变质杂岩区早元古代变质作用P-T-t轨迹及其大地构造意义[J]. 岩石学报, 2011, 27(12): 3 701-3 717.
|
105 |
CHEN H X, WANG J, WANG H, et al. Metamorphism and geochronology of the Luoning metamorphic terrane, southern terminal of the Palaeoproterozoic Trans-North China Orogen, North China Craton[J]. Precambrian Research, 2015, 264: 156-178.
|
106 |
LU J S, WANG G D, WANG H, et al. Metamorphic P-T-t paths retrieved from the amphibolites, Lushan terrane, Henan Province and reappraisal of the Paleoproterozoic tectonic evolution of the Trans-North China Orogen[J]. Precambrian Research, 2013, 238: 61-77.
|
107 |
LU J S, ZHAI M G, LU L S, et al. Metamorphic P-T-t path retrieved from metapelites in the southeastern Taihua metamorphic complex, and the Paleoproterozoic tectonic evolution of the southern North China Craton[J]. Journal of Asian Earth Sciences, 2017, 134: 352-364.
|
108 |
WAN Y S, WILDE S A, LIU D Y, et al. Further evidence for ∼1.85 Ga metamorphism in the Central Zone of the North China Craton: shrimp U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province[J]. Gondwana Research, 2006, 9(1/2): 189-197.
|
109 |
SUN Q Y, ZHOU Y Y, WANG W, et al. Formation and evolution of the Paleoproterozoic meta-mafic and associated supracrustal rocks from the Lushan Taihua Complex, southern North China Craton: insights from zircon U-Pb geochronology and whole-rock geochemistry[J]. Precambrian Research, 2017, 303: 428-444.
|
110 |
ZHAO G, WILDE S A, SUN M, et al. SHRIMP U-Pb zircon geochronology of the Huai’an complex: constraints on Late Archean to Paleoproterozoic magmatic and metamorphic events in the Trans-North China Orogen[J]. American Journal of Science, 2008, 308(3): 270-303.
|
111 |
ZHAO G C, WILDE S A, SUN M, et al. SHRIMP U-Pb zircon ages of granitoid rocks in the Lüliang Complex: implications for the accretion and evolution of the Trans-North China Orogen[J]. Precambrian Research, 2008, 160(3/4): 213-226.
|
112 |
XIAO L L, LIU F L, CHEN Y. Metamorphic P-T-t paths of the Zanhuang metamorphic complex: implications for the Paleoproterozoic evolution of the Trans-North China Orogen[J]. Precambrian Research, 2014, 255: 216-235.
|
113 |
WANG J, WU Y B, GAO S, et al. Zircon U-Pb and trace element data from rocks of the Huai’an Complex: new insights into the late Paleoproterozoic collision between the Eastern and Western Blocks of the North China Craton[J]. Precambrian Research, 2010, 178(1/2/3/4): 59-71.
|
114 |
PENG P, ZHAI M G, ZHANG H F, et al. Geochronological constraints on the Paleoproterozoic evolution of the North China Craton: shrimp zircon ages of different types of mafic dikes[J]. International Geology Review, 2005, 47(5): 492-508.
|
115 |
MENG J, PENG T, LIU J H, et al. Metamorphic evolution and SIMS zircon U-Pb geochronology of mafic granulite and amphibolite enclaves of the Pingyang trondhjemitic pluton, Fuping terrane, North China[J]. Precambrian Research, 2017, 303: 75-90.
|
116 |
ZOU L, GUO J H, YANG C H, et al. The P-T-t path of pelitic gneisses in the Zanhuang Complex: further constraints on the Palaeoproterozoic tectonic evolution of the Trans-North China Orogen, North China Craton[J]. Journal of Asian Earth Sciences, 2021, 210. DOI:10.1016/j.jseaes.2021.104701 .
|
117 |
LIU J H, ZHANG Q W L, ZHANG H C G, et al. Metamorphic evolution and SHRIMP U-Pb geochronology of mafic granulites with double symplectites in the Fuping metamorphic complex, middle Palaeoproterozoic Trans-North China Orogen[J]. Precambrian Research, 2019, 326: 142-154.
|
118 |
GUO J H, SUN M, CHEN F K, et al. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: timing of Paleoproterozoic continental collision[J]. Journal of Asian Earth Sciences, 2005, 24(5): 629-642.
|
119 |
XIAO L L, CLARKE G, LIU F L, et al. Discovery of mafic granulite in the Guandishan area of the Lüliang Complex, North China Craton: age and metamorphic evolution[J]. Precambrian Research, 2017, 303: 604-625.
|
120 |
QIAN J H, WEI C J, ZHOU X W, et al. Metamorphic P-T paths and New Zircon U-Pb age data for garnet-mica schist from the Wutai Group, North China Craton[J]. Precambrian Research, 2013, 233: 282-296.
|
121 |
ZHANG H C G, ZHAO G C, WANG C, et al. Phase equilibria modelling and zircon U-Pb geochronology of Paleoproterozoic mafic granulites from the Chengde Complex, North China Craton[J]. Precambrian Research, 2022, 371. DOI:10.1016/j.precamres.2022.106576 .
|
122 |
WU D, WEI C J. Metamorphic evolution of two types of garnet amphibolite from the Qingyuan terrane, North China Craton: insights from phase equilibria modelling and zircon dating[J]. Precambrian Research, 2021. DOI:10.1016/j.precamres.2021.106091 .
|
123 |
LIU J H, ZHANG Q W L, WANG J, et al. Metamorphic evolution and SIMS U-Pb geochronology of orthopyroxene-bearing high-P semipelitic granulite in the Fuping area, middle Trans-North China Orogen[J]. Journal of Metamorphic Geology, 2021, 39(3): 297-320.
|
124 |
MACDONALD J, WHEELER J, GOODENOUGH K, et al. Combined SIMS U-Pb ages and Ti-in-zircon geothermometry fingerprints long deep crustal residence in the Archaean[J]. Mineralogical Magazine, 2011, 75. DOI:10.1243/0954405981516003 .
|
125 |
JAMIESON R A, BEAUMONT C. Coeval thrusting and extension during lower crustal ductile flow-implications for exhumation of high-grade metamorphic rocks[J]. Journal of Metamorphic Geology, 2011, 29(1): 33-51.
|
126 |
CLARK C, HEALY D, JOHNSON T, et al. Hot orogens and supercontinent amalgamation: a Gondwanan example from southern India[J]. Gondwana Research, 2015, 28(4): 1 310-1 328.
|