地球科学进展 ›› 2024, Vol. 39 ›› Issue (3): 247 -268. doi: 10.11867/j.issn.1001-8166.2024.021

研究论文 上一篇    下一篇

华北南缘太华杂岩构造变形规律及机制:中部造山带构造演化的关键约束
李云剑 1( ), 朱光 2, 顾承串 3, 董梦龙 1, 尹浩 4, 吴晓冬 5   
  1. 1.河海大学 地球科学与工程学院,江苏 南京 211100
    2.合肥工业大学 资源与环境工程学院,安徽 合肥 230009
    3.安徽理工大学 地球与环境学院,安徽 淮南 232001
    4.衢州学院 建筑工程学院,浙江 衢州 324000
    5.湖南科技大学 地球科学与空间信息工程学院,湖南 湘潭 411201
  • 收稿日期:2023-11-17 修回日期:2024-02-14 出版日期:2024-03-10
  • 基金资助:
    国家自然科学基金(42102265)

Structural Deformation Characteristics and Mechanisms of the Taihua Complex along the Southern Margin of the North China Craton: Key Constraints on the Tectonic Evolution of the Trans-North China Orogen

Yunjian LI 1( ), Guang ZHU 2, Chengchuan GU 3, Menglong DONG 1, Hao YIN 4, Xiaodong WU 5   

  1. 1.School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
    2.School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
    3.School of Earth and Environment, Anhui University of Science and Technology, Huainan Anhui 232001, China
    4.College of Civil Engineering and Architecture, Quzhou University, Quzhou Zhejiang 324000, China
    5.School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan Hunan 411201, China
  • Received:2023-11-17 Revised:2024-02-14 Online:2024-03-10 Published:2024-04-01
  • About author:LI Yunjian, Lecturer, research areas include orogenic dynamics and fault structures. E-mail: yunjian@hhu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(42102265)

中部造山带是认识华北克拉通古元古代构造演化的重要窗口。针对造山带南段小秦岭地区太华杂岩开展了系统的构造和年代学研究。结果显示,太华杂岩发生强烈的韧性变形,普遍保存有韧性剪切带和同剪切褶皱,特别是鞘褶皱。韧性剪切带和鞘褶皱具有一致的上盘向WNW剪切的运动学,变形温度为600~650 ℃。剪切带内同构造混合岩锆石U-Pb年龄将剪切带活动时间限制在1 890~1 843 Ma。通过几何学、运动学、年代学及变形温度的综合分析表明,韧性剪切带和区域规模的鞘褶皱为同碰撞折返期构造,并支持西部陆块向SE俯冲造山模式。基于已有研究成果,揭示了中部造山带经历了漫长而复杂的造山演化过程,1.97~1.89 Ga为大陆深俯冲阶段,1.89~1.84 Ga为高压变质岩石折返阶段,1.84~1.78 Ga对应后造山伸展阶段。中部造山带这一漫长的造山演化过程,为大规模碰撞造山作用可持续超过100 Ma的观点提供了有力证据。

The Trans-North China Orogen (TNCO) serves as a crucial window for understanding the Paleoproterozoic tectonic evolution of the North China Craton. However, the lack of research on collision-related structures, particularly in the southern segment, significantly impedes a thorough understanding of the tectonic evolution of the TNCO. A systematic study of the structure and geochronology was conducted on the Taihua Complex in the southern part of the TNCO. The results indicate that the Taihua Complex underwent intense ductile deformation with widespread preservation of ductile shear zones and syn-shearing folds, notably sheath folds. The kinematics of ductile shear zones and syn-shearing folds exhibit consistent top-to-the-WNW sense of shear, with deformation temperatures ranging from 600 to 650°C. The evolution of syn-shearing folds and the rotation of syn-tectonic leucocratic veins within shear zones record the progressive deformation process. The zircon U-Pb ages of syntectonic migmatites within the shear zones constrain the timing of ductile deformation to between 1 890 and 1 843 Ma. A comprehensive analysis of the geometry, kinematics, geochronology, and deformation temperatures suggests that ductile shear zones and regionally scaled sheath folds represent the exhumation structures of the orogenic belt, supporting the orogenic model of SE-directed subduction polarity. Based on the new structural and chronological data, in conjunction with previous research, it is proposed that the TNCO experienced a protracted orogenic evolution process, with the interval from 1.97 to 1.89 Ga signifying the continental subduction stage, 1.89 to 1.84 Ga corresponding to the subsequent exhumation stage, and 1.84 to 1.78 Ga corresponding to the post-orogenic extension phase. This protracted collisional orogeny process in the TNCO provides robust evidence for the sustained occurrence of a large-scale collisional orogeny for over 100 Mya.

中图分类号: 

图1 华北克拉通基底构造单元划分图(据参考文献[ 18 ]修改)
Fig. 1 Division of basement tectonic units in the North China Cratonmodified after reference 18 ])
图2 小秦岭地区构造简图和变形组构赤平投影图
(a)小秦岭地区主要岩石单元和构造框架图,具同位素年龄信息,晚古元古代花岗岩体锆石U-Pb年龄来自参考文献[ 46 - 48 ];(b)小秦岭地区面理、线理、鞘褶皱枢纽和非鞘褶皱轴面赤平投影图
Fig. 2 Simplified structural map and stereograms of deformation fabrics in the Xiaoqinling region
(a) The rock units and tectonic framework map of the Xiaoqinling region, along with zircon U-Pb ages of Late Paleoproterozoic granites, are sourced from references [46-48]; (b) Stereograms of foliations, lineations, hinges of sheath folds, and axial surfaces of folds in the Xiaoqinling region
图3 小秦岭地区韧性剪切带野外露头照片
(a)陡倾的混合岩化糜棱岩,早阶段平行面理的完全置换和中间阶段与面理斜交的部分置换浅色脉体及不对称褶皱,指示左行剪切(XQ100; 34° 30′56″N, 110° 01′13″E);(b)韧性剪切带内陡倾的糜棱面理和缓倾的矿物拉伸线理(XQ190; 34°07?19″N, 109°33?13″E);(c)韧性剪切带内混合岩化糜棱岩,旋转的角闪石残斑拖尾指示左行剪切,角闪石残斑拖尾与浅色熔体相连,且残斑内部也发生不同程度的熔蚀(XQ250; 34°21?23″N, 109°40?33″E);(d)同构造混合岩浅色脉体与面理或剪切方向呈不同角度,展现出逐步旋转的递进变形,并在熔体内部出现应变强化(XQ31;110°17′25″E,34°27′38″N);(e)陡倾的混合岩化糜棱岩,剪切带集中在熔融区内发育,不对称褶皱和S-C组构指示左行剪切(XQ28;109°59′44″E,34°24′06″N);(f)缓倾的韧性剪切带内发育混合岩化糜棱岩,早、中和晚三阶段的浅色脉体及布丁构造指示上盘向WNW剪切(XQ354; 34°27?22″N, 110°32?19″E)
Fig. 3 Outcrop photographs of ductile shear zones in the Xiaoqinling region
(a) Steeply dipping migmatized mylonite, exhibiting early-stage total transposition aligning with the foliation and partial transposition into being oblique to the foliation of leucosomes, along with asymmetric folds indicating sinistral shearing (XQ100; 34° 30′56″N, 110° 01′13″E); (b) Ductile shear zone exhibiting steeply dipping mylonitic foliation and gently plunging mineral stretching lineations (XQ190; 34°07?19″N, 109°33?13″E); (c) Migmatized mylonite with altered mafic boudins showing a sinistral shear sense, the rotated amphibole porphyroblasts tail is connected to the light-colored melt of the migmatite, and the melt also undergoes some degree of alteration within the porphyroblasts (XQ250; 34°21?23″N, 109°40?33″E); (d) Syn-tectonic migmatitic layers show different angles to foliation or shear sense, progressive rotation and deformation, and strain intensification within the migmatite (XQ31;110°17′25″E,34°27′38″N); (e) Steeply dipping ductile shear zone with migmatization concentration and asymmetric folds indicating a sinistral sense of shear (XQ28;109°59′44″E,34°24′06″N); (f) Migmatized mylonite in a gently dipping ductile shear zone, containing boudinage and oblique leucosomes that indicate a top-to-the-WNW sense of shear (XQ354; 34°27?22″N, 110°32?19″E)
图4 小秦岭地区韧性剪切带糜棱岩显微照片
(a)糜棱岩内石英和长石动态重结晶型式分别为GBM和BLG,长石具有核幔构造,S-C组构和旋转的长石残斑指示左行剪切(XQ39; 34°10'45" N,109°32'05" E);(b)初糜棱岩内石英和长石动态重结晶型式分别为GBM和BLG,旋转的长石残斑指示左行剪切(XQ91;34°12'47" N,109°32'16" E);(c)糜棱岩内石英和长石动态重结晶型式分别为GBM和BLG,旋转的长石残斑指示左行剪切(XQ189;34°31'01" N,110°03'24" E);(d)由于发生动态重结晶作用,糜棱岩化浅色体表现为条带状的长石和石英集合体,S-C组构和旋转的长石残斑指示左行剪切(XQ522; 34°27?28″N, 110°22?11″E);(e)超糜棱岩内石英和长石动态重结晶型式分别为GBM和BLG与SR共存,S-C组构和旋转的长石残斑指示右行剪切(XQ27;34°24'38" N,109°59'55" E);(f)糜棱岩内石英和长石动态重结晶型式分别为GBM和BLG,S-C组构和旋转的长石残斑指示左行剪切(XQ212;34°27'44" N,110°35'53" E)
Fig. 4 Photomicrographs of mylonites from ductile shear zones in the Xiaoqinling region
(a) Mylonite showing dynamic recrystallization of quartz by GBM and feldspar by BLG, with mantle-core structure displayed by feldspars, S-C fabrics and rotated feldspar porphyroclasts indicate a sinistral sense of shear (XQ39; 34°10'45" N,109°32'05" E); (b) Protomylonite showing dynamic recrystallization of quartz by GBM and feldspar by BLG, with mantle-core structure displayed by feldspars, rotated feldspar porphyroclasts indicate a sinistral sense of shear (XQ91;34°12'47" N,109°32'16" E); (c) Mylonite showing dynamic recrystallization of quartz by GBM and feldspar by BLG, rotated feldspar porphyroclasts indicate a sinistral sense of shear (XQ189;34°31'01" N,110°03'24" E); (d) Mylonitized leucosomes exhibit banded plagioclase and quartz due to dynamic recrystallization, of quartz by GBM and feldspar by BLG, as well as S-C fabrics and rotated feldspar porphyroclasts that suggest a sinistral sense of shear (XQ522; 34°27?28″N, 110°22?11″E); (e) Ultramylonite showing dynamic recrystallization of quartz by GBM and feldspar by BLG and Subgrain Rotation (SR), and rotated feldspar and S-C fabric that indicate a dextral shear sense (XQ27;34°24'38" N,109°59'55" E); (f) Mylonite showing dynamic recrystallization of quartz by GBM and feldspar by BLG, and rotated feldspar porphyroclast that indicates a sinistral shear sense (XQ212;34°27'44" N,110°35'53" E)
表1 小秦岭地区韧性剪切带内糜棱岩矿物组合、显微构造特征与变形温度估计
Table 1 Mineral assemblagesmicrostructures and estimation of deformation temperature within mylonites from ductile shear zones in the Xiaoqinling region
图5 小秦岭地区鞘褶皱野外照片
(a)YZ和XY截面上出露的中等尺度鞘褶皱,表现为Ω型样式(XQ585;34°30?40″N, 109°56?27″E);(b)YZ截面上出露的、具有同心环状构造的鞘褶皱,枢纽向ESE缓倾,并与矿物拉伸线理平行(XQ526; 34°30?49″N, 110°10?47″E);(c)YZ截面上出露的多个小尺度椭圆状鞘褶皱(XQ107;109°49′55″E,34°28′22″N);(d)YZ截面上出露的多个不规则同心状鞘褶皱,枢纽向ESE缓倾(XQ557; 34°30?33″N, 109°52?24″E);(e)XY截面上出露的小尺度鞘褶皱,凸起向上呈舌状,褶皱枢纽显示出系统变化和向主轴方向的旋转,并平行于线理(XQ515; 34°24?54″N, 110°17?13″E);(f)YZ截面上出露的鞘褶皱,呈管状,枢纽向ESE缓倾(XQ307;110°36′28″E,34°28′33″N)
Fig. 5 Outcrop photographs of sheath folds in the Xiaoqinling region
(a) YZ plane and XY plane view of a mesoscale sheath fold showing an Ω-pattern structure (XQ585; 34°30?40″N, 109°56?27″E); (b) YZ plane view of a mesoscale sheath fold showing a concentric elliptical structure (bulls-eye fold pattern), with the fold axis dipping gently to the ESE and parallel to the stretching lineation (XQ526; 34°30?49″N, 110°10?47″E); (c) YZ plane view of multiple small-scale sheath folds showing an elliptical eye structure (bulls-eye and cats-eye fold pattern; XQ107;109°49′55″E,34°28′22″N); (d) YZ plane view of small-scale sheath folds showing an irregular concentric elliptical structure (bulls-eye fold pattern), with the fold axis dipping gently to the ESE (XQ557; 34°30?33″N, 109°52?24″E); (e) XY plane view of a small-scale sheath folds that is convex up and form tongue-like morphologies. Fold hinge lines display systematic variation and rotation toward major culminations and are parallel to the mineral stretching direction (XQ515; 34°24?54″N, 110°17?13″E); (f) YZ plane view of a sheath fold showing a tube-like morphology, with the fold axis dipping gently to the ESE (XQ307;110°36′28″E,34°28′33″N)
图6 小秦岭地区同剪切褶皱野外照片
(a)韧性剪切带内晚阶段直立褶皱(III)和早阶段紧闭同斜褶皱(I)都卷入了混合岩化作用,相对于晚阶段褶皱,早阶段褶皱的轴面向剪切方向发生旋转,并最终旋转到平行面理方向(XQ580; 34°21?22″N, 109°40?35″E);(b)混合岩化糜棱岩内的中间阶段、中等倾角的不对称褶皱(II)轴面与面理斜切,指示左行剪切,褶皱一翼被剪切、拉断,表现出强烈的同构造剪切变形(XQ571; 34°21?25″N, 109°41?30″E);(c)混合岩化糜棱岩内缓倾的不对称褶皱(II)和紧闭的等斜褶皱(I),指示左行剪切,剪切带的形成与混合岩化作用密切相关(XQ566; 34°24?57″N, 110°11?01″E);(d)糜棱岩内浅色体发育成紧闭的同斜褶皱(I),轴面平行面理,翼部减薄,转折端增厚,指示同构造混合岩化(XQ390; 34°28?39″N, 109°46?45″E);(e)糜棱岩化混合岩内缓倾的不对称褶皱(II)、紧闭的等斜褶皱和鞘褶皱(I)和拉长的脉体指示强烈的剪切变形,不对称褶皱截切早阶段鞘褶皱(XQ11; 34°26?49″N, 110°12?51″E);(f)同一露头上出露早、中和晚三阶段褶皱(I,II,和III),轴面与面理呈不同角度,表明褶皱在演化过程中发生逐步旋转,指示递进变形过程(XQ88;34°28'32" N,110°21'09" E)
Fig. 6 Outcrop photographs of syn-shearing folds in the Xiaoqinling region
(a) Late upright folds (stage III) and early tight isoclinal folds (stage I) in a shear zone involved in migmatization, compared with the late folds, the axial surfaces of early folds are rotated to the shear direction and ultimately become parallel to the foliation (XQ580; 34°21?22″N, 109°40?35″E); (b) Moderately inclined asymmetric folds (stage II) in a mylonite shear zone, their axial surfaces intersect with the foliation at a moderate angle, showing a sinistral sense of shear, one limb of the fold is sheared and pulled apart, indicating a strong syn-tectonic shear deformation (XQ571; 34°21?25″N, 109°41?30″E); (c) Gently inclined asymmetric folds (stage II) and tight isoclinal folds (stage I) in migmatized mylonite showing a sinistral sense of shear, and the shear zone were developed in association with the migmatization (XQ566; 34°24?57″N, 110°11?01″E); (d) Tight isoclinal folds (stage I) in a mylonite shear zone, with axial surfaces oriented parallel to the foliation and thinned limbs, and the shearing synchronous with migmatization (XQ390; 34°28?39″N, 109°46?45″E); (e) Gently inclined asymmetric folds (stage II) and tight isoclinal and sheath folds (stage I) in mylonitic migmatite, an elongated dike indicates strong shear deformation, and the asymmetric fold truncates the sheath fold (XQ11; 34°26?49″N, 110°12?51″E); (f) Three stages (I, II, and III) of folds recorded in a single outcrop, with different angles between their axial planes and foliation (due to axial surface rotation), showing evolution of the folds by progressive deformation within the shear zone (XQ88;34°28'32" N,110°21'09" E)
图7 小秦岭地区2个变形岩体和2个混合岩样品的锆石U-Pb年龄谐和图、锆石CL图像和Th/U
Fig. 7 Zircon U-Pb concordia diagramscathodoluminescence images of zircons and diagrams of Th/U ratio versus age for two deformed plutonic rock and two migmatite samples in the Xiaoqinling region
图8 中部造山带小秦岭地区构造演化模式图
Fig. 8 Schematic model of structural evolution of the Trans-North China OrogenTNCOin the Xiaoqinling region
图9 中部造山带变质锆石年龄频谱图(变质锆石年龄数据来自参考文献[17243239434650-5460666995-9799-123])
Fig. 9 Histograms and relative probabilitycurvesof concordant metamorphic zircon ages from Trans-North China Orogendata of metamorphic zircon ages from references17243239434650-5460666995-9799-123])
附表 小秦岭地区韧性剪切带内变形岩体与混合岩 LA-ICP-MS锆石 U-Pb定年结果
样品点号 Th/ ×10-6 U/ ×10-6 Th/U 同位素比值 年龄/Ma
207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
XQ31 (110°17′25″E,34°27′38″N, 韧性剪切带内混合岩) XQ31-1 103 93 1.11 0.112 08 0.003 39 4.857 78 0.1496 7 0.314 57 0.008 90 1 833 23 1 795 26 1 763 44
XQ31-2 64 83 0.77 0.113 28 0.003 74 5.078 68 0.194 30 0.324 48 0.010 02 1 853 42 1 833 32 1 812 49
XQ31-4 108 109 0.99 0.112 14 0.003 46 5.133 26 0.165 35 0.332 77 0.010 12 1 834 20 1 842 27 1 852 49
XQ31-6 61 121 0.50 0.112 50 0.003 30 4.884 29 0.148 56 0.313 11 0.008 59 1 840 24 1 800 26 1 756 42
XQ31-7 208 301 0.69 0.113 61 0.003 42 5.005 82 0.152 41 0.317 49 0.008 66 1 858 25 1 820 26 1 777 42
XQ31-9 546 498 1.10 0.113 19 0.003 36 4.932 23 0.148 30 0.314 47 0.008 73 1 851 21 1 808 25 1 763 43
XQ31-11 315 1 388 0.23 0.145 41 0.004 57 8.190 31 0.268 43 0.407 52 0.011 66 2 293 28 2 252 30 2 204 53
XQ31-12 181 945 0.19 0.139 56 0.004 23 8.029 40 0.245 20 0.413 05 0.010 95 2 222 27 2 234 28 2 229 50
XQ31-13 283 1 005 0.28 0.138 62 0.004 20 7.180 96 0.229 21 0.373 99 0.010 96 2 210 23 2 134 28 2 048 51
XQ31-14 374 2 570 0.15 0.136 97 0.004 06 8.235 43 0.251 59 0.434 22 0.012 03 2 189 23 2 257 28 2 325 54
XQ31-15 147 654 0.22 0.141 65 0.005 10 7.643 98 0.264 30 0.382 99 0.010 49 2 247 37 2 190 31 2 090 49
XQ28 (109°59′44″E,34°24′06″N, 韧性剪切带内混合岩) XQ28-1 741 2 257 0.33 0.115 93 0.003 38 5.324 70 0.164 52 0.332 90 0.009 50 1 894 22 1 873 26 1 852 46
XQ28-2 198 306 0.65 0.115 15 0.003 29 4.895 39 0.142 90 0.306 98 0.008 43 1 882 18 1 801 25 1 726 42
XQ28-3 408 445 0.92 0.116 09 0.003 46 5.214 70 0.158 46 0.324 38 0.008 94 1 897 24 1 855 26 1 811 44
XQ28-4 217 504 0.43 0.115 71 0.004 32 4.720 48 0.222 02 0.302 85 0.014 36 1 891 4 1 771 39 1 705 71
XQ28-7 237 400 0.59 0.116 57 0.003 44 5.392 51 0.161 01 0.335 07 0.009 47 1 904 18 1 884 26 1 863 46
XQ28-9 118 112 1.05 0.113 52 0.003 46 5.017 04 0.161 46 0.321 78 0.009 82 1 856 19 1 822 27 1 798 48
XQ28-10 149 322 0.46 0.166 45 0.006 85 10.924 20 0.447 80 0.477 77 0.013 98 2 521 47 2 517 38 2 484 61
XQ28-12 43 40 1.09 0.170 93 0.005 51 10.678 15 0.343 08 0.452 93 0.012 89 2 567 26 2 496 30 2 408 57
XQ28-15 116 217 0.53 0.166 23 0.008 07 10.462 67 0.482 88 0.449 83 0.012 36 2 520 64 2 477 43 2 394 55
XQ28-17 62 308 0.20 0.173 03 0.007 65 10.655 99 0.356 09 0.446 66 0.012 93 2 587 76 2 494 31 2 380 58
XQ107 (109°49′55″E,34°28′22″N, 韧性剪切带内变形花岗闪 长岩体) XQ107-2 201 3 930 0.05 0.116 85 0.003 56 5.393 78 0.173 84 0.334 21 0.010 00 1 909 22 1 884 28 1 859 48
XQ107-3 89 1 731 0.05 0.117 16 0.003 49 5.192 89 0.159 52 0.321 37 0.009 42 1 913 17 1 851 26 1 796 46
XQ107-4 153 4 681 0.03 0.117 32 0.005 57 5.634 03 0.236 01 0.355 46 0.012 00 1 916 46 1 921 36 1 961 57
XQ107-5 179 2 751 0.06 0.116 55 0.004 80 5.616 61 0.238 88 0.349 33 0.011 72 1 904 48 1 919 37 1 931 56
XQ107-9 217 4 791 0.05 0.116 41 0.004 85 5.393 49 0.222 28 0.339 58 0.011 36 1 902 44 1 884 35 1 885 55
XQ107-10 667 29 331 0.02 0.116 59 0.003 30 5.476 79 0.163 73 0.340 41 0.009 66 1 905 17 1 897 26 1 889 46
XQ107-12 278 5 130 0.05 0.116 74 0.003 34 5.436 83 0.163 62 0.336 91 0.009 37 1 907 21 1 891 26 1 872 45
XQ107-13 243 479 0.51 0.145 47 0.004 93 8.292 47 0.277 26 0.414 47 0.012 06 2 293 29 2 263 30 2 235 55
XQ107-14 259 553 0.47 0.144 12 0.004 54 8.398 93 0.277 25 0.419 40 0.012 69 2 277 23 2 275 30 2 258 58
XQ107-15 196 381 0.51 0.143 09 0.004 66 8.338 19 0.292 69 0.420 08 0.013 51 2 265 25 2 268 32 2 261 61
XQ107-16 294 698 0.42 0.142 59 0.004 53 8.171 34 0.273 13 0.413 35 0.012 91 2 259 21 2 250 30 2 230 59
XQ107-17 368 689 0.53 0.142 09 0.0043 6 8.322 45 0.269 01 0.420 94 0.012 69 2 253 21 2 267 29 2 265 58
XQ107-18 417 468 0.89 0.141 24 0.004 45 8.339 11 0.270 10 0.426 20 0.013 04 2 242 19 2 269 29 2 289 59
XQ307 (110°36′28″E,34°28′33″N, 韧性剪切带内变形花岗岩体) XQ307-1 667 33 004 0.02 0.117 78 0.004 32 5.524 54 0.239 07 0.345 27 0.014 02 1 923 27 1 904 37 1 912 67
XQ307-2 164 4 671 0.04 0.120 24 0.003 62 5.317 34 0.162 25 0.319 48 0.008 94 1 960 22 1 872 26 1 787 44
XQ307-3 121 4 723 0.03 0.118 27 0.007 41 5.417 27 0.277 29 0.344 38 0.012 36 1 930 67 1 888 44 1 908 59
XQ307-6 295 5 978 0.05 0.119 16 0.003 64 6.126 72 0.199 71 0.370 99 0.010 64 1 944 28 1 994 28 2 034 50
XQ307-7 6 700 24 007 0.28 0.117 56 0.003 32 5.666 31 0.167 44 0.348 68 0.009 62 1 920 19 1 926 26 1 928 46
XQ307-8 203 406 0.50 0.163 10 0.004 70 10.298 53 0.318 36 0.456 00 0.013 16 2 488 19 2 462 29 2 422 58
XQ307-9 246 674 0.36 0.161 12 0.004 66 10.470 77 0.310 29 0.470 08 0.012 49 2 467 23 2 477 27 2 484 55
XQ307-13 362 535 0.68 0.158 57 0.004 55 10.528 39 0.306 48 0.478 95 0.012 92 2 440 19 2 482 27 2 523 56
XQ307-14 108 256 0.42 0.161 97 0.004 58 10.102 61 0.288 76 0.450 36 0.011 85 2 476 19 2 444 26 2 397 53
XQ307-15 126 343 0.37 0.155 16 0.004 44 9.833 11 0.293 82 0.459 09 0.012 23 2 404 24 2 419 28 2 436 54
1 PANKHURST R J, RAPELA C W, FANNING C M, et al. Gondwanide continental collision and the origin of Patagonia[J]. Earth-Science Reviews, 2006, 76(3/4): 235-257.
2 XU Zhiqin, ZHENG Bihai, WANG Qin. From accretion to collision: situation and outlook[J]. Acta Geologica Sinica, 2021, 95(1): 75-97.
许志琴, 郑碧海, 王勤. 从洋—陆俯冲到陆—陆碰撞: 回眸与展望[J]. 地质学报, 2021, 95(1): 75-97.
3 ZHENG Yongfei. Plate tectonics in the twenty-first century[J]. Science China Earth Science, 2023, 66(1): 1-40.
郑永飞. 21世纪板块构造[J]. 中国科学: 地球科学, 2023, 66(1): 1-40.
4 GHOSH S K, SENGUPTA S. Progressive development of structures in a ductile shear zone[J]. Journal of Structural Geology, 1987, 9(3): 277-287.
5 HOLDSWORTH R E. Progressive deformation structures associated with ductile thrusts in the Moine Nappe, Sutherland, N. Scotland[J]. Journal of Structural Geology, 1990, 12(4): 443-452.
6 BONAMICI C E, TIKOFF B, GOODWIN L B. Anatomy of a 10 km scale sheath fold, Mount Hay ridge, Arunta region, central Australia: the structural record of deep crustal flow[J]. Tectonics, 2011, 30(6). DOI:10.1029/2011TC002873 .
7 FOSSEN H, CAVALCANTE G C G. Shear zones—a review[J]. Earth-Science Reviews, 2017, 171: 434-455.
8 DERIKVAND S, ALMASI A. Kinematic vorticity, finite strain, and deformation thermometry analyses of the exhumed mylonites in the Samen ductile shear zone (Sanandaj-Sirjan Metamorphic Belt, Iran)[J]. Journal of Structural Geology, 2022, 154. DOI:10.1016/j.jsg.2021.104500 .
9 GOSCOMBE B. Intense non-coaxial shear and the development of mega-scale sheath folds in the Arunta Block, Central Australia[J]. Journal of Structural Geology, 1991, 13(3): 299-318.
10 JOLIVET L, BEYSSAC O, GOFFÉ B, et al. Oligo-Miocene midcrustal subhorizontal shear zone in Indochina[J]. Tectonics, 2001, 20(1): 46-57.
11 CARRERAS J, DRUGUET E, GRIERA A. Shear zone-related folds[J]. Journal of Structural Geology, 2005, 27(7): 1 229-1 251.
12 CARRERAS J, DRUGUET E. Complex fold patterns developed by progressive deformation[J]. Journal of Structural Geology, 2019, 125: 195-201.
13 RAHL J M, SKEMER P. Microstructural evolution and rheology of quartz in a mid-crustal shear zone[J]. Tectonophysics, 2016, 680: 129-139.
14 GROß P, PLEUGER J, HANDY M R, et al. Evolving temperature field in a fossil subduction channel during the transition from subduction to collision (Tauern Window, Eastern Alps)[J]. Journal of Metamorphic Geology, 2021, 39(2): 247-269.
15 DONG Yunpeng, ZHANG Guowei. Some ideas and advances in studies of tectonics and dynamics of orogenic belt and foreland basin[J]. Advances in Earth Science, 1997, 12(1): 1-6.
董云鹏, 张国伟. 造山带与前陆盆地结构构造及动力学研究思路和进展[J]. 地球科学进展, 1997, 12(1): 1-6.
16 LI Jianghai, HOU Guiting, LIU Shouji. The early Precambrian collisional orogenic process and plate tectonics: chance and challenge of Precambrian geology[J]. Advances in Earth Science, 2006, 21(8): 843-848.
李江海, 侯贵廷, 刘守偈. 早期碰撞造山过程与板块构造: 前寒武纪地质研究的机遇和挑战[J]. 地球科学进展, 2006, 21(8): 843-848.
17 ZHAO G C, CAWOOD P A, WILDE S A, et al. Review of global 2.1~1.8 Ga orogens: implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59(1/2/3/4): 125-162.
18 ZHAO G C, SUN M, WILDE S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202.
19 LIU S W, ZHAO G C, WILDE S A, et al. Th-U-Pb monazite geochronology of the Lüliang and Wutai Complexes: constraints on the tectonothermal evolution of the Trans-North China Orogen[J]. Precambrian Research, 2006, 148(3/4): 205-224.
20 KUSKY T M, SANTOSH M. The Columbia connection in North China[J]. Geological Society, London, Special Publications, 2009, 323(1): 49-71.
21 ZHAI M G, SANTOSH M. The early Precambrian odyssey of the North China Craton: a synoptic overview[J]. Gondwana Research, 2011, 20(1): 6-25.
22 ZHAO G C, ZHAI M G. Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications[J]. Gondwana Research, 2013, 23(4): 1 207-1 240.
23 WILDE S A, ZHAO G C, SUN M. Development of the North China Craton during the late archaean and its final amalgamation at 1.8 Ga: some speculations on its position within a global palaeoproterozoic supercontinent[J]. Gondwana Research, 2002, 5(1): 85-94.
24 FAURE M, TRAP P, LIN W, et al. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt—new insights from the Lüliangshan-Hengshan-Wutaishan and Fuping massifs[J]. Episodes, 2007, 30(2): 96-107.
25 ZHAO G C, CAWOOD P A, LI S Z, et al. Amalgamation of the North China Craton: key issues and discussion[J]. Precambrian Research, 2012, 222/223: 55-76.
26 LI S Z, ZHAO G C, WILDE S A, et al. Deformation history of the Hengshan-Wutai-Fuping Complexes: implications for the evolution of the Trans-North China Orogen[J]. Gondwana Research, 2010, 18(4): 611-631.
27 SANTOSH M. Assembling North China Craton within the Columbia supercontinent: the role of double-sided subduction[J]. Precambrian Research, 2010, 178(1/2/3/4): 149-167.
28 TRAP P, FAURE M, LIN W, et al. Paleoproterozoic tectonic evolution of the Trans-North China Orogen: toward a comprehensive model[J]. Precambrian Research, 2012, 222/223: 191-211.
29 ZHANG J, ZHAO G C, LI S Z, et al. Structural pattern of the Wutai Complex and its constraints on the tectonic framework of the Trans-North China Orogen[J]. Precambrian Research, 2012, 222/223: 212-229.
30 KUSKY T M, POLAT A, WINDLEY B F, et al. Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis: a record of outward growth of Precambrian continents[J]. Earth-Science Reviews, 2016, 162: 387-432.
31 ZHAO G C, WILDE S A, GUO J H, et al. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton[J]. Precambrian Research, 2010, 177(3/4): 266-276.
32 KRÖNER A, WILDE S A, ZHAO G C, et al. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of Northern China: evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton[J]. Precambrian Research, 2006, 146(1/2): 45-67.
33 XU N Q, ZHAO G C, ZHANG H C G, et al. Phase equilibria modelling and zircon U-Pb ages of the Paleoproterozoic high-pressure mafic granulites in the Jianping Complex and tectonic implications[J]. Precambrian Research, 2021, 367. DOI:10.1016/j.precamres.2021.106460 .
34 WANG J P, KUSKY T, WANG L, et al. Structural relationships along a Neoarchean arc-continent collision zone, North China Craton[J]. Geological Society of America Bulletin, 2017, 129(1/2): 59-75.
35 ZHONG Y T, KUSKY T M, WANG L. Giant sheath-folded nappe stack demonstrates extreme subhorizontal shear strain in an Archean Orogen[J]. Geology, 2022, 50(5): 577-582.
36 TRAP P, FAURE M, LIN W, et al. The Zanhuang Massif, the second and eastern suture zone of the Paleoproterozoic Trans-North China Orogen[J]. Precambrian Research, 2009, 172(1/2): 80-98.
37 WANG Y. Structural evolution and 40Ar/39Ar dating of the Zanhuang metamorphic domain in the North China Craton: constraints on Paleoproterozoic tectonothermal overprinting[J]. Precambrian Research, 2003, 122(1/2/3/4): 159-182.
38 ZHANG J, ZHAO G C, LI S Z, et al. Deformation history of the Hengshan Complex: implications for the tectonic evolution of the Trans-North China Orogen[J]. Journal of Structural Geology, 2007, 29(6): 933-949.
39 ZHANG J, ZHAO G C, LI S Z, et al. Polyphase deformation of the Fuping Complex, Trans-North China Orogen: structures, SHRIMP U-Pb zircon ages and tectonic implications[J]. Journal of Structural Geology, 2009, 31(2): 177-193.
40 TRAP P, FAURE M, LIN W, et al. Late Paleoproterozoic (1900-1800 Ma) nappe stacking and polyphase deformation in the Hengshan-Wutaishan area: implications for the understanding of the Trans-North-China Belt, North China Craton[J]. Precambrian Research, 2007, 156(1/2): 85-106.
41 TRAP P, FAURE M, LIN W, et al. Syn-collisional channel flow and exhumation of Paleoproterozoic high pressure rocks in the Trans-North China Orogen: the critical role of partial-melting and orogenic bending[J]. Gondwana Research, 2011, 20(2/3): 498-515.
42 HE L C, ZHANG J, ZHAO G C, et al. Macro- and microstructural analysis of the Zhujiafang ductile shear zone, Hengshan Complex: tectonic nature and geodynamic implications of the evolution of Trans-North China Orogen[J]. GSA Bulletin, 2021, 133(5/6): 1 237-1 255.
43 LIU J H, LI Z M G, ZHANG Q W L, et al. New 40Ar/39Ar geochronology data of the Fuping and Wutai Complexes: further constraints on the thermal evolution of the Trans-North China Orogen[J]. Precambrian Research, 2021, 354. DOI:10.1016/j.precamres.2020.106046 .
44 GONG W B, HU J M, WU S J, et al. Possible southwestward extrusion of the Ordos Block in the Late Paleoproterozoic: constraints from kinematic and geochronologic analysis of peripheral ductile shear zones[J]. Precambrian Research, 2014, 255: 716-733.
45 ZHAO Y F, HU J M, GONG W B, et al. Indentation tectonics of the Fanshi Block in the Trans-North China Orogen[J]. Precambrian Research, 2019, 331. DOI:10.1016/j.precamres.2019.105356 .
46 LI Y J, ZHU G, GU C C, et al. Structural evolution of the Paleoproterozoic Trans-North China Orogen: evidence from the Xiaoqinling region, central China[J]. Precambrian Research, 2018, 316: 244-274.
47 DENG X Q, PENG T P, ZHAO T P. Geochronology and geochemistry of the late Paleoproterozoic aluminous A-type granite in the Xiaoqinling area along the southern margin of the North China Craton: petrogenesis and tectonic implications[J]. Precambrian Research, 2016, 285: 127-146.
48 DENG Xiaoqin, PENG Touping, ZHAO Taiping, et al. Petrogenesis of the Late Paleoproterozoic (~1.84 Ga) Yuantou A-type granite in the southern margin of the North China Craton and its tectonic implications[J]. Acta Petrologica Sinica, 2019, 35(8): 2 455-2 469.
邓小芹, 彭头平, 赵太平, 等. 华北克拉通南缘古元古代末(~1.84 Ga)垣头A-型花岗岩成因及其构造意义[J]. 岩石学报, 2019, 35(8): 2 455-2 469.
49 YU X Q, LIU J L, LI C L, et al. Zircon U-Pb dating and Hf isotope analysis on the Taihua Complex: constraints on the formation and evolution of the Trans-North China Orogen[J]. Precambrian Research, 2013, 230: 31-44.
50 WANG G D, WANG H, CHEN H X, et al. Metamorphic evolution and zircon U-Pb geochronology of the Mts. Huashan amphibolites: insights into the Palaeoproterozoic amalgamation of the North China Craton[J]. Precambrian Research, 2014, 245: 100-114.
51 WANG G D, WANG H Y C, CHEN H X, et al. Metamorphic P-T-t paths of pelitic granulites of the Taihua metamorphic complex in the Mts. Huashan area and tectonothermal implications for the Palaeoproterozoic Trans-North China Orogen[J]. Precambrian Research, 2017, 290: 147-162.
52 SHI Yu, YU Jinhai, XU Xisheng, et al. U-Pb ages and Hf isotope compositions of zircons of Taihua Group in Xiaoqinling area, Shaanxi Province[J]. Acta Petrologica Sinica, 2011, 27(10): 3 095-3 108.
时毓, 于津海, 徐夕生, 等. 陕西小秦岭地区太华群的锆石U-Pb年龄和Hf同位素组成[J]. 岩石学报, 2011, 27(10): 3 095-3 108.
53 WANG G D, WANG H Y C, CHEN H X, et al. Geochronology and geochemistry of the TTG and potassic granite of the Taihua complex, Mts. Huashan: implications for crustal evolution of the southern North China Craton[J]. Precambrian Research, 2017, 288: 72-90.
54 DIWU C R, SUN Y, ZHAO Y, et al. Early Paleoproterozoic (2.45~2.20 Ga) magmatic activity during the period of global magmatic shutdown: implications for the crustal evolution of the southern North China Craton[J]. Precambrian Research, 2014, 255: 627-640.
55 YIN C Q, ZHAO G C, WEI C J, et al. Metamorphism and partial melting of high-pressure pelitic granulites from the Qianlishan Complex: constraints on the tectonic evolution of the Khondalite Belt in the North China Craton[J]. Precambrian Research, 2014, 242: 172-186.
56 WANG X, ZHANG J, YIN C Q, et al. A syn- to post-collisional tectonic transition in the Khondalite Belt, North China Craton: constraints from 1.95-1.93Ga adakitic granitoids in the Daqingshan Complex[J]. Precambrian Research, 2022, 374. DOI:10.1016/j.precamres.2022.106648 .
57 FAURE M, LIN W, MONIÉ P, et al. Palaeoproterozoic arc magmatism and collision in Liaodong Peninsula (north-east China)[J]. Terra Nova, 2004, 16(2): 75-80.
58 LIU F L, ZHANG J, LIU C H. Archean to Paleoproterozoic evolution of the North China Craton: preface[J]. Precambrian Research, 2017, 303: 1-9.
59 ZHAO G C, WILDE S A, CAWOOD P A, et al. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 2001, 107(1/2): 45-73.
60 QIAN J H, WEI C J. P-T-t evolution of garnet amphibolites in the Wutai-Hengshan area, North China Craton: insights from phase equilibria and geochronology[J]. Journal of Metamorphic Geology, 2016, 34(5): 423-446.
61 LU C S, QIAN J H, YIN C Q, et al. Ultrahigh temperature metamorphism recorded in the Lüliang Complex, Trans-North China Orogen: P-T-t evolution and heating mechanism[J]. Precambrian Research, 2022. DOI:10.1016/j.precamres.2022.106900 .
62 ZHAO G C, HE Y H, SUN M. The Xiong’er volcanic belt at the southern margin of the North China Craton: petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent[J]. Gondwana Research, 2009, 16(2): 170-181.
63 ZHAO J, ZHANG C L, GUO X J, et al. The late-Paleoproterozoic I- and A-type granites in Lüliang Complex, North China Craton: new evidence on post-collisional extension of Trans-North China Orogen[J]. Precambrian Research, 2018, 318: 70-88.
64 PENG P, WANG X P, LAI Y, et al. Large-scale liquid immiscibility and fractional crystallization in the 1780 Ma Taihang dyke swarm: implications for genesis of the bimodal Xiong’er volcanic province[J]. Lithos, 2015, 236/237: 106-122.
65 WANG Y J, ZHAO G C, CAWOOD P A, et al. Geochemistry of Paleoproterozoic (∼1 770 Ma) mafic dikes from the Trans-North China Orogen and tectonic implications[J]. Journal of Asian Earth Sciences, 2008, 33(1/2): 61-77.
66 DIWU Chunrong, LIU Xiang, SUN Yong. The composition and evolution of the Taihua Complex in the southern North China Craton[J]. Acta Petrologica Sinica, 2018, 34(4): 999-1 018.
第五春荣, 刘祥, 孙勇. 华北克拉通南缘太华杂岩组成及演化[J]. 岩石学报, 2018, 34(4): 999-1 018.
67 JIA X L, ZHAI M G, XIAO W J, et al. Late Neoarchean to early Paleoproterozoic tectonic evolution of the southern North China Craton: evidence from geochemistry, zircon geochronology and Hf isotopes of felsic gneisses from the Taihua Complex[J]. Precambrian Research, 2019, 326: 222-239.
68 ZHAO T P, ZHAI M G, XIA B, et al. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: constraints on the initial formation age of the cover of the North China Craton[J]. Chinese Science Bulletin, 2004, 49(23): 2 495-2 502.
69 LI Y J, ZHU G, GU C C, et al. Post-collisional orogen-parallel extension in the Trans-North China Orogen: evidence from syn-kinematic pegmatite dikes[J]. Precambrian Research, 2022, 368. DOI:10.1016/j.precamres.2021.106503 .
70 XUE S, XU Y, LING M X, et al. Geochemical constraints on genesis of Paleoproterozoic A-type granite in the south margin of North China Craton[J]. Lithos, 2018, 304/305/306/307: 489-500.
71 ZHANG G W, BAI Y B, SUN Y, et al. Composition and evolution of the archaean crust in central Henan, China[J]. Precambrian Research, 1985, 27(1/2/3): 7-35.
72 DONG Y P, SANTOSH M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1-40.
73 DONG Y P, SUN S S, SANTOSH M, et al. Cross Orogenic Belts in Central China: implications for the tectonic and paleogeographic evolution of the East Asian continental collage[J]. Gondwana Research, 2022, 109: 18-88.
74 ZHANG J J, ZHENG Y D. Multistage extension and age dating of the Xiaoqinling metamorphic core complex, central China[J]. Acta Geologica Sinica (English Edition), 1999, 73(2): 139-147.
75 LI Y J, ZHU G, SU N, et al. The Xiaoqinling metamorphic core complex: a record of Early Cretaceous backarc extension along the southern part of the North China Craton[J]. GSA Bulletin, 2020, 132(3/4): 617-637.
76 DING Lixue, MA Changqian, LI Jianwei, et al. LA-ICPMS zircon U-Pb ages of the Lantian and Muhuguan granitoid plutons, southern margin of the North China Craton: implications for tectonic setting[J]. Geochimica, 2010, 39(5): 401-413.
丁丽雪, 马昌前, 李建威, 等. 华北克拉通南缘蓝田和牧护关花岗岩体: LA-ICPMS锆石U-Pb年龄及其构造意义[J]. 地球化学, 2010, 39(5): 401-413.
77 MAO J W, XIE G Q, PIRAJNO F, et al. Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: shrimp zircon U-Pb ages and tectonic implications[J]. Australian Journal of Earth Sciences, 2010, 57(1): 51-78.
78 HU J, JIANG S Y, ZHAO H X, et al. Geochemistry and petrogenesis of the Huashan granites and their implications for the Mesozoic tectonic settings in the Xiaoqinling gold mineralization belt, NW China[J]. Journal of Asian Earth Sciences, 2012, 56: 276-289.
79 LI J W, BI S J, SELBY D, et al. Giant Mesozoic gold provinces related to the destruction of the North China Craton[J]. Earth and Planetary Science Letters, 2012, 349/350: 26-37.
80 STIPP M, STÜNITZ H, HEILBRONNER R, et al. The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 ℃[J]. Journal of Structural Geology, 2002, 24(12): 1 861-1 884.
81 MANCKTELOW N S, PENNACCHIONI G. The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites[J]. Journal of Structural Geology, 2004, 26(1): 47-69.
82 PASSCHIER C W, TROUW R A J. Microtectonics[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.
83 FALEIROS F M, Da CRUZ CAMPANHA G A, Da SILVEIRA BELLO R M, et al. Quartz recrystallization regimes, c-axis texture transitions and fluid inclusion reequilibration in a prograde greenschist to amphibolite facies mylonite zone (Ribeira Shear Zone, SE Brazil)[J]. Tectonophysics, 2010, 485(1/2/3/4): 193-214.
84 ALSOP G I, HOLDSWORTH R E. Sheath folds as discriminators of bulk strain type[J]. Journal of Structural Geology, 2006, 28(9): 1 588-1 606.
85 ALSOP G I, HOLDSWORTH R E. Shear zone folds: records of flow perturbation or structural inheritance?[J]. Geological Society, London, Special Publications, 2004, 224(1): 177-199.
86 MUDRUK S V, BALAGANSKY V V, RAEVSKY A B, et al. Complex shape of the Palaeoproterozoic Serpovidny refolded mega-sheath fold in northern Fennoscandia revealed by magnetic and structural data[J]. Journal of Structural Geology, 2022, 154. DOI:10.1016/j.jsg.2021.104492 .
87 HIBBARD J, KARIG D E. Sheath-like folds and progressive fold deformation in tertiary sedimentary rocks of the Shimanto accretionary complex, Japan[J]. Journal of Structural Geology, 1987, 9(7): 845-857.
88 Dell’ERTOLE D, SCHELLART W P. The development of sheath folds in viscously stratified materials in simple shear conditions: an analogue approach[J]. Journal of Structural Geology, 2013, 56: 129-141.
89 BERTHÉ D, BRUN J P. Evolution of folds during progressive shear in the South Armorican shear zone, France[J]. Journal of Structural Geology, 1980, 2(1/2): 127-133.
90 ALSOP G I, CHEER D A, STRACHAN R A, et al. Progressive fold and fabric evolution associated with regional strain gradients: a case study from across a Scandian ductile thrust nappe, Scottish Caledonides[J]. Geological Society, London, Special Publications, 2010, 335(1): 255-274.
91 FAZIO E, ORTOLANO G, VISALLI R, et al. Strain localization and sheath fold development during progressive deformation in a ductile shear zone: a case study of macro-to micro-scale structures from the Aspromonte Massif, Calabria[J]. Italian Journal of Geosciences, 2018, 137(2): 208-218.
92 ZHANG Guowei, MENG Qingren, LAI Shaocong. Tectonics and structure of Qinling orogenic belt[J]. Science in China (Series B), 1995, 38(11): 1 379-1 394.
93 ZHANG Ruiying, SUN Yong. Formation and evolution of Early Precambrian basement in the southern North China Craton[J]. Acta Petrologica Sinica, 2017, 33(10): 3 027-3 041.
张瑞英, 孙勇. 华北克拉通南部早前寒武纪基底形成与演化[J]. 岩石学报, 2017, 33(10): 3 027-3 041.
94 KUSKY T M, LI J H. Paleoproterozoic tectonic evolution of the North China Craton[J]. Journal of Asian Earth Sciences, 2003, 22(4): 383-397.
95 QIAN J H, WEI C J, YIN C Q. Paleoproterozoic P-T-t evolution in the Hengshan-Wutai-Fuping area, North China Craton: evidence from petrological and geochronological data[J]. Precambrian Research, 2017, 303: 91-104.
96 CHEN H X, LIU J H, ZHANG Q W L, et al. A long-lived tectono-metamorphic event in the late Paleoproterozoic: evidence from SIMS U-Th-Pb dating of monazite from metapelite in central-south Trans-North China Orogen[J]. Precambrian Research, 2020, 336. DOI:10.1016/j.precamres.2019.105497 .
97 LIU C H, ZHAO G C, LIU F L, et al. The timing of crustal thickening constrained by metamorphic zircon U-Pb-Hf and trace element signatures in the Lüliang Complex, Trans-North China Orogen[J]. Precambrian Research, 2021, 367. DOI:10.1016/j.precamres.2021.106440 .
98 ZHANG J H, WANG H C, GUO J H, et al. Geochemistry, geochronology and metamorphism of high-pressure mafic granulites in the Huai’an Complex, North China Craton: implications for the tectonic evolution of the Paleoproterozoic orogeny[J]. Precambrian Research, 2023, 387.DOI: 10.1016/j.precamres.2023.106973 .
99 WANG Guodong, WANG Hao, CHEN Hongxu, et al. U-Pb dating of zircons from metamorphic rocks of the Taihua metamorphic complex, Mt. Huashan, southern margin of the trans-north China Orogen[J]. Acta Geologica Sinica, 2012, 86(9): 1 541-1 551.
王国栋, 王浩, 陈泓旭, 等. 华北中部造山带南缘华山地区太华变质杂岩中锆石U-Pb定年[J]. 地质学报, 2012, 86(9): 1 541-1 551.
100 WANG Guodong, LU Junsheng, WANG Hao, et al. LA-ICP-MS U-Pb dating of zircons and 40Ar/39Ar dating of amphiboles of the Taihua Metamorphic Complex, Mt. Huashan, southern terminal of the Palaeoprotorozoic Trans-North China Orogen[J]. Acta Petrologica Sinica, 2013, 29(9): 3 099-3 114.
王国栋, 卢俊生, 王浩, 等. 华山太华变质杂岩中LA-ICP-MS锆石U-Pb定年及角闪石40Ar/39Ar定年[J]. 岩石学报, 2013, 29(9): 3 099-3 114.
101 HUANG X L, WILDE S A, ZHONG J W. Episodic crustal growth in the southern segment of the Trans-North China Orogen across the Archean-Proterozoic boundary[J]. Precambrian Research, 2013, 233: 337-357.
102 LU Junsheng, WANG Guodong, WANG Hao, et al. Metamorphic evolution of the Lushan terrane in the Precambrian Taihua Complex, Henan Province[J]. Acta Petrologica Sinica, 2014, 30(10): 3 062-3 074.
卢俊生, 王国栋, 王浩, 等. 河南鲁山太华变质杂岩前寒武纪变质作用[J]. 岩石学报, 2014, 30(10): 3 062-3 074.
103 CHEN Hongxu, WANG Hao, PENG Tao, et al. SIMS U-Pb ages of zircon and tectonic significance of Taihua metamorphic complex in the eastern Luoning, the southern terminal of Trans-North China Orogen[J]. Journal of Earth Sciences and Environment, 2016, 38(6): 822-834.
陈泓旭, 王浩, 彭涛, 等. 华北中部造山带南缘洛宁东部太华变质杂岩SIMS锆石U-Pb年龄及其地质意义[J]. 地球科学与环境学报, 2016, 38(6): 822-834.
104 JIANG Zongsheng, WANG Guodong, XIAO Lingling, et al. Paleoproterozoic metamorphic P-T-t path and tectonic significance of the Luoning metamorphic complex at the southern terminal of the Trans-North China Orogen, Henan Province[J]. Acta Petrologica Sinica, 2011, 27(12): 3 701-3 717.
蒋宗胜, 王国栋, 肖玲玲, 等. 河南洛宁太华变质杂岩区早元古代变质作用P-T-t轨迹及其大地构造意义[J]. 岩石学报, 2011, 27(12): 3 701-3 717.
105 CHEN H X, WANG J, WANG H, et al. Metamorphism and geochronology of the Luoning metamorphic terrane, southern terminal of the Palaeoproterozoic Trans-North China Orogen, North China Craton[J]. Precambrian Research, 2015, 264: 156-178.
106 LU J S, WANG G D, WANG H, et al. Metamorphic P-T-t paths retrieved from the amphibolites, Lushan terrane, Henan Province and reappraisal of the Paleoproterozoic tectonic evolution of the Trans-North China Orogen[J]. Precambrian Research, 2013, 238: 61-77.
107 LU J S, ZHAI M G, LU L S, et al. Metamorphic P-T-t path retrieved from metapelites in the southeastern Taihua metamorphic complex, and the Paleoproterozoic tectonic evolution of the southern North China Craton[J]. Journal of Asian Earth Sciences, 2017, 134: 352-364.
108 WAN Y S, WILDE S A, LIU D Y, et al. Further evidence for ∼1.85 Ga metamorphism in the Central Zone of the North China Craton: shrimp U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province[J]. Gondwana Research, 2006, 9(1/2): 189-197.
109 SUN Q Y, ZHOU Y Y, WANG W, et al. Formation and evolution of the Paleoproterozoic meta-mafic and associated supracrustal rocks from the Lushan Taihua Complex, southern North China Craton: insights from zircon U-Pb geochronology and whole-rock geochemistry[J]. Precambrian Research, 2017, 303: 428-444.
110 ZHAO G, WILDE S A, SUN M, et al. SHRIMP U-Pb zircon geochronology of the Huai’an complex: constraints on Late Archean to Paleoproterozoic magmatic and metamorphic events in the Trans-North China Orogen[J]. American Journal of Science, 2008, 308(3): 270-303.
111 ZHAO G C, WILDE S A, SUN M, et al. SHRIMP U-Pb zircon ages of granitoid rocks in the Lüliang Complex: implications for the accretion and evolution of the Trans-North China Orogen[J]. Precambrian Research, 2008, 160(3/4): 213-226.
112 XIAO L L, LIU F L, CHEN Y. Metamorphic P-T-t paths of the Zanhuang metamorphic complex: implications for the Paleoproterozoic evolution of the Trans-North China Orogen[J]. Precambrian Research, 2014, 255: 216-235.
113 WANG J, WU Y B, GAO S, et al. Zircon U-Pb and trace element data from rocks of the Huai’an Complex: new insights into the late Paleoproterozoic collision between the Eastern and Western Blocks of the North China Craton[J]. Precambrian Research, 2010, 178(1/2/3/4): 59-71.
114 PENG P, ZHAI M G, ZHANG H F, et al. Geochronological constraints on the Paleoproterozoic evolution of the North China Craton: shrimp zircon ages of different types of mafic dikes[J]. International Geology Review, 2005, 47(5): 492-508.
115 MENG J, PENG T, LIU J H, et al. Metamorphic evolution and SIMS zircon U-Pb geochronology of mafic granulite and amphibolite enclaves of the Pingyang trondhjemitic pluton, Fuping terrane, North China[J]. Precambrian Research, 2017, 303: 75-90.
116 ZOU L, GUO J H, YANG C H, et al. The P-T-t path of pelitic gneisses in the Zanhuang Complex: further constraints on the Palaeoproterozoic tectonic evolution of the Trans-North China Orogen, North China Craton[J]. Journal of Asian Earth Sciences, 2021, 210. DOI:10.1016/j.jseaes.2021.104701 .
117 LIU J H, ZHANG Q W L, ZHANG H C G, et al. Metamorphic evolution and SHRIMP U-Pb geochronology of mafic granulites with double symplectites in the Fuping metamorphic complex, middle Palaeoproterozoic Trans-North China Orogen[J]. Precambrian Research, 2019, 326: 142-154.
118 GUO J H, SUN M, CHEN F K, et al. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: timing of Paleoproterozoic continental collision[J]. Journal of Asian Earth Sciences, 2005, 24(5): 629-642.
119 XIAO L L, CLARKE G, LIU F L, et al. Discovery of mafic granulite in the Guandishan area of the Lüliang Complex, North China Craton: age and metamorphic evolution[J]. Precambrian Research, 2017, 303: 604-625.
120 QIAN J H, WEI C J, ZHOU X W, et al. Metamorphic P-T paths and New Zircon U-Pb age data for garnet-mica schist from the Wutai Group, North China Craton[J]. Precambrian Research, 2013, 233: 282-296.
121 ZHANG H C G, ZHAO G C, WANG C, et al. Phase equilibria modelling and zircon U-Pb geochronology of Paleoproterozoic mafic granulites from the Chengde Complex, North China Craton[J]. Precambrian Research, 2022, 371. DOI:10.1016/j.precamres.2022.106576 .
122 WU D, WEI C J. Metamorphic evolution of two types of garnet amphibolite from the Qingyuan terrane, North China Craton: insights from phase equilibria modelling and zircon dating[J]. Precambrian Research, 2021. DOI:10.1016/j.precamres.2021.106091 .
123 LIU J H, ZHANG Q W L, WANG J, et al. Metamorphic evolution and SIMS U-Pb geochronology of orthopyroxene-bearing high-P semipelitic granulite in the Fuping area, middle Trans-North China Orogen[J]. Journal of Metamorphic Geology, 2021, 39(3): 297-320.
124 MACDONALD J, WHEELER J, GOODENOUGH K, et al. Combined SIMS U-Pb ages and Ti-in-zircon geothermometry fingerprints long deep crustal residence in the Archaean[J]. Mineralogical Magazine, 2011, 75. DOI:10.1243/0954405981516003 .
125 JAMIESON R A, BEAUMONT C. Coeval thrusting and extension during lower crustal ductile flow-implications for exhumation of high-grade metamorphic rocks[J]. Journal of Metamorphic Geology, 2011, 29(1): 33-51.
126 CLARK C, HEALY D, JOHNSON T, et al. Hot orogens and supercontinent amalgamation: a Gondwanan example from southern India[J]. Gondwana Research, 2015, 28(4): 1 310-1 328.
[1] 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 2015, 30(9): 922-939.
[2] 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 2015, 30(8): 922-939.
[3] 裴先治,刘战庆,丁仨平,李佐臣,李高阳,李瑞保,王 飞,李夫杰. 甘肃天水地区百花岩浆杂岩的锆石LA-ICP-MS U-Pb定年及其地质意义[J]. 地球科学进展, 2007, 22(8): 818-827.
[4] 杨晓勇. 论韧性剪切带研究及其地质意义[J]. 地球科学进展, 2005, 20(7): 765-771.
阅读次数
全文


摘要