1 |
PIÑERO E, MARQUARDT M, HENSEN C, et al. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions[J]. Biogeosciences, 2013, 10(2): 959-975.
|
2 |
DICKENS G R. Sulfate profiles and Barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir[J]. Geochimica et Cosmochimica Acta, 2001, 65(4): 529-543.
|
3 |
FENG D, PENG Y B, BAO H, et al. A carbonate-based proxy for sulfate-driven anaerobic oxidation of methane[J]. Geology, 2016, 44: 999-1 002.
|
4 |
PEKETI A, JOSHI R K, PATIL D, et al. Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments: an application of C-S-Mo systematics[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): 1-11.
|
5 |
SUESS E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 2014, 103(7): 1 889-1 916.
|
6 |
WU Nengyou, ZHANG Guangxue, LIANG Jinqiang. Progress of gas hydrate research in northern South China Sea [J]. Advances in New and Renewable Energy, 2013, 1: 80-94.
|
7 |
FAURE K, GREINERT J, von DEIMLING J S, et al. Methane seepage along the Hikurangi Margin of New Zealand: geochemical and physical data from the water column, sea surface and atmosphere[J]. Marine Geology, 2010, 272(1/2/3/4): 170-188.
|
8 |
YE Liming, CHU Fengyou, GE Qian, et al. A rapid gas hydrate dissociation in the northern South China Sea since the late Younger Dryas[J]. Earth Science, 2013, 38(6): 1 299-1 308.
|
|
叶黎明, 初凤友, 葛倩, 等. 新仙女木末期南海北部天然气水合物分解事件[J]. 地球科学, 2013, 38(6): 1 299-1 308.
|
9 |
EGGER M, RIEDINGER N, MOGOLLÓN J M, et al. Global diffusive fluxes of methane in marine sediments[J]. Nature Geoscience, 2018, 11: 421-425.
|
10 |
KNITTEL K, BOETIUS A. Anaerobic oxidation of methane: progress with an unknown process[J]. Annual Review of Microbiology, 2009, 63: 311-334.
|
11 |
WESTBROOK G K, THATCHER K E, ROHLING E J, et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin[J]. Geophysical Research Letters, 2009, 36(15): 1-5.
|
12 |
BRISTOW T, GROTZINGER J. Sulfate availability and the geological record of cold-seep deposits [J]. Geology, 2013, 41: 811-814.
|
13 |
DICKENS G R. Global change: hydrocarbon-driven warming[J]. Nature, 2004, 429(6 991): 513-515.
|
14 |
RASMUSSEN B. Evidence for pervasive petroleum generation and migration in 3.2 and 2.63 Ga shales[J]. Geology, 2005, 33(6): 497-500.
|
15 |
BOETIUS A, RAVENSCHLAG K, SCHUBERT C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407: 623-626.
|
16 |
PECKMANN J, THIEL V. Carbon cycling at ancient methaneâ seeps[J]. Chemical Geology, 2004, 205(3/4): 443-467.
|
17 |
FENG D, QIU J W, HU Y, et al. Cold seep systems in the South China Sea: an overview[J]. Journal of Asian Earth Sciences, 2018, 168: 3-16.
|
18 |
JØRGENSEN B B, FINDLAY A J, PELLERIN A. The biogeochemical sulfur cycle of marine sediments[J]. Frontiers in Microbiology, 2019, 10. DOI:10.3389/fmicb.2019.00849 .
|
19 |
BIAN Youyan, CHEN Duofu. Research progress of dolomite in seep carbonates[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(2): 238-246.
|
|
卞友艳, 陈多福. 海底冷泉环境中的白云石(岩)研究现状[J]. 矿物岩石地球化学通报, 2014, 33(2): 238-246.
|
20 |
CHEN D F, FENG D, SU Z, et al. Pyrite crystallization in seep carbonates at gas vent and hydrate site[J]. Materials Science and Engineering C, 2006, 26(4): 602-605.
|
21 |
FENG D, ROBERTS H H, JOYE S B, et al. Formation of low-magnesium calcite at cold seeps in an aragonite sea[J]. Terra Nova, 2014, 26(2): 150-156.
|
22 |
GE L, JIANG S Y, SWENNEN R, et al. Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: evidence from trace and rare earth element geochemistry[J]. Marine Geology, 2010, 277(1/2/3/4): 21-30.
|
23 |
HAN X Q, SUESS E, HUANG Y Y, et al. Jiulong methane reef: microbial mediation of seep carbonates in the South China Sea[J]. Marine Geology, 2008, 249(3/4): 243-256.
|
24 |
HAN X Q, SUESS E, LIEBETRAU V, et al. Past methane release events and environmental conditions at the upper continental slope of the South China Sea: constraints by seep carbonates[J]. International Journal of Earth Sciences, 2014, 103(7): 1 873-1 887.
|
25 |
NOVOSEL I, SPENCE G, HYNDMAN R. Reduced magnetization produced by increased methane flux at a gas hydrate vent[J]. Marine Geology, 2005, 216(4): 265-274.
|
26 |
HU Y, FENG D, CHEN L Y, et al. Using iron speciation in authigenic carbonates from hydrocarbon seeps to trace variable redox conditions[J]. Marine and Petroleum Geology, 2015, 67: 111-119.
|
27 |
LU Y, SUN X M, LIN Z Y, et al. Cold seep status archived in authigenic carbonates: mineralogical and isotopic evidence from northern South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 95-105.
|
28 |
CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates[J]. Acta Sedimentologica Sinica, 2002, 20(1): 34-40.
|
|
陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1): 34-40.
|
29 |
CANFIELD D E. Biogeochemistry of sulfur isotopes[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 607-636.
|
30 |
FOSSING H, FERDELMAN T G, BERG P. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia)[J]. Geochimica et Cosmochimica Acta, 2000, 64(5): 897-910.
|
31 |
LIU X T, LI A C, FIKE D A, et al. Environmental evolution of the East China Sea inner shelf and its constraints on pyrite sulfur contents and isotopes since the last Deglaciation[J]. Marine Geology, 2020, 429. DOI:10.1016/j.margeo.2020.106307 .
|
32 |
LIU Xiting, LI Anchun, MA Zhixin, et al. Constraints of sedimentary process on sulfur isotopes of authigenic pyrite[J]. Acta Sedimentologica Sinica, 2020, 38(1): 124-137.
|
|
刘喜停, 李安春, 马志鑫, 等. 沉积过程对自生黄铁矿硫同位素的约束[J]. 沉积学报, 2020, 38(1): 124-137.
|
33 |
XIE Zhibin, GONG Shanggui, FENG Dong. Oxygen and sulfur isotopes of pore water sulfate and the implications on biogeochemical sulfur cycle of marine sediments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(2): 389-401.
|
|
谢智斌, 宫尚桂, 冯东. 海洋沉积物孔隙水硫酸盐的硫、氧同位素组成及其对硫生物地球化学过程的指示[J]. 矿物岩石地球化学通报, 2023, 42(2): 389-401.
|
34 |
JØRGENSEN B B. Mineralization of organic matter in the sea bed—the role of sulphate reduction[J]. Nature, 1982, 296: 643-645.
|
35 |
FIKE D, BRADLEY A, ROSE C. Rethinking the ancient sulfur cycle[J]. Annual Review of Earth and Planetary Sciences, 2013, 43(1). DOI:10.1146/ANNUREV-EARTH-060313-054802 .
|
36 |
CYPIONKA H.Solute transport and cell energetics[M]// BARTON L L. Sulfate-reducing bacteria. Boston, US: Springer, 1995.
|
37 |
BRUNNER B, BERNASCONI S M. A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria[J]. Geochimica et Cosmochimica Acta, 2005, 69(20): 4 759-4 771.
|
38 |
BOETIUS A, WENZHÖFER F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6: 725-734.
|
39 |
PAULL C K, HECKER B, COMMEAU R, et al. Biological communities at the Florida escarpment resemble hydrothermal vent taxa[J]. Science, 1984, 226(4 677): 965-967.
|
40 |
SUESS E. Marine cold seeps: background and recent advances[M]// WILKES H. Hydrocarbons, oils and lipids: diversity, origin, chemistry and fate. Cham: Springer, 2018.
|
41 |
TORRES M, BOHRMANN G. Cold seeps [M]. Dordrecht: Springer Netherlands, 2013:1-8.
|
42 |
SUESS E. The evolution of an idea: from avoiding gas hydrates to actively drilling for them[J]. JOIDES Journal, 2002, 28(1): 45-50.
|
43 |
WEI H L, ZHANG X H, SHANG L N, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the northern Okinawa Trough, East China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 95: 37-53.
|
44 |
MOHAMED K, REY D, RUBIO B, et al. Onshore-offshore gradient in reductive early diagenesis in coastal marine sediments of the Ria de Vigo, northwest Iberian Peninsula[J]. Continental Shelf Research, 2010, 31(5): 433-447.
|
45 |
REEBURGH W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2): 486-513.
|
46 |
ROBERTS H H. Fluid and gas expulsion on the northern Gulf of Mexico continental slope: mud-prone to mineral-prone responses[J]. Geophysical Monograph Series, 2001, 124: 145-161.
|
47 |
BOROWSKI W S, PAULL C K, USSLER W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J]. Geology, 1996, 24(7): 655-658.
|
48 |
BOROWSKI W S, PAULL C K, USSLER W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane and gas hydrates[J]. Marine Geology, 1999, 159(1): 131-154.
|
49 |
LIN Z Y, SUN X M, STRAUSS H, et al. Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: evidence from authigenic pyrite in seepage areas of the South China Sea[J]. Geochimica et Cosmochimica Acta, 2017, 211: 153-173.
|
50 |
CHEN F, HU Y, FENG D, et al. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea[J]. Chemical Geology, 2016, 443: 173-181.
|
51 |
LEAVITT W D, HALEVY I, BRADLEY A S, et al. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28): 11 244-11 249.
|
52 |
BERNER R A. Early diagenesis: a theoretical approach[M]. Princeton, NJ: Princeton University Press, 1980.
|
53 |
CANFIELD D E. Sulfate reduction in deep-sea sediments[J]. American Journal of Science, 1991, 291(2): 177-188.
|
54 |
HENSEN C, ZABEL M, PFEIFER K, et al. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments[J]. Geochimica et Cosmochimica Acta, 2003, 67(14): 2 631-2 647.
|
55 |
BERNER R A. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance[J]. American Journal of Science, 1982, 282(4): 451-473.
|
56 |
LIU X T, FIKE D, LI A C, et al. Pyrite sulfur isotopes constrained by sedimentation rates: evidence from sediments on the East China Sea inner shelf since the late Pleistocene[J]. Chemical Geology, 2019, 505: 66-75.
|
57 |
BOROWSKI W S, RODRIGUEZ N M, PAULL C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?[J]. Marine and Petroleum Geology, 2013, 43: 381-395.
|
58 |
PECKMANN J, REIMER A, LUTH U, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea [J]. Marine Geology, 2001, 177(1): 129-150.
|
59 |
PEKETI A, MAZUMDAR A, JOAO H M, et al. Coupled C-S-Fe geochemistry in a rapidly accumulating marine sedimentary system: diagenetic and depositional implications[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 2 865-2 883.
|
60 |
BOETIUS A, RAVENSCHLAG K, SCHUBERT C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407: 623-626.
|
61 |
JØRGENSEN B B, BÖTTCHER M E, LÜSCHEN H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2 095-2 118.
|
62 |
LIM Y C, LIN S, YANG T, et al. Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan [J]. Marine and Petroleum Geology, 2011, 28(10): 1 829-1 837.
|
63 |
LI N, FENG D, CHEN L Y, et al. Using sediment geochemistry to infer temporal variation of methane flux at a cold seep in the South China Sea[J]. Marine and Petroleum Geology, 2016, 77: 835-845.
|
64 |
WILKIN R, BARNES H. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species[J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4 167-4 179.
|
65 |
MIAO X M, FENG X L, LIU X T, et al. Effects of methane seepage activity on the morphology and geochemistry of authigenic pyrite[J]. Marine and Petroleum Geology, 2021, 133(3). DOI:10.1016/j.marpetgeo.2021.105231 .
|
66 |
HU Y, CHEN L Y, FENG D, et al. Geochemical record of methane seepage in authigenic carbonates and surrounding host sediments: a case study from the South China Sea[J]. Journal of Asian Earth Sciences, 2017, 138: 51-61.
|
67 |
LI N, YANG X Q, PENG J, et al. Paleo-cold seep activity in the southern South China Sea: evidence from the geochemical and geophysical records of sediments [J]. Journal of Asian Earth Sciences, 2017, 168: 106-111.
|
68 |
SATO H, HAYASHI K I, OGAWA Y, et al. Geochemistry of deep sea sediments at cold seep sites in the Nankai Trough: insights into the effect of anaerobic oxidation of methane[J]. Marine Geology, 2012, 323/324/325: 47-55.
|
69 |
CANFIELD D E, TESKE A. Late Proterozoic Rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies[J]. Nature, 1996, 382: 127-132.
|
70 |
CANFIELD D E, THAMDRUP B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur[J]. Science, 1994, 266: 1 973-1 975.
|
71 |
GARNIER J, GARNIER J M, VIEIRA C L, et al. Iron isotope fingerprints of redox and biogeochemical cycling in the soil-water-rice plant system of a paddy field[J]. The Science of the Total Environment, 2017, 574: 1 622-1 632.
|
72 |
HABICHT K S, GADE M, THAMDRUP B, et al. Calibration of sulfate levels in the Archean Ocean[J]. Science, 2002, 298(5 602): 2 372-2 374.
|
73 |
ROUXEL O J, BEKKER A, EDWARDS K J. Iron isotope constraints on the Archean and Paleoproterozoic Ocean redox state[J]. Science, 2005, 307(5 712): 1 088-1 091.
|
74 |
DONG Hongkun, WAN Shiming, LIU Xiting. Research progress on geochemical behavior of minerals and elements in early diagenesis of marine sediments[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1 172-1 187.
|
|
董宏坤, 万世明, 刘喜停. 海洋沉积物早期成岩作用研究进展[J]. 沉积学报, 2022, 40(5): 1 172-1 187.
|
75 |
LIN Zhiyong, SUN Xiaoming, LU Yang, et al. The enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane: insights from the South China Sea[J]. Chemical Geology, 2017, 449: 15-29.
|
76 |
LIN Z Y, SUN X M, PECKMANN J, et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: a SIMS study from the South China Sea[J]. Chemical Geology, 2016, 440: 26-41.
|
77 |
LIU J R, PELLERIN A, GILAD A, et al. Early diagenesis of iron and sulfur in Bornholm Basin sediments: the role of near-surface pyrite formation[J]. Geochimica et Cosmochimica Acta, 2020, 284: 43-60.
|
78 |
LIU J R, PELLERIN A, WANG J S, et al. Multiple sulfur isotopes discriminate organoclastic and methane-based sulfate reduction by sub-seafloor pyrite formation[J]. Geochimica et Cosmochimica Acta, 2021, 316: 309-330.
|
79 |
BERTRAN E, WALDECK A, WING B A, et al. Oxygen isotope effects during microbial sulfate reduction: applications to sediment cell abundances[J]. The ISME Journal, 2020, 14(6): 1 508-1 519.
|
80 |
DEUSNER C, HOLLER T, ARNOLD G L, et al. Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration[J]. Earth and Planetary Science Letters, 2014, 399: 61-73.
|
81 |
ANTLER G, TURCHYN A V, HERUT B, et al. Sulfur and oxygen isotope tracing of sulfate driven anaerobic methane oxidation in estuarine sediments[J]. Estuarine Coastal and Shelf Science, 2014, 142: 4-11.
|
82 |
FENG Dong, GONG Shanggui. Progress on the biogeochemical process of sulfur and its geological record at submarine cold seeps[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(6): 1 047-1 056.
|
|
冯东, 宫尚桂. 海底冷泉系统硫的生物地球化学过程及其沉积记录研究进展[J]. 矿物岩石地球化学通报, 2019, 38(6): 1 047-1 056.
|
83 |
PELLERIN A, ANTLER G, RØY H, et al. The sulfur cycle below the sulfate-methane transition of marine sediments[J]. Geochimica et Cosmochimica Acta, 2018, 239: 74-89.
|
84 |
MIAO X M, WEI J G, LIU X T, et al. The control of turbidite deposition on pyrite sulfur isotopic composition in sediments on the continental slope of the South China Sea[J]. Marine Geology, 2023, 465. DOI:10.1016/j.margeo.2023.107163 .
|
85 |
GONG S G, HU Y, LI N, et al. Environmental controls on sulfur isotopic compositions of sulfide minerals in seep carbonates from the South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 96-105.
|
86 |
ZHANG Qinyi, WU Daidai, LIU Lihua. Characteristics and application of multiple sulfur isotopes of authigenic minerals in cold-seep environment[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 62-75.
|
|
张覃谊, 邬黛黛, 刘丽华. 冷泉环境自生矿物多硫同位素特征及应用[J]. 海洋地质与第四纪地质, 2022, 42(3): 62-75.
|
87 |
GONG S G, IZON G, PENG Y B, et al. Multiple sulfur isotope systematics of pyrite for tracing sulfate-driven anaerobic oxidation of methane[J]. Earth and Planetary Science Letters, 2022, 597. DOI: 10.1016/j.epsl.2022.117827 .
|
88 |
GONG S G, PENG Y B, BAO H M, et al. Triple sulfur isotope relationships during sulfate-driven anaerobic oxidation of methane[J]. Earth and Planetary Science Letters, 2018, 504: 13-20.
|
89 |
JOHNSTON D T. Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and sulfur disproportionators[J]. American Journal of Science, 2005, 305(6/7/8): 645-660.
|
90 |
YU X X, LIU X T, WEI G J, et al. Holocene climate regulates multiple sulfur isotope compositions of pyrite in the East China Sea via sedimentation rate[J]. Marine and Petroleum Geology, 2024, 161(2). DOI:10.1016/j.marpetgeo.2023.106687 .
|
91 |
GONG S G, PECKMANN J, FENG D. Stable isotope signatures of authigenic minerals from methane seeps[M]// South China Sea seeps. Singapore: Springer, 2023: 149-170.
|
92 |
MASTERSON A, ALPERIN M, BERELSON W, et al. Interpreting multiple sulfur isotope signals in modern anoxic sediments using a full diagenetic model (California-Mexico margin: Alfonso Basin)[J]. American Journal of Science, 2018, 318(5): 459-490.
|
93 |
PELLERIN A, BUI T H, ROUGH M, et al. Mass-dependent sulfur isotope fractionation during reoxidative sulfur cycling: a case study from Mangrove Lake, Bermuda[J]. Geochimica et Cosmochimica Acta, 2015, 149: 152-164.
|
94 |
RAISWELL R, CANFIELD D E. The iron biogeochemical cycle past and present[J]. Geochemical Perspectives, 2012, 1(1): 1-2.
|
95 |
LIU Xiting, YAN Jiaxin. Advances in the role of iron in marine sediments during early diagenesis[J]. Advances in Earth Science, 2011, 26(5): 482-492.
|
|
刘喜停, 颜佳新. 铁元素对海相沉积物早期成岩作用的影响[J]. 地球科学进展, 2011, 26(5): 482-492.
|
96 |
SEVERMANN S, JOHNSON C M, BEARD B L, et al. The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments[J]. Geochimica et Cosmochimica Acta, 2006, 70(8): 2 006-2 022.
|
97 |
LIN Z Y, CHEN K Y, STRAUSS H, et al. Effects of sulfate reduction processes on the trace element geochemistry of sedimentary pyrite in modern seep environments[J]. Geochimica et Cosmochimica Acta, 2022, 333. DOI: 10.1016/j.gca.2022.06.026 .
|
98 |
VIRTASALO J J, WHITEHOUSE M J, KOTILAINEN A T. Iron isotope heterogeneity in pyrite fillings of Holocene worm burrows[J]. Geology, 2013, 41(1): 39-42.
|
99 |
LIN Z Y, LU Y, STRAUSS H, et al. The enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane: insights from the South China Sea[J]. Chemical Geology, 2016, 449: 15-29.
|
100 |
ZHANG Xianrong, SUN Zhilei, WEI Helong, et al. Micro-biomineralizaiton of authigenic pyrite and its implications for seafloor cold seeps[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 25-32.
|
|
张现荣, 孙治雷, 魏合龙, 等. 自生黄铁矿的微生物成矿机理及对冷泉泄漏的指示意义[J]. 海洋地质与第四纪地质, 2017, 37(2): 25-32.
|
101 |
LIN Z Y, SUN X M, LU Y, et al. Iron isotope constraints on diagenetic iron cycling in the Taixinan seepage area, South China Sea[J]. Journal of Asian Earth Sciences, 2018, 168: 112-124.
|
102 |
RICKARD D. Sedimentary sulfides[J]. Developments in Sedimentology, 2012, 65: 543-604.
|
103 |
HUERTA-DIAZ M A, MORSE J W. Pyritization of trace metals in anoxic marine sediments[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2 681-2 702.
|
104 |
ROSS L, INDRANI M, LEONID D, et al. Sedimentary pyrite proxy for atmospheric oxygen; evaluation of strengths and limitations[J]. Earth-Science Reviews, 2022. DOI:10.1016/j.earscirev.2022.103941 .
|
105 |
LARGE R R, HALPIN J A, DANYUSHEVSKY L V, et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution[J]. Earth and Planetary Science Letters, 2014, 389: 209-220.
|
106 |
BERNER Z A, PUCHELT H, NÖLTNER T, et al. Pyrite geochemistry in the Toarcian Posidonia Shale of south-west Germany: evidence for contrasting trace-element patterns of diagenetic and syngenetic pyrites[J]. Sedimentology, 2013, 60(2): 548-573.
|
107 |
MIAO X M, LIU X T, LI Q, et al. Porewater geochemistry indicates methane seepage in the Okinawa Trough and its implications for the carbon cycle of the subtropical West Pacific[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 607. DOI:10.1016/j.palaeo.2022.111266 .
|
108 |
MIAO X, FENG X, LI J, et al. Enrichment mechanism of trace elements in pyrite under methane seepage[J]. Geochemical Perspectives Letters, 2022, 21: 18-22.
|
109 |
SMRZKA D, FENG D, HIMMLER T, et al. Trace elements in methane-seep carbonates: potentials, limitations, and perspectives[J]. Earth-Science Reviews, 2020, 208. DOI:10.1016/j.earscirev.2020.103263 .
|
110 |
SMRZKA D, ZWICKER J, BACH W, et al. The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: a review[J]. Facies, 2019, 65(4). DOI:10.1007/s10347-019-0581-4 .
|
111 |
AHARON P, FU B S. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 233-246.
|
112 |
MORSE J, LUTHER G. Chemical influences on trace metal-sulfide interactions in anoxic sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(19/20): 3 373-3 378.
|
113 |
GREGORY D D, LARGE R R, HALPIN J A, et al. Trace element content of sedimentary pyrite in black shales[J]. Economic Geology, 2015, 110(6): 1 389-1 410.
|
114 |
GREGORY D D, LARGE R R, HALPIN J A, et al. The chemical conditions of the late Archean Hamersley Basin inferred from whole rock and pyrite geochemistry with Δ33S and δ34S isotope analyses[J]. Geochimica et Cosmochimica Acta, 2015, 149: 223-250.
|
115 |
LOWERS H A, BREIT G N, FOSTER A L, et al. Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh[J]. Geochimica et Cosmochimica Acta, 2007, 71(11): 2 699-2 717.
|
116 |
ANDREAE M O, FROELICH P N. Arsenic, antimony, and germanium biogeochemistry in the Baltic Sea[J]. Tellus B: Chemical and Physical Meteorology, 1984, 36(2). DOI:10.3402/tellusb.v36i2.14880 .
|
117 |
TRIBOVILLARD N. Arsenic in marine sediments: how robust a redox proxy?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550. DOI:10.1016/j.palaeo.2020.109745 .
|
118 |
HUERTA-DIAZ M A, TESSIER A, CARIGNAN R. Geochemistry of trace metals associated with reduced sulfur in freshwater sediments[J]. Applied Geochemistry, 1998, 13(2): 213-233.
|
119 |
TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
|
120 |
DEDITIUS A P, UTSUNOMIYA S, RENOCK D, et al. A proposed new type of arsenian pyrite: composition, nanostructure and geological significance[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2 919-2 933.
|
121 |
MICHEL D, GIULIANI G, OLIVO G R, et al. As growth banding and the presence of Au in pyrites from the Santa Rita gold vein deposit hosted in Proterozoic metasediments, Goias State, Brazil[J]. Economic Geology, 1994, 89(1): 193-200.
|
122 |
CHEN C, WANG J S, ZHU J M, et al. Sulfate-driven anaerobic oxidation of methane inferred from trace-element chemistry and nickel isotopes of pyrite[J]. Geochimica et Cosmochimica Acta, 2023, 349(7): 81-95.
|
123 |
RICKARD D. Sedimentary pyrite framboid size-frequency distributions: a meta-analysis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 522: 62-75.
|
124 |
WANG P K, HUANG Y J, WANG C S, et al. Pyrite morphology in the first member of the late Cretaceous Qingshankou Formation, Songliao Basin, northeast China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2013, 385: 125-136.
|
125 |
PROL-LEDESMA R M, CANET C, VILLANUEVA-ESTRADA R E, et al. Morphology of pyrite in particulate matter from shallow submarine hydrothermal vents[J]. American Mineralogist, 2015, 95(10): 1 500-1 507.
|
126 |
STAKES D, ORANGE D, PADUAN J, et al. Cold-seeps and authigenic carbonate formation in Monterey Bay, California[J]. Marine Geology, 1999, 159: 93-109.
|
127 |
DING H, YAO S, CHEN J. Authigenic pyrite formation and re-oxidation as an indicator of an unsteady-state redox sedimentary environment: evidence from the intertidal mangrove sediments of Hainan Island, China[J]. Continental Shelf Research, 2014, 78: 85-99.
|
128 |
HUANG F, GAO W Y, GAO S, et al. Morphology evolution of nano-micron pyrite: a review[J]. Journal of Nanoscience and Nanotechnology, 2017, 17: 5 980-5 995.
|
129 |
MERINERO R, CÁRDENES V, LUNAR R, et al. Representative size distributions of framboidal, euhedral, and sunflower pyrite from high-resolution X-ray tomography and scanning electron microscopy analyses[J]. American Mineralogist, 2017, 102(3): 620-631.
|
130 |
WILKIN R, BARNES H. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species[J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4 167-4 179.
|
131 |
WANG Meng, CAI Feng, LI Qing, et al. Characteristics of authigenic pyrite and its sulfur isotopes influenced by methane seep at Core A, Site 79 of the middle Okinawa Trough[J]. Science China: Earth Sciences, 2015, 45(12): 1 819-1 828.
|
132 |
ZHANG M, KONISHI H, XU H F, et al. Morphology and formation mechanism of pyrite induced by the anaerobic oxidation of methane from the continental slope of the NE South China Sea[J]. Journal of Asian Earth Sciences, 2014, 92: 293-301.
|
133 |
BOND D, WIGNALL P. Pyrite framboid study of marine Permian-Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction[J]. Geological Society of America Bulletin, 2010, 122(7/8): 1 265-1 279.
|
134 |
WILKIN R T, BARNES H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2): 323-339.
|
135 |
SAWLOWICZ Z. Pyrite framboids and their development: a new conceptual mechanism[J]. Geologische Rundschau, 1993, 82(1): 148-156.
|
136 |
ZHANG M, LU H F, GUAN H X, et al. Methane seepage intensities traced by sulfur isotopes of pyrite and gypsum in sediment from the Shenhu area, South China Sea[J]. Acta Oceanologica Sinica, 2018, 37(7): 20-27.
|
137 |
ZHANG Mei, LU Hongfeng, WU Daidai, et al. Cross-section distribution and morphology of authigenic pyrite and their indication to methane seeps in Shenhu areas, South China Sea[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 178-188.
|
|
张美, 陆红锋, 邬黛黛, 等. 南海神狐海域自生黄铁矿分布、形貌特征及其对甲烷渗漏的指示[J]. 海洋地质与第四纪地质, 2017, 37(6): 178-188.
|