1 |
RANDALL D A, WOOD R A, BONY S, et al. Climate models and their evaluation[M]// Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR). Cambridge:Cambridge University Press, 2007: 589-662.
|
2 |
HU Yamin, DING Yihui. The progress of RCMs simulation on East Asia region[J]. Advances in Earth Science, 2006, 21(9): 956-964.
|
|
胡娅敏, 丁一汇. 东亚地区区域气候模拟的研究进展[J]. 地球科学进展, 2006, 21(9): 956-964.
|
3 |
TABARI H, de TROCH R, GIOT O, et al. Local impact analysis of climate change on precipitation extremes: are high-resolution climate models needed for realistic simulations?[J]. Hydrology and Earth System Sciences, 2016, 20(9): 3 843-3 857.
|
4 |
MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge, UK and New York, USA: Cambridge University Press, 2021.
|
5 |
GIORGI F, GUTOWSKI W J. Regional dynamical downscaling and the CORDEX initiative[J]. Annual Review of Environment and Resources, 2015, 40: 467-490.
|
6 |
DOSIO A, PANITZ H J. Climate change projections for CORDEX-Africa with COSMO-CLM regional climate model and differences with the driving global climate models[J]. Climate Dynamics, 2016, 46(5): 1 599-1 625.
|
7 |
WU F T, WANG S Y, FU C B, et al. Evaluation and projection of summer extreme precipitation over East Asia in the Regional Model Inter-comparison Project[J]. Climate Research, 2016, 69(1): 45-58.
|
8 |
ZHOU W D, TANG J P, WANG X Y, et al. Evaluation of regional climate simulations over the CORDEX-EA-II domain using the COSMO-CLM model[J]. Asia-Pacific Journal of Atmospheric Sciences, 2016, 52(2): 107-127.
|
9 |
GAO X J, GIORGI F. Use of the RegCM system over East Asia: review and perspectives[J]. Engineering, 2017, 3(5): 766-772.
|
10 |
JIANG Zhihong, LIU Zhengyu, YUE Xu, et al. Response and ensemble projection of East Asian climate system under the global warming of 1.5 ℃[J]. China Basic Science, 2017, 19(5): 29-34.
|
|
江志红, 刘征宇, 乐旭, 等. 全球增暖1.5 ℃下东亚气候系统的响应及其情景预估[J]. 中国基础科学, 2017, 19(5): 29-34.
|
11 |
FOSSER G, KHODAYAR S, BERG P. Benefit of convection permitting climate model simulations in the representation of convective precipitation[J]. Climate Dynamics, 2015, 44(1): 45-60.
|
12 |
PREIN A F, LANGHANS W, FOSSER G, et al. A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges[J]. Reviews of Geophysics, 2015, 53(2): 323-361.
|
13 |
RUMMUKAINEN M. Added value in regional climate modeling[J]. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7(1): 145-159.
|
14 |
SUN X G, XUE M, BROTZGE J, et al. An evaluation of dynamical downscaling of Central Plains summer precipitation using a WRF-based regional climate model at a convection-permitting 4 km resolution[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(23): 13 801-13 825.
|
15 |
LEUTWYLER D, LÜTHI D, BAN N, et al. Evaluation of the convection-resolving climate modeling approach on continental scales[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(10): 5 237-5 258.
|
16 |
FOWLER H J, EKSTRÖM M, BLENKINSOP S, et al. Estimating change in extreme European precipitation using a multimodel ensemble[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D18). DOI: 10.1029/2007JD008619 .
|
17 |
DIRMEYER P A, CASH B A, KINTER J L, et al. Simulating the diurnal cycle of rainfall in global climate models: resolution versus parameterization[J]. Climate Dynamics, 2012, 39(1): 399-418.
|
18 |
BOBERG F, BERG P, THEJLL P, et al. Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble[J]. Climate Dynamics, 2009, 32(7): 1 097-1 106.
|
19 |
KENDON E J, STRATTON R A, TUCKER S, et al. Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale[J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-019-09776-9 .
|
20 |
MASS C F, OVENS D, WESTRICK K, et al. Does increasing horizontal resolution produce more skillful forecasts?[J]. Bulletin of the American Meteorological Society, 2002, 83(3): 407-430.
|
21 |
KAIN J S, WEISS S J, LEVIT J J, et al. Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: the SPC/NSSL spring program 2004[J]. Weather and Forecasting, 2006, 21(2): 167-181.
|
22 |
SCHWARTZ C S, KAIN J S, WEISS S J, et al. Next-day convection-allowing WRF model guidance: a second look at 2-km versus 4-km grid spacing[J]. Monthly Weather Review, 2009, 137(10): 3 351-3 372.
|
23 |
TRUSILOVA K, FRÜH B, BRIENEN S, et al. Implementation of an urban parameterization scheme into the regional climate model COSMO-CLM[J]. Journal of Applied Meteorology and Climatology, 2013, 52(10): 2 296-2 311.
|
24 |
BRISSON E, DEMUZERE M, van LIPZIG N P M. Modelling strategies for performing convection-permitting climate simulations[J]. Meteorologische Zeitschrift, 2016, 25(2): 149-163.
|
25 |
FOSSER G, KENDON E J, STEPHENSON D, et al. Convection‐permitting models offer promise of more certain extreme rainfall projections[J]. Geophysical Research Letters, 2020, 47(13). DOI: 10.1029/2020GL088151 .
|
26 |
CALDWELL P M, TERAI C R, HILLMAN B, et al. Convection-permitting simulations with the E3SM global atmosphere model[J]. Journal of Advances in Modeling Earth Systems, 2021, 13(11). DOI: 10.1029/2021MS002544 .
|
27 |
KLEIN C, JACKSON L S, PARKER D J, et al. Combining CMIP data with a regional convection-permitting model and observations to project extreme rainfall under climate change[J]. Environmental Research Letters, 2021, 16(10). DOI: 10.1088/1748-9326/ac26f1 .
|
28 |
SENIOR C A, MARSHAM J H, BERTHOU S, et al. Convection-permitting regional climate change simulations for understanding future climate and informing decision-making in Africa[J]. Bulletin of the American Meteorological Society, 2021, 102(6): E1206-E1223.
|
29 |
ZHANG X Z, XIONG Z, ZHENG J Y, et al. High-resolution precipitation data derived from dynamical downscaling using the WRF model for the Heihe River Basin, northwest China[J]. Theoretical and Applied Climatology, 2018, 131(3): 1 249-1 259.
|
30 |
ZHU K F, XUE M, ZHOU B W, et al. Evaluation of real-time convection-permitting precipitation forecasts in China during the 2013-2014 summer season[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(2): 1 037-1 064.
|
31 |
GUO Z Y, FANG J, SUN X G, et al. Decadal long convection-permitting regional climate simulations over Eastern China: evaluation of diurnal cycle of precipitation[J]. Climate Dynamics, 2020, 54(3): 1 329-1 349.
|
32 |
DONG G T, JIANG Z Y, WANG Y, et al. Evaluation of extreme precipitation in the Yangtze River Delta region of China using a 1.5km mesh convection-permitting regional climate model[J]. Climate Dynamics, 2022, 59(7): 2 257-2 273.
|
33 |
GUO Z Y, FANG J, SHAO M, et al. Improved summer daily and sub-daily precipitation over Eastern China in convection-permitting simulations[J]. Atmospheric Research, 2022, 265. DOI: 10.1016/j.atmosres.2021.105929 .
|
34 |
TANG J P, LU Y, WANG S G, et al. Projection of hourly extreme precipitation using the WRF model over eastern China[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(1). DOI:10.1029/2022JD036448 .
|
35 |
WANG J Z, CHEN J, XUE H L, et al. The roles of small-scale topographic perturbations in precipitation forecasting using a convection-permitting ensemble prediction system over Southern China[J]. Quarterly Journal of the Royal Meteorological Society, 2022, 148(746): 2 468-2 489.
|
36 |
LU Yun, GUO Ziyue, TANG Jianping. Research progress of convection permitting regional climate modeling[J]. Journal of the Meteorological Sciences, 2021, 41(6): 818-827.
|
|
陆云, 郭子悦, 汤剑平. 对流允许尺度区域气候模拟的研究进展[J]. 气象科学, 2021, 41(6): 818-827.
|
37 |
XU M Y, ZHAO C, GU J, et al. Convection-permitting hindcasting of diurnal variation of Mei-yu rainfall over East China with a global variable-resolution model[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(14). DOI: 10.1029/2021JD034823 .
|
38 |
MURATA A, SASAKI H, KAWASE H, et al. Evaluation of precipitation over an oceanic region of Japan in convection-permitting regional climate model simulations[J]. Climate Dynamics, 2017, 48(5): 1 779-1 792.
|
39 |
STEPHENS G. Challenges and advances in convection-permitting climate modeling[J]. Bulletin of the American Meteorological Society, 2017, 98(5): 1 027-1 030.
|
40 |
WCRP Report Report of the third session of the CORDEX Science Advisory Team (SAT) UKMO[R]. Exeter, England, 2017.
|
41 |
COLLINS M, MINOBE S, BARREIRO M, et al. Challenges and opportunities for improved understanding of regional climate dynamics[J]. Nature Climate Change, 2018, 8: 101-108.
|
42 |
BECKER T, HOHENEGGER C. Entrainment and its dependency on environmental conditions and convective organization in convection-permitting simulations[J]. Monthly Weather Review, 2021, 149(2): 537-550.
|
43 |
FEIJOÓ M, SOLMAN S. Convection-permitting modeling strategies for simulating extreme rainfall events over southeastern South America[J]. Climate Dynamics, 2022, 59(9): 2 549-2 569.
|
44 |
MÜLLER S K, CAILLAUD C, CHAN S, et al. Evaluation of Alpine-Mediterranean precipitation events in convection-permitting regional climate models using a set of tracking algorithms[J]. Climate Dynamics, 2023, 61(1): 939-957.
|
45 |
LIU C H, IKEDA K, RASMUSSEN R, et al. Continental-scale convection-permitting modeling of the current and future climate of North America[J]. Climate Dynamics, 2017, 49(1): 71-95.
|
46 |
PREIN A F, LIU C H, IKEDA K, et al. Simulating North American mesoscale convective systems with a convection-permitting climate model[J]. Climate Dynamics, 2020, 55(1): 95-110.
|
47 |
PREIN A F, RASMUSSEN R, CASTRO C L, et al. Special issue: advances in convection-permitting climate modeling[J]. Climate Dynamics, 2020, 55(1): 1-2.
|
48 |
BERNARDET L R, GRASSO L D, NACHAMKIN J E, et al. Simulating convective events using a high-resolution mesoscale model[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D11): 14 963-14 982.
|
49 |
KRUEGER S K. Cloud system modeling[M]// International geophysics. Amsterdam: Elsevier, 2000: 605-640.
|
50 |
MIURA H, SATOH M, NASUNO T, et al. A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model[J]. Science, 2007, 318(5 857): 1 763-1 765.
|
51 |
SATOH M, MATSUNO T, TOMITA H, et al. Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations[J]. Journal of Computational Physics, 2008, 227(7): 3 486-3 514.
|
52 |
MIYAMOTO Y, KAJIKAWA Y, YOSHIDA R, et al. Deep moist atmospheric convection in a subkilometer global simulation[J]. Geophysical Research Letters, 2013, 40(18): 4 922-4 926.
|
53 |
RANDALL D, KHAIROUTDINOV M, ARAKAWA A, et al. Breaking the cloud parameterization deadlock[J]. Bulletin of the American Meteorological Society, 2003, 84(11): 1 547-1 564.
|
54 |
SKAMAROCK W C, KLEMP J B, DUDA M G, et al. A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and C-grid staggering[J]. Monthly Weather Review, 2012, 140(9): 3 090-3 105.
|
55 |
HAGOS S, LEUNG R, RAUSCHER S A, et al. Error characteristics of two grid refinement approaches in aquaplanet simulations: MPAS-A and WRF[J]. Monthly Weather Review, 2013, 141(9): 3 022-3 036.
|
56 |
TANG Y M, LEAN H W, BORNEMANN J. The benefits of the Met Office variable resolution NWP model for forecasting convection[J]. Meteorological Applications, 2013, 20(4): 417-426.
|
57 |
SLINGO J, BATES K, NIKIFORAKIS N, et al. Developing the next-generation climate system models: challenges and achievements[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367(1 890): 815-831.
|
58 |
PREIN A F, GOBIET A, SUKLITSCH M, et al. Added value of convection permitting seasonal simulations[J]. Climate Dynamics, 2013, 41(9): 2 655-2 677.
|
59 |
ROWELL D P, BERTHOU S. Fine-scale climate projections: what additional fixed spatial detail is provided by a convection-permitting model?[J]. Journal of Climate, 2023, 36(4): 1 229-1 246.
|
60 |
CAILLAUD C, SOMOT S, ALIAS A, et al. Modelling Mediterranean heavy precipitation events at climate scale: an object-oriented evaluation of the CNRM-AROME convection-permitting regional climate model[J]. Climate Dynamics, 2021, 56(5): 1 717-1 752.
|
61 |
LI P X, GUO Z, FURTADO K, et al. Prediction of heavy precipitation in the Eastern China flooding events of 2016: added value of convection-permitting simulations[J]. Quarterly Journal of the Royal Meteorological Society, 2019, 145(724): 3 300-3 319.
|
62 |
LI P X, FURTADO K, ZHOU T J, et al. The diurnal cycle of East Asian summer monsoon precipitation simulated by the Met Office Unified Model at convection-permitting scales[J]. Climate Dynamics, 2020, 55(1): 131-151.
|
63 |
CAPECCHI V, PASI F, GOZZINI B, et al. A convection-permitting and limited-area model hindcast driven by ERA5 data: precipitation performances in Italy[J]. Climate Dynamics, 2023, 61(3): 1 411-1 437.
|
64 |
KENDON E J, ROBERTS N M, SENIOR C A, et al. Realism of rainfall in a very high-resolution regional climate model[J]. Journal of Climate, 2012, 25(17): 5 791-5 806.
|
65 |
BAN N, SCHMIDLI J, SCHÄR C. Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(13): 7 889-7 907.
|
66 |
STOCCHI P, PICHELLI E, TORRES A J A, et al. Non-hydrostatic Regcm4 (Regcm4-NH): evaluation of precipitation statistics at the convection-permitting scale over different domains[J]. Atmosphere, 2022, 13(6). DOI:10.3390/atmos/3060801 .
|
67 |
MEREDITH E P, ULBRICH U, RUST H W. Subhourly rainfall in a convection-permitting model[J]. Environmental Research Letters, 2020, 15(3). DOI: 10.1088/1748-9326/ab6787 .
|
68 |
KARKI R, ul HASSON S, GERLITZ L, et al. Quantifying the added value of convection-permitting climate simulations in complex terrain: a systematic evaluation of WRF over the Himalayas[J]. Earth System Dynamics, 2017, 8(3): 507-528.
|
69 |
FU P L, ZHU K F, ZHAO K, et al. Role of the nocturnal low-level jet in the formation of the morning precipitation peak over the Dabie Mountains[J]. Advances in Atmospheric Sciences, 2019, 36(1): 15-28.
|
70 |
CAI S X, HUANG A N, ZHU K F, et al. Diurnal cycle of summer precipitation over the Eastern Tibetan Plateau and surrounding regions simulated in a convection-permitting model[J]. Climate Dynamics, 2021, 57(1): 611-632.
|
71 |
YUN Y X, LIU C H, LUO Y L, et al. Convection-permitting regional climate simulation of warm-season precipitation over Eastern China[J]. Climate Dynamics, 2020, 54(3): 1 469-1 489.
|
72 |
LI P X, FURTADO K, ZHOU T J, et al. Convection-permitting modelling improves simulated precipitation over the central and eastern Tibetan Plateau[J]. Quarterly Journal of the Royal Meteorological Society, 2021, 147(734): 341-362.
|
73 |
ZHAO Y, ZHOU T J, LI P X, et al. Added value of a convection permitting model in simulating atmospheric water cycle over the Asian water tower[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(13). DOI:10.1029/2021JD034788 .
|
74 |
CHERUY F, DUFRESNE J L, HOURDIN F, et al. Role of clouds and land-atmosphere coupling in midlatitude continental summer warm biases and climate change amplification in CMIP5 simulations[J]. Geophysical Research Letters, 2014, 41(18): 6 493-6 500.
|
75 |
LUCAS-PICHER P, BRISSON E, CAILLAUD C, et al. Evaluation of the convection-permitting regional climate model CNRM-AROME41t1 over northwestern Europe[J]. Climate Dynamics, 2023. DOI: 10.1007/S00382-022-06637-y .
|
76 |
QIN H C, KLEIN S A, MA H Y, et al. Summertime near-surface temperature biases over the central United States in convection-permitting simulations[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(22). DOI: 10.1029/2023JD038624 .
|
77 |
BRISSON E, van WEVERBERG K, DEMUZERE M, et al. How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics?[J]. Climate Dynamics, 2016, 47(9): 3 043-3 061.
|
78 |
LIN Q, CHEN J, OU T H, et al. Performance of the WRF model at the convection-permitting scale in simulating snowfall and lake-effect snow over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(16). DOI: 10.1029/2022JD038433 .
|
79 |
MA M N, OU T H, LIU D Q, et al. Summer regional climate simulations over Tibetan Plateau: from gray zone to convection permitting scale[J]. Climate Dynamics, 2023, 60(1): 301-322.
|
80 |
GAO Y H, CHEN F, JIANG Y S. Evaluation of a convection-permitting modeling of precipitation over the Tibetan Plateau and its influences on the simulation of snow-cover fraction[J]. Journal of Hydrometeorology, 2020, 21(7): 1 531-1 548.
|
81 |
IKEDA K, RASMUSSEN R, LIU C H, et al. Snowfall and snowpack in the Western U.S. as captured by convection permitting climate simulations: current climate and pseudo global warming future climate[J]. Climate Dynamics, 2021, 57(7): 2 191-2 215.
|
82 |
MINDER J R, LETCHER T W, SKILES S M. An evaluation of high-resolution regional climate model simulations of snow cover and albedo over the Rocky Mountains, with implications for the simulated snow-albedo feedback[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(15): 9 069-9 088.
|
83 |
JACOB D, TEICHMANN C, SOBOLOWSKI S, et al. Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community[J]. Regional Environmental Change, 2020, 20(2). DOI:10.1007/s10113-020-01606-9 .
|
84 |
HERRMANN M, SOMOT S, SEVAULT F, et al. Modeling the deep convection in the northwestern Mediterranean Sea using an eddy-permitting and an eddy-resolving model: case study of winter 1986-1987[J]. Journal of Geophysical Research: Oceans, 2008, 113(C4). DOI:10.1029/2006JC003991 .
|
85 |
FENG Z, LEUNG L R, HARDIN J, et al. Mesoscale convective systems in DYAMOND global convection-permitting simulations[J]. Geophysical Research Letters, 2023, 50(4). DOI: 10.1029/2022GL102603 .
|
86 |
PREIN A F, RASMUSSEN R M, WANG D, et al. Sensitivity of organized convective storms to model grid spacing in current and future climates[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379(2 195). DOI: 10.1098/rsta.2019.0546 .
|
87 |
ZHANG Z X, VARBLE A, FENG Z, et al. Growth of mesoscale convective systems in observations and a seasonal convection-permitting simulation over Argentina [J]. Monthly Weather Review, 2021, 149(10): 3 469-3 490.
|
88 |
YUN Y X, LIU C H, LUO Y L, et al. Warm-season mesoscale convective systems over Eastern China: convection-permitting climate model simulation and observation[J]. Climate Dynamics, 2021, 57(11): 3 599-3 617.
|
89 |
DING T, GUO Z, ZOU L W, et al. Impact of convection-permitting and model resolution on the simulation of mesoscale convective system properties over East Asia[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(24). DOI: 10.1029/2023JD039395 .
|
90 |
BRAUN S A. A cloud-resolving simulation of hurricane bob (1991): storm structure and eyewall buoyancy[J]. Monthly Weather Review, 2002, 130(6): 1 573-1 592.
|
91 |
GENTRY M S, LACKMANN G M. Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution[J]. Monthly Weather Review, 2010, 138(3): 688-704.
|
92 |
TARAPHDAR S, MUKHOPADHYAY P, LEUNG L R, et al. The role of moist processes in the intrinsic predictability of Indian Ocean cyclones[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(13): 8 032-8 048.
|
93 |
JUDT F, RIOS-BERRIOS R, BRYAN G H. Marathon versus sprint: two modes of tropical cyclone rapid intensification in a global convection-permitting simulation[J]. Monthly Weather Review, 2023, 151(10): 2 683-2 699.
|
94 |
LEE M, MIN S K, CHA D H. Convection-permitting simulations reveal expanded rainfall extremes of tropical cyclones affecting South Korea due to anthropogenic warming[J]. NPJ Climate and Atmospheric Science, 2023, 6. DOI:10.1038/s41612-023-00509-w .
|
95 |
BUONOMO E, SAVAGE N, DONG G T, et al. Tropical cyclone changes in convection-permitting regional climate projections: a study over the Shanghai region[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(5). DOI: 10.1029/2023JD038508 .
|
96 |
GROSSMAN-CLARKE S, ZEHNDER J A, STEFANOV W L, et al. Urban modifications in a mesoscale meteorological model and the effects on near-surface variables in an arid metropolitan region[J]. Journal of Applied Meteorology, 2005, 44(9): 1 281-1 297.
|
97 |
TRUSILOVA K, JUNG M, CHURKINA G, et al. Urbanization impacts on the climate in Europe: numerical experiments by the PSU-NCAR Mesoscale Model (MM5)[J]. Journal of Applied Meteorology and Climatology, 2008, 47(5): 1 442-1 455.
|
98 |
LEMONSU A, CAILLAUD C, ALIAS A, et al. What added value of CNRM-AROME convection-permitting regional climate model compared to CNRM-ALADIN regional climate model for urban climate studies? Evaluation over Paris area (France)[J]. Climate Dynamics, 2023, 61(3): 1 643-1 661.
|
99 |
WOUTERS H, de RIDDER K, DEMUZERE M, et al. The diurnal evolution of the urban heat island of Paris: a model-based case study during Summer 2006[J]. Atmospheric Chemistry and Physics, 2013, 13(17): 8 525-8 541.
|
100 |
LUO Y L, ZHANG J H, YU M, et al. On the influences of urbanization on the extreme rainfall over Zhengzhou on 20 July 2021: a convection-permitting ensemble modeling study[J]. Advances in Atmospheric Sciences, 2023, 40(3): 393-409.
|
101 |
HU C X, TAM C Y, LOI C L, et al. Urbanization impacts on tropical cyclone rainfall extremes-inferences from observations and convection-permitting model experiments over South China[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(21). DOI:10.1029/2023JD038813 .
|
102 |
HALL A. Projecting regional change[J]. Science, 2014, 346(6 216): 1 461-1 462.
|
103 |
PREIN A F, RASMUSSEN R M, IKEDA K, et al. The future intensification of hourly precipitation extremes[J]. Nature Climate Change, 2017, 7: 48-52.
|
104 |
BAN N, SCHMIDLI J, SCHÄR C. Heavy precipitation in a changing climate: does short-term summer precipitation increase faster?[J]. Geophysical Research Letters, 2015, 42(4): 1 165-1 172.
|
105 |
KENDON E J, ROBERTS N M, FOWLER H J, et al. Heavier summer downpours with climate change revealed by weather forecast resolution model[J]. Nature Climate Change, 2014, 4: 570-576.
|
106 |
PREIN A F, LIU C H, IKEDA K, et al. Increased rainfall volume from future convective storms in the US[J]. Nature Climate Change, 2017, 7: 880-884.
|
107 |
PAL S, CHANG H I, CASTRO C L, et al. Credibility of convection-permitting modeling to improve seasonal precipitation forecasting in the southwestern United States[J]. Frontiers in Earth Science, 2019, 7. DOI:10.3389/feart.2019.00011 .
|
108 |
KNIST S, GOERGEN K, SIMMER C. Evaluation and projected changes of precipitation statistics in convection-permitting WRF climate simulations over Central Europe[J]. Climate Dynamics, 2020, 55(1): 325-341.
|
109 |
PICHELLI E, COPPOLA E, SOBOLOWSKI S, et al. The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: historical and future simulations of precipitation[J]. Climate Dynamics, 2021, 56: 3 581-3 602.
|
110 |
RASMUSSEN K L, PREIN A F, RASMUSSEN R M, et al. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States[J]. Climate Dynamics, 2020, 55(1): 383-408.
|
111 |
DAI A G, RASMUSSEN R M, LIU C H, et al. A new mechanism for warm-season precipitation response to globalwarming based on convection-permitting simulations[J]. Climate Dynamics, 2020, 55(1): 343-368.
|
112 |
LIND P, BELUŠIĆ D, MÉDUS E, et al. Climate change information over Fenno-Scandinavia produced with a convection-permitting climate model[J]. Climate Dynamics, 2023, 61(1): 519-541.
|
113 |
MARINIER S, THÉRIAULT J M, IKEDA K. Changes in freezing rain occurrence over eastern Canada using convection-permitting climate simulations[J]. Climate Dynamics, 2023, 60(5): 1 369-1 384.
|
114 |
GENSINI V A, HABERLIE A M, ASHLEY W S. Convection-permitting simulations of historical and possible future climate over the contiguous United States[J]. Climate Dynamics, 2023, 60(1): 109-126.
|
115 |
ARCHER L, HATCHARD S, DEVITT L, et al. Future change in urban flooding using new convection-permitting climate projections[J]. Water Resources Research, 2024, 60(1). DOI:10.1029/2023WR035533 .
|
116 |
QING Y M, WANG S. Multi-decadal convection-permitting climate projections for China’s Greater Bay area and surroundings[J]. Climate Dynamics, 2021, 57(1): 415-434.
|
117 |
WANG G L, WANG D G, TRENBERTH K E, et al. The peak structure and future changes of the relationships between extreme precipitation andtemperature[J]. Nature Climate Change, 2017, 7: 268-274.
|
118 |
LENDERINK G, de VRIES H, FOWLER H J, et al. Scaling and responses of extreme hourly precipitation in three climate experiments with a convection-permitting model[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379(2 195). DOI:10.1098/rsta.2019.0544 .
|
119 |
ZHU T A, ZHANG W, WANG J, et al. Investigating spatial variations of compound heat-precipitation events in Guangdong, China through a convection-permitting model[J]. Remote Sensing, 2023, 15(19): 4 745. DOI:10.3390/rs15194745 .
|
120 |
TAMM O, KOKKONEN T, WARSTA L, et al. Modelling urban stormwater management changes using SWMM and convection-permitting climate simulations in cold areas[J]. Journal of Hydrology, 2023, 622. DOI:10.1016/j.jhydrol.2023.129656 .
|
121 |
HWANG Y, ZHAO X H, YOU C H, et al. Climatological features of future mesoscale convective systems in convection-permitting climate models using CMIP6 and ERA5 in the central United States[J]. Quarterly Journal of the Royal Meteorological Society, 2023, 149(757): 3 135-3 163.
|
122 |
DOUGHERTY E M, PREIN A F, GUTMANN E D, et al. Future simulated changes in central U.S. mesoscale convective system rainfall caused by changes in convective and stratiform structure[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(4). DOI: 10.1029/2022JD037537 .
|
123 |
CAMARGO S J. Global and regional aspects of tropical cyclone activity in the CMIP5 models[J]. Journal of Climate, 2013, 26(24): 9 880-9 902.
|
124 |
FENG Z, LEUNG L R, HOUZE R A, et al. Structure and evolution of mesoscale convective systems: sensitivity to cloud microphysics in convection-permitting simulations over the United States[J]. Journal of Advances in Modeling Earth Systems, 2018, 10(7): 1 470-1 494.
|
125 |
GUO Z Y, FANG J, SUN X G, et al. Sensitivity of summer precipitation simulation to microphysics parameterization over eastern China: convection-permitting regional climate simulation[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(16): 9 183-9 204.
|
126 |
KENDON E J, PREIN A F, SENIOR C A, et al. Challenges and outlook for convection-permitting climate modelling[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379(2 195). DOI:10.1098/esa.2019.0547 .
|
127 |
YANG B, BERG L K, QIAN Y, et al. Parametric and structural sensitivities of turbine-height wind speeds in the boundary layer parameterizations in the weather research and forecasting model[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(12): 5 951-5 969.
|