地球科学进展 ›› 2024, Vol. 39 ›› Issue (6): 589 -601. doi: 10.11867/j.issn.1001-8166.2024.043

综述与评述 上一篇    下一篇

自生黄铁矿指示海底甲烷渗漏
张企盈 1( ), 苗晓明 1, 常鑫 1, 孔凡兴 1, 谷玉 1, 刘喜停 1 , 2( )   
  1. 1.中国海洋大学 海洋地球科学学院, 海底科学与探测技术教育部重点实验室, 山东 青岛 266100
    2.青岛海洋科技中心海洋地质过程与环境功能实验室, 山东 青岛 266237
  • 收稿日期:2024-01-31 修回日期:2024-05-24 出版日期:2024-06-10
  • 通讯作者: 刘喜停 E-mail:zhangqiying@stu.ouc.edu.cn;liuxiting@ouc.edu.cn
  • 基金资助:
    国家自然科学基金项目(42276060);山东省优秀青年基金项目(ZR2021YQ26)

Authigenic Pyrite Indicates Seafloor Methane Seepage

Qiying ZHANG 1( ), Xiaoming MIAO 1, Xin CHANG 1, Fanxing KONG 1, Yu GU 1, Xiting LIU 1 , 2( )   

  1. 1.Key Laboratory of Submarine Geosciences and Prospecting Technology, College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
    2.Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
  • Received:2024-01-31 Revised:2024-05-24 Online:2024-06-10 Published:2024-07-15
  • Contact: Xiting LIU E-mail:zhangqiying@stu.ouc.edu.cn;liuxiting@ouc.edu.cn
  • About author:ZHANG Qiying, Master student, research area includes marine sedimentology. E-mail: zhangqiying@stu.ouc.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(42276060);The Outstanding Youth Fund Project of Shandong Province(ZR2021YQ26)

海底甲烷渗漏是海洋环境中甲烷的重要来源,对全球碳循环和极端环境生物地球化学循环具有重要影响,示踪和重建海底(古)甲烷渗漏活动具有重要的科学意义。在甲烷渗漏活动过程中,硫酸盐驱动的甲烷厌氧氧化作用普遍发育,从而改变孔隙水地球化学特征,并导致自生矿物的形成。其中,自生黄铁矿是硫酸盐驱动的甲烷厌氧氧化作用的典型自生矿物之一,可作为记录甲烷渗漏活动的良好指标。综述了硫酸盐驱动的甲烷厌氧氧化作用衍生自生黄铁矿的地球化学特征和形貌特征,评估了其在示踪和重建海底(古)甲烷渗漏活动的潜力。结果表明,自生黄铁矿的硫和铁同位素及原位微量元素和同位素可以有效识别硫酸盐驱动的甲烷厌氧氧化作用过程,甲烷渗漏环境沉积物中自生黄铁矿的形貌和含量与正常海洋沉积物存在明显差异,彰显了自生黄铁矿示踪和重建海底(古)甲烷渗漏事件的巨大潜力。

Seafloor methane seepage is an important source of methane affecting the global carbon cycle and extreme environmental biogeochemical cycles. Therefore, identifying modern and ancient seafloor methane seepage is of great scientific significance. During methane leakage, Sulfate-Driven Anaerobic Oxidation of Methane (SD-AOM) commonly occurs, changing the geochemical characteristics of pore water and forming of authigenic minerals. Authigenic pyrite is a typical authigenic mineral in SD-AOM and can be used as a good indicator for recording methane leakage. This study summarizes the geochemical and morphological characteristics of SD-AOM-derived authigenic pyrite and evaluates its potential for tracing and reconstructing seabed (paleo) methane leakage. The results show that the sulfur and Fe isotopes, as well as in situ trace elements and isotopes of authigenic pyrite, can effectively identify the SD-AOM process. In addition, significant differences are observed in the morphology and content of authigenic pyrite in sediments in these environments compared with normal marine sediments, highlighting the great potential of authigenic pyrite for tracing and reconstructing seabed (paleo-) methane leakage events.

中图分类号: 

图1 微生物硫酸盐还原作用(MSR)过程示意图(据参考文献[ 35 ]修改)
Fig. 1 Schematic of the processes involved in Microbial Sulfur ReductionMSR) (modified after reference 35 ])
图2 海底甲烷渗漏系统示意图(据参考文献[ 41 ]修改)
Fig. 2 Schematic representation of submarine methane seepage systemmodified after reference 41 ])
图3 沉积物总硫(TS)和总有机碳(TOC)比值图(据参考文献[ 66 - 68 ]修改)
Fig. 3 Figure showing the ratio of Total SulfurTSto Total Organic CarbonTOCin sedimentsmodified after references66-68])
图4 奥胡斯湾M24站位孔隙水硫酸盐和硫化物硫同位素特征(据参考文献[ 83 ]修改)
Fig. 4 Sulfate and sulfide sulfur isotope characterization of porewater at station M24 in Aarhus Baymodified after reference 83 ])
图5 孔隙水硫酸盐在不同海洋环境中的Δ33S值和δ34S值示意图 (据参考文献[ 91 ]修改)
OSR:有机质驱动的硫酸盐还原作用;SD-AOM:硫酸盐驱动的甲烷厌氧氧化作用
Fig. 5 Schematic plots of Δ33S and δ34S for porewater sulfate in different marine settingsmodified after reference 91 ])
OSR:Organoclassic Sulfate Reduction;SD-AOM:Sulfate-Driven Anaerobic Oxidation of Methane
图6 硫酸盐驱动的甲烷厌氧氧化作用(SD-AOM)和有机质驱动的硫酸盐还原作用(OSR)影响黄铁矿形成及其铁同位素组成(据参考文献[ 76 ]修改)
Fig. 6 Sulfate-Driven Anaerobic Oxidation of MethaneSD-AOMand Organiclastic Sulfate ReductionOSRaffect pyrite sulfur and iron isotopic compositionsmodified after reference 76 ])
图7 正常海洋环境和甲烷渗漏环境黄铁矿微量元素组成特征(据参考文献[ 108 ]修改)
OSR:有机质驱动的硫酸盐还原作用;SD-AOM:硫酸盐驱动的甲烷厌氧氧化作用
Fig. 7 Trace elements in pyrite under normal marine environment and methane seepage conditionsmodified after reference 108 ])
OSR:Organoclassic Sulfate Reduction;SD-AOM:Sulfate-Driven Anaerobic Oxidation of Methane
图8 不同甲烷渗漏衍生黄铁矿结构的扫描电镜图像
(a)充填在有孔虫中的生物状自生黄铁矿 65 ;(b)是(a)的局部放大 65 ;(c)不规则黄铁矿集合体 99 ;(d)再生长结构,立方体边缘周围的过度生长 99 ;(e)棒状黄铁矿聚集体 131 ;(f)黄铁矿聚集形态 132
Fig. 8 Scanning electron microscope images of methane-derived pyrites with different structures
(a) Biomorphous autogenic pyrite filling in foraminifera 65 ; (b) Local enlargement of (a) 65 ; (c) Irregular pyrite aggregate 99 ; (d) Pyrite overgrowth around the edges of cubic crystals 99 ; (e) Rod-like pyrite aggregate 131 ; (f) Pyrite aggregate morphology 132
1 PIÑERO E, MARQUARDT M, HENSEN C, et al. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions[J]. Biogeosciences, 2013, 10(2): 959-975.
2 DICKENS G R. Sulfate profiles and Barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir[J]. Geochimica et Cosmochimica Acta, 2001, 65(4): 529-543.
3 FENG D, PENG Y B, BAO H, et al. A carbonate-based proxy for sulfate-driven anaerobic oxidation of methane[J]. Geology, 2016, 44: 999-1 002.
4 PEKETI A, JOSHI R K, PATIL D, et al. Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments: an application of C-S-Mo systematics[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): 1-11.
5 SUESS E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 2014, 103(7): 1 889-1 916.
6 WU Nengyou, ZHANG Guangxue, LIANG Jinqiang. Progress of gas hydrate research in northern South China Sea [J]. Advances in New and Renewable Energy, 2013, 1: 80-94.
7 FAURE K, GREINERT J, von DEIMLING J S, et al. Methane seepage along the Hikurangi Margin of New Zealand: geochemical and physical data from the water column, sea surface and atmosphere[J]. Marine Geology, 2010, 272(1/2/3/4): 170-188.
8 YE Liming, CHU Fengyou, GE Qian, et al. A rapid gas hydrate dissociation in the northern South China Sea since the late Younger Dryas[J]. Earth Science, 2013, 38(6): 1 299-1 308.
叶黎明, 初凤友, 葛倩, 等. 新仙女木末期南海北部天然气水合物分解事件[J]. 地球科学, 2013, 38(6): 1 299-1 308.
9 EGGER M, RIEDINGER N, MOGOLLÓN J M, et al. Global diffusive fluxes of methane in marine sediments[J]. Nature Geoscience, 2018, 11: 421-425.
10 KNITTEL K, BOETIUS A. Anaerobic oxidation of methane: progress with an unknown process[J]. Annual Review of Microbiology, 2009, 63: 311-334.
11 WESTBROOK G K, THATCHER K E, ROHLING E J, et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin[J]. Geophysical Research Letters, 2009, 36(15): 1-5.
12 BRISTOW T, GROTZINGER J. Sulfate availability and the geological record of cold-seep deposits [J]. Geology, 2013, 41: 811-814.
13 DICKENS G R. Global change: hydrocarbon-driven warming[J]. Nature, 2004, 429(6 991): 513-515.
14 RASMUSSEN B. Evidence for pervasive petroleum generation and migration in 3.2 and 2.63 Ga shales[J]. Geology, 2005, 33(6): 497-500.
15 BOETIUS A, RAVENSCHLAG K, SCHUBERT C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407: 623-626.
16 PECKMANN J, THIEL V. Carbon cycling at ancient methaneâ seeps[J]. Chemical Geology, 2004, 205(3/4): 443-467.
17 FENG D, QIU J W, HU Y, et al. Cold seep systems in the South China Sea: an overview[J]. Journal of Asian Earth Sciences, 2018, 168: 3-16.
18 JØRGENSEN B B, FINDLAY A J, PELLERIN A. The biogeochemical sulfur cycle of marine sediments[J]. Frontiers in Microbiology, 2019, 10. DOI:10.3389/fmicb.2019.00849 .
19 BIAN Youyan, CHEN Duofu. Research progress of dolomite in seep carbonates[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(2): 238-246.
卞友艳, 陈多福. 海底冷泉环境中的白云石(岩)研究现状[J]. 矿物岩石地球化学通报, 2014, 33(2): 238-246.
20 CHEN D F, FENG D, SU Z, et al. Pyrite crystallization in seep carbonates at gas vent and hydrate site[J]. Materials Science and Engineering C, 2006, 26(4): 602-605.
21 FENG D, ROBERTS H H, JOYE S B, et al. Formation of low-magnesium calcite at cold seeps in an aragonite sea[J]. Terra Nova, 2014, 26(2): 150-156.
22 GE L, JIANG S Y, SWENNEN R, et al. Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: evidence from trace and rare earth element geochemistry[J]. Marine Geology, 2010, 277(1/2/3/4): 21-30.
23 HAN X Q, SUESS E, HUANG Y Y, et al. Jiulong methane reef: microbial mediation of seep carbonates in the South China Sea[J]. Marine Geology, 2008, 249(3/4): 243-256.
24 HAN X Q, SUESS E, LIEBETRAU V, et al. Past methane release events and environmental conditions at the upper continental slope of the South China Sea: constraints by seep carbonates[J]. International Journal of Earth Sciences, 2014, 103(7): 1 873-1 887.
25 NOVOSEL I, SPENCE G, HYNDMAN R. Reduced magnetization produced by increased methane flux at a gas hydrate vent[J]. Marine Geology, 2005, 216(4): 265-274.
26 HU Y, FENG D, CHEN L Y, et al. Using iron speciation in authigenic carbonates from hydrocarbon seeps to trace variable redox conditions[J]. Marine and Petroleum Geology, 2015, 67: 111-119.
27 LU Y, SUN X M, LIN Z Y, et al. Cold seep status archived in authigenic carbonates: mineralogical and isotopic evidence from northern South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 95-105.
28 CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates[J]. Acta Sedimentologica Sinica, 2002, 20(1): 34-40.
陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1): 34-40.
29 CANFIELD D E. Biogeochemistry of sulfur isotopes[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 607-636.
30 FOSSING H, FERDELMAN T G, BERG P. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia)[J]. Geochimica et Cosmochimica Acta, 2000, 64(5): 897-910.
31 LIU X T, LI A C, FIKE D A, et al. Environmental evolution of the East China Sea inner shelf and its constraints on pyrite sulfur contents and isotopes since the last Deglaciation[J]. Marine Geology, 2020, 429. DOI:10.1016/j.margeo.2020.106307 .
32 LIU Xiting, LI Anchun, MA Zhixin, et al. Constraints of sedimentary process on sulfur isotopes of authigenic pyrite[J]. Acta Sedimentologica Sinica, 2020, 38(1): 124-137.
刘喜停, 李安春, 马志鑫, 等. 沉积过程对自生黄铁矿硫同位素的约束[J]. 沉积学报, 2020, 38(1): 124-137.
33 XIE Zhibin, GONG Shanggui, FENG Dong. Oxygen and sulfur isotopes of pore water sulfate and the implications on biogeochemical sulfur cycle of marine sediments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(2): 389-401.
谢智斌, 宫尚桂, 冯东. 海洋沉积物孔隙水硫酸盐的硫、氧同位素组成及其对硫生物地球化学过程的指示[J]. 矿物岩石地球化学通报, 2023, 42(2): 389-401.
34 JØRGENSEN B B. Mineralization of organic matter in the sea bed—the role of sulphate reduction[J]. Nature, 1982, 296: 643-645.
35 FIKE D, BRADLEY A, ROSE C. Rethinking the ancient sulfur cycle[J]. Annual Review of Earth and Planetary Sciences, 2013, 43(1). DOI:10.1146/ANNUREV-EARTH-060313-054802 .
36 CYPIONKA H.Solute transport and cell energetics[M]// BARTON L L. Sulfate-reducing bacteria. Boston, US: Springer, 1995.
37 BRUNNER B, BERNASCONI S M. A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria[J]. Geochimica et Cosmochimica Acta, 2005, 69(20): 4 759-4 771.
38 BOETIUS A, WENZHÖFER F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6: 725-734.
39 PAULL C K, HECKER B, COMMEAU R, et al. Biological communities at the Florida escarpment resemble hydrothermal vent taxa[J]. Science, 1984, 226(4 677): 965-967.
40 SUESS E. Marine cold seeps: background and recent advances[M]// WILKES H. Hydrocarbons, oils and lipids: diversity, origin, chemistry and fate. Cham: Springer, 2018.
41 TORRES M, BOHRMANN G. Cold seeps [M]. Dordrecht: Springer Netherlands, 2013:1-8.
42 SUESS E. The evolution of an idea: from avoiding gas hydrates to actively drilling for them[J]. JOIDES Journal, 2002, 28(1): 45-50.
43 WEI H L, ZHANG X H, SHANG L N, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the northern Okinawa Trough, East China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 95: 37-53.
44 MOHAMED K, REY D, RUBIO B, et al. Onshore-offshore gradient in reductive early diagenesis in coastal marine sediments of the Ria de Vigo, northwest Iberian Peninsula[J]. Continental Shelf Research, 2010, 31(5): 433-447.
45 REEBURGH W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2): 486-513.
46 ROBERTS H H. Fluid and gas expulsion on the northern Gulf of Mexico continental slope: mud-prone to mineral-prone responses[J]. Geophysical Monograph Series, 2001, 124: 145-161.
47 BOROWSKI W S, PAULL C K, USSLER W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J]. Geology, 1996, 24(7): 655-658.
48 BOROWSKI W S, PAULL C K, USSLER W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane and gas hydrates[J]. Marine Geology, 1999, 159(1): 131-154.
49 LIN Z Y, SUN X M, STRAUSS H, et al. Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: evidence from authigenic pyrite in seepage areas of the South China Sea[J]. Geochimica et Cosmochimica Acta, 2017, 211: 153-173.
50 CHEN F, HU Y, FENG D, et al. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea[J]. Chemical Geology, 2016, 443: 173-181.
51 LEAVITT W D, HALEVY I, BRADLEY A S, et al. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28): 11 244-11 249.
52 BERNER R A. Early diagenesis: a theoretical approach[M]. Princeton, NJ: Princeton University Press, 1980.
53 CANFIELD D E. Sulfate reduction in deep-sea sediments[J]. American Journal of Science, 1991, 291(2): 177-188.
54 HENSEN C, ZABEL M, PFEIFER K, et al. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments[J]. Geochimica et Cosmochimica Acta, 2003, 67(14): 2 631-2 647.
55 BERNER R A. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance[J]. American Journal of Science, 1982, 282(4): 451-473.
56 LIU X T, FIKE D, LI A C, et al. Pyrite sulfur isotopes constrained by sedimentation rates: evidence from sediments on the East China Sea inner shelf since the late Pleistocene[J]. Chemical Geology, 2019, 505: 66-75.
57 BOROWSKI W S, RODRIGUEZ N M, PAULL C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?[J]. Marine and Petroleum Geology, 2013, 43: 381-395.
58 PECKMANN J, REIMER A, LUTH U, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea [J]. Marine Geology, 2001, 177(1): 129-150.
59 PEKETI A, MAZUMDAR A, JOAO H M, et al. Coupled C-S-Fe geochemistry in a rapidly accumulating marine sedimentary system: diagenetic and depositional implications[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 2 865-2 883.
60 BOETIUS A, RAVENSCHLAG K, SCHUBERT C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407: 623-626.
61 JØRGENSEN B B, BÖTTCHER M E, LÜSCHEN H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2 095-2 118.
62 LIM Y C, LIN S, YANG T, et al. Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan [J]. Marine and Petroleum Geology, 2011, 28(10): 1 829-1 837.
63 LI N, FENG D, CHEN L Y, et al. Using sediment geochemistry to infer temporal variation of methane flux at a cold seep in the South China Sea[J]. Marine and Petroleum Geology, 2016, 77: 835-845.
64 WILKIN R, BARNES H. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species[J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4 167-4 179.
65 MIAO X M, FENG X L, LIU X T, et al. Effects of methane seepage activity on the morphology and geochemistry of authigenic pyrite[J]. Marine and Petroleum Geology, 2021, 133(3). DOI:10.1016/j.marpetgeo.2021.105231 .
66 HU Y, CHEN L Y, FENG D, et al. Geochemical record of methane seepage in authigenic carbonates and surrounding host sediments: a case study from the South China Sea[J]. Journal of Asian Earth Sciences, 2017, 138: 51-61.
67 LI N, YANG X Q, PENG J, et al. Paleo-cold seep activity in the southern South China Sea: evidence from the geochemical and geophysical records of sediments [J]. Journal of Asian Earth Sciences, 2017, 168: 106-111.
68 SATO H, HAYASHI K I, OGAWA Y, et al. Geochemistry of deep sea sediments at cold seep sites in the Nankai Trough: insights into the effect of anaerobic oxidation of methane[J]. Marine Geology, 2012, 323/324/325: 47-55.
69 CANFIELD D E, TESKE A. Late Proterozoic Rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies[J]. Nature, 1996, 382: 127-132.
70 CANFIELD D E, THAMDRUP B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur[J]. Science, 1994, 266: 1 973-1 975.
71 GARNIER J, GARNIER J M, VIEIRA C L, et al. Iron isotope fingerprints of redox and biogeochemical cycling in the soil-water-rice plant system of a paddy field[J]. The Science of the Total Environment, 2017, 574: 1 622-1 632.
72 HABICHT K S, GADE M, THAMDRUP B, et al. Calibration of sulfate levels in the Archean Ocean[J]. Science, 2002, 298(5 602): 2 372-2 374.
73 ROUXEL O J, BEKKER A, EDWARDS K J. Iron isotope constraints on the Archean and Paleoproterozoic Ocean redox state[J]. Science, 2005, 307(5 712): 1 088-1 091.
74 DONG Hongkun, WAN Shiming, LIU Xiting. Research progress on geochemical behavior of minerals and elements in early diagenesis of marine sediments[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1 172-1 187.
董宏坤, 万世明, 刘喜停. 海洋沉积物早期成岩作用研究进展[J]. 沉积学报, 2022, 40(5): 1 172-1 187.
75 LIN Zhiyong, SUN Xiaoming, LU Yang, et al. The enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane: insights from the South China Sea[J]. Chemical Geology, 2017, 449: 15-29.
76 LIN Z Y, SUN X M, PECKMANN J, et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: a SIMS study from the South China Sea[J]. Chemical Geology, 2016, 440: 26-41.
77 LIU J R, PELLERIN A, GILAD A, et al. Early diagenesis of iron and sulfur in Bornholm Basin sediments: the role of near-surface pyrite formation[J]. Geochimica et Cosmochimica Acta, 2020, 284: 43-60.
78 LIU J R, PELLERIN A, WANG J S, et al. Multiple sulfur isotopes discriminate organoclastic and methane-based sulfate reduction by sub-seafloor pyrite formation[J]. Geochimica et Cosmochimica Acta, 2021, 316: 309-330.
79 BERTRAN E, WALDECK A, WING B A, et al. Oxygen isotope effects during microbial sulfate reduction: applications to sediment cell abundances[J]. The ISME Journal, 2020, 14(6): 1 508-1 519.
80 DEUSNER C, HOLLER T, ARNOLD G L, et al. Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration[J]. Earth and Planetary Science Letters, 2014, 399: 61-73.
81 ANTLER G, TURCHYN A V, HERUT B, et al. Sulfur and oxygen isotope tracing of sulfate driven anaerobic methane oxidation in estuarine sediments[J]. Estuarine Coastal and Shelf Science, 2014, 142: 4-11.
82 FENG Dong, GONG Shanggui. Progress on the biogeochemical process of sulfur and its geological record at submarine cold seeps[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(6): 1 047-1 056.
冯东, 宫尚桂. 海底冷泉系统硫的生物地球化学过程及其沉积记录研究进展[J]. 矿物岩石地球化学通报, 2019, 38(6): 1 047-1 056.
83 PELLERIN A, ANTLER G, RØY H, et al. The sulfur cycle below the sulfate-methane transition of marine sediments[J]. Geochimica et Cosmochimica Acta, 2018, 239: 74-89.
84 MIAO X M, WEI J G, LIU X T, et al. The control of turbidite deposition on pyrite sulfur isotopic composition in sediments on the continental slope of the South China Sea[J]. Marine Geology, 2023, 465. DOI:10.1016/j.margeo.2023.107163 .
85 GONG S G, HU Y, LI N, et al. Environmental controls on sulfur isotopic compositions of sulfide minerals in seep carbonates from the South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 96-105.
86 ZHANG Qinyi, WU Daidai, LIU Lihua. Characteristics and application of multiple sulfur isotopes of authigenic minerals in cold-seep environment[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 62-75.
张覃谊, 邬黛黛, 刘丽华. 冷泉环境自生矿物多硫同位素特征及应用[J]. 海洋地质与第四纪地质, 2022, 42(3): 62-75.
87 GONG S G, IZON G, PENG Y B, et al. Multiple sulfur isotope systematics of pyrite for tracing sulfate-driven anaerobic oxidation of methane[J]. Earth and Planetary Science Letters, 2022, 597. DOI: 10.1016/j.epsl.2022.117827 .
88 GONG S G, PENG Y B, BAO H M, et al. Triple sulfur isotope relationships during sulfate-driven anaerobic oxidation of methane[J]. Earth and Planetary Science Letters, 2018, 504: 13-20.
89 JOHNSTON D T. Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and sulfur disproportionators[J]. American Journal of Science, 2005, 305(6/7/8): 645-660.
90 YU X X, LIU X T, WEI G J, et al. Holocene climate regulates multiple sulfur isotope compositions of pyrite in the East China Sea via sedimentation rate[J]. Marine and Petroleum Geology, 2024, 161(2). DOI:10.1016/j.marpetgeo.2023.106687 .
91 GONG S G, PECKMANN J, FENG D. Stable isotope signatures of authigenic minerals from methane seeps[M]// South China Sea seeps. Singapore: Springer, 2023: 149-170.
92 MASTERSON A, ALPERIN M, BERELSON W, et al. Interpreting multiple sulfur isotope signals in modern anoxic sediments using a full diagenetic model (California-Mexico margin: Alfonso Basin)[J]. American Journal of Science, 2018, 318(5): 459-490.
93 PELLERIN A, BUI T H, ROUGH M, et al. Mass-dependent sulfur isotope fractionation during reoxidative sulfur cycling: a case study from Mangrove Lake, Bermuda[J]. Geochimica et Cosmochimica Acta, 2015, 149: 152-164.
94 RAISWELL R, CANFIELD D E. The iron biogeochemical cycle past and present[J]. Geochemical Perspectives, 2012, 1(1): 1-2.
95 LIU Xiting, YAN Jiaxin. Advances in the role of iron in marine sediments during early diagenesis[J]. Advances in Earth Science, 2011, 26(5): 482-492.
刘喜停, 颜佳新. 铁元素对海相沉积物早期成岩作用的影响[J]. 地球科学进展, 2011, 26(5): 482-492.
96 SEVERMANN S, JOHNSON C M, BEARD B L, et al. The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments[J]. Geochimica et Cosmochimica Acta, 2006, 70(8): 2 006-2 022.
97 LIN Z Y, CHEN K Y, STRAUSS H, et al. Effects of sulfate reduction processes on the trace element geochemistry of sedimentary pyrite in modern seep environments[J]. Geochimica et Cosmochimica Acta, 2022, 333. DOI: 10.1016/j.gca.2022.06.026 .
98 VIRTASALO J J, WHITEHOUSE M J, KOTILAINEN A T. Iron isotope heterogeneity in pyrite fillings of Holocene worm burrows[J]. Geology, 2013, 41(1): 39-42.
99 LIN Z Y, LU Y, STRAUSS H, et al. The enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane: insights from the South China Sea[J]. Chemical Geology, 2016, 449: 15-29.
100 ZHANG Xianrong, SUN Zhilei, WEI Helong, et al. Micro-biomineralizaiton of authigenic pyrite and its implications for seafloor cold seeps[J]. Marine Geology & Quaternary Geology, 2017, 37(2): 25-32.
张现荣, 孙治雷, 魏合龙, 等. 自生黄铁矿的微生物成矿机理及对冷泉泄漏的指示意义[J]. 海洋地质与第四纪地质, 2017, 37(2): 25-32.
101 LIN Z Y, SUN X M, LU Y, et al. Iron isotope constraints on diagenetic iron cycling in the Taixinan seepage area, South China Sea[J]. Journal of Asian Earth Sciences, 2018, 168: 112-124.
102 RICKARD D. Sedimentary sulfides[J]. Developments in Sedimentology, 2012, 65: 543-604.
103 HUERTA-DIAZ M A, MORSE J W. Pyritization of trace metals in anoxic marine sediments[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2 681-2 702.
104 ROSS L, INDRANI M, LEONID D, et al. Sedimentary pyrite proxy for atmospheric oxygen; evaluation of strengths and limitations[J]. Earth-Science Reviews, 2022. DOI:10.1016/j.earscirev.2022.103941 .
105 LARGE R R, HALPIN J A, DANYUSHEVSKY L V, et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution[J]. Earth and Planetary Science Letters, 2014, 389: 209-220.
106 BERNER Z A, PUCHELT H, NÖLTNER T, et al. Pyrite geochemistry in the Toarcian Posidonia Shale of south-west Germany: evidence for contrasting trace-element patterns of diagenetic and syngenetic pyrites[J]. Sedimentology, 2013, 60(2): 548-573.
107 MIAO X M, LIU X T, LI Q, et al. Porewater geochemistry indicates methane seepage in the Okinawa Trough and its implications for the carbon cycle of the subtropical West Pacific[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 607. DOI:10.1016/j.palaeo.2022.111266 .
108 MIAO X, FENG X, LI J, et al. Enrichment mechanism of trace elements in pyrite under methane seepage[J]. Geochemical Perspectives Letters, 2022, 21: 18-22.
109 SMRZKA D, FENG D, HIMMLER T, et al. Trace elements in methane-seep carbonates: potentials, limitations, and perspectives[J]. Earth-Science Reviews, 2020, 208. DOI:10.1016/j.earscirev.2020.103263 .
110 SMRZKA D, ZWICKER J, BACH W, et al. The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: a review[J]. Facies, 2019, 65(4). DOI:10.1007/s10347-019-0581-4 .
111 AHARON P, FU B S. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 233-246.
112 MORSE J, LUTHER G. Chemical influences on trace metal-sulfide interactions in anoxic sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(19/20): 3 373-3 378.
113 GREGORY D D, LARGE R R, HALPIN J A, et al. Trace element content of sedimentary pyrite in black shales[J]. Economic Geology, 2015, 110(6): 1 389-1 410.
114 GREGORY D D, LARGE R R, HALPIN J A, et al. The chemical conditions of the late Archean Hamersley Basin inferred from whole rock and pyrite geochemistry with Δ33S and δ34S isotope analyses[J]. Geochimica et Cosmochimica Acta, 2015, 149: 223-250.
115 LOWERS H A, BREIT G N, FOSTER A L, et al. Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh[J]. Geochimica et Cosmochimica Acta, 2007, 71(11): 2 699-2 717.
116 ANDREAE M O, FROELICH P N. Arsenic, antimony, and germanium biogeochemistry in the Baltic Sea[J]. Tellus B: Chemical and Physical Meteorology, 1984, 36(2). DOI:10.3402/tellusb.v36i2.14880 .
117 TRIBOVILLARD N. Arsenic in marine sediments: how robust a redox proxy?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550. DOI:10.1016/j.palaeo.2020.109745 .
118 HUERTA-DIAZ M A, TESSIER A, CARIGNAN R. Geochemistry of trace metals associated with reduced sulfur in freshwater sediments[J]. Applied Geochemistry, 1998, 13(2): 213-233.
119 TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
120 DEDITIUS A P, UTSUNOMIYA S, RENOCK D, et al. A proposed new type of arsenian pyrite: composition, nanostructure and geological significance[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2 919-2 933.
121 MICHEL D, GIULIANI G, OLIVO G R, et al. As growth banding and the presence of Au in pyrites from the Santa Rita gold vein deposit hosted in Proterozoic metasediments, Goias State, Brazil[J]. Economic Geology, 1994, 89(1): 193-200.
122 CHEN C, WANG J S, ZHU J M, et al. Sulfate-driven anaerobic oxidation of methane inferred from trace-element chemistry and nickel isotopes of pyrite[J]. Geochimica et Cosmochimica Acta, 2023, 349(7): 81-95.
123 RICKARD D. Sedimentary pyrite framboid size-frequency distributions: a meta-analysis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 522: 62-75.
124 WANG P K, HUANG Y J, WANG C S, et al. Pyrite morphology in the first member of the late Cretaceous Qingshankou Formation, Songliao Basin, northeast China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2013, 385: 125-136.
125 PROL-LEDESMA R M, CANET C, VILLANUEVA-ESTRADA R E, et al. Morphology of pyrite in particulate matter from shallow submarine hydrothermal vents[J]. American Mineralogist, 2015, 95(10): 1 500-1 507.
126 STAKES D, ORANGE D, PADUAN J, et al. Cold-seeps and authigenic carbonate formation in Monterey Bay, California[J]. Marine Geology, 1999, 159: 93-109.
127 DING H, YAO S, CHEN J. Authigenic pyrite formation and re-oxidation as an indicator of an unsteady-state redox sedimentary environment: evidence from the intertidal mangrove sediments of Hainan Island, China[J]. Continental Shelf Research, 2014, 78: 85-99.
128 HUANG F, GAO W Y, GAO S, et al. Morphology evolution of nano-micron pyrite: a review[J]. Journal of Nanoscience and Nanotechnology, 2017, 17: 5 980-5 995.
129 MERINERO R, CÁRDENES V, LUNAR R, et al. Representative size distributions of framboidal, euhedral, and sunflower pyrite from high-resolution X-ray tomography and scanning electron microscopy analyses[J]. American Mineralogist, 2017, 102(3): 620-631.
130 WILKIN R, BARNES H. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species[J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4 167-4 179.
131 WANG Meng, CAI Feng, LI Qing, et al. Characteristics of authigenic pyrite and its sulfur isotopes influenced by methane seep at Core A, Site 79 of the middle Okinawa Trough[J]. Science China: Earth Sciences, 2015, 45(12): 1 819-1 828.
132 ZHANG M, KONISHI H, XU H F, et al. Morphology and formation mechanism of pyrite induced by the anaerobic oxidation of methane from the continental slope of the NE South China Sea[J]. Journal of Asian Earth Sciences, 2014, 92: 293-301.
133 BOND D, WIGNALL P. Pyrite framboid study of marine Permian-Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction[J]. Geological Society of America Bulletin, 2010, 122(7/8): 1 265-1 279.
134 WILKIN R T, BARNES H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2): 323-339.
135 SAWLOWICZ Z. Pyrite framboids and their development: a new conceptual mechanism[J]. Geologische Rundschau, 1993, 82(1): 148-156.
136 ZHANG M, LU H F, GUAN H X, et al. Methane seepage intensities traced by sulfur isotopes of pyrite and gypsum in sediment from the Shenhu area, South China Sea[J]. Acta Oceanologica Sinica, 2018, 37(7): 20-27.
137 ZHANG Mei, LU Hongfeng, WU Daidai, et al. Cross-section distribution and morphology of authigenic pyrite and their indication to methane seeps in Shenhu areas, South China Sea[J]. Marine Geology & Quaternary Geology, 2017, 37(6): 178-188.
张美, 陆红锋, 邬黛黛, 等. 南海神狐海域自生黄铁矿分布、形貌特征及其对甲烷渗漏的指示[J]. 海洋地质与第四纪地质, 2017, 37(6): 178-188.
[1] 张晓潼, 袁华茂, 宋金明, 段丽琴. 海洋 ReMoU对氧化还原环境的指示作用[J]. 地球科学进展, 2022, 37(4): 358-369.
[2] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[3] 康健,陈列锰,宋谢炎,戴智慧,郑文勤. 金川超大型 Ni-Cu-( PGE)矿床橄榄石微量元素特征及地质意义[J]. 地球科学进展, 2019, 34(4): 382-398.
[4] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[5] 黄柯, 朱明田, 张连昌, 李文君, 高炳宇. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3): 262-275.
[6] 王云峰, 杨红梅. 金属硫化物矿床的成矿热液硫同位素示踪[J]. 地球科学进展, 2016, 31(6): 595-602.
[7] 黄从俊, 李泽琴. 拉拉IOCG矿床萤石的微量元素地球化学特征及其指示意义[J]. 地球科学进展, 2015, 30(9): 1063-1073.
[8] 陈雅丽,储雪蕾,张兴亮,翟明国. 纳米离子探针分析在地球早期生命研究中的应用[J]. 地球科学进展, 2013, 28(5): 588-596.
[9] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[10] 黄建国,李虎杰,李文杰,董 磊. 贵州戈塘金矿萤石微量元素特征及钐—钕测年[J]. 地球科学进展, 2012, 27(10): 1087-1093.
[11] 陈莹,庄国顺,郭志刚. 近海营养盐和微量元素的大气沉降[J]. 地球科学进展, 2010, 25(7): 682-690.
[12] 胡耀武,Michael P.Richards,刘武,王昌燧. 骨化学分析在古人类食物结构演化研究中的应用[J]. 地球科学进展, 2008, 23(3): 228-235.
[13] 郎赟超,刘丛强,Satake H.,WuJiahong,李思亮. 贵阳地表水—地下水的硫和氯同位素组成特征及其污染物示踪意义[J]. 地球科学进展, 2008, 23(2): 151-159.
[14] 李清,王家生,王晓芹,陈祈,陈洪仁. IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008, 23(11): 1161-1166.
[15] 腾格尔;刘文汇;徐永昌;陈践发. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200.
阅读次数
全文


摘要