地球科学进展 ›› 2024, Vol. 39 ›› Issue (6): 576 -588. doi: 10.11867/j.issn.1001-8166.2024.049

综述与评述 上一篇    下一篇

对流允许尺度区域气候模拟和未来预估的最新进展
熊雅婷 1 , 2( ), 董广涛 1 , 2( )   
  1. 1.中国气象局上海城市气候变化应对重点开放实验室,上海 200030
    2.上海市气候中心,上海 200030
  • 收稿日期:2024-03-05 修回日期:2024-05-07 出版日期:2024-06-10
  • 通讯作者: 董广涛 E-mail:1933900634@qq.com;gtdong@163.com
  • 基金资助:
    国家重点研发计划政府间国际科技创新合作专项(2019YFE0124800);上海市气象局科技研发项目(QM202408);中国气象局青年创新团队(CMA2024QN14)

New Advances in Convection-Permitting Regional Climate Simulation and Future Climate Projection

Yating XIONG 1 , 2( ), Guangtao DONG 1 , 2( )   

  1. 1.Key Laboratory of Cities’ Mitigation and Adaptation to Climate Change in Shanghai, China Meteorological Administration, Shanghai 200030, China
    2.Shanghai Climate Center, Shanghai 200030, China
  • Received:2024-03-05 Revised:2024-05-07 Online:2024-06-10 Published:2024-07-15
  • Contact: Guangtao DONG E-mail:1933900634@qq.com;gtdong@163.com
  • About author:XIONG Yating, Engineer, research areas include climate change modeling, assessment and future projections. E-mail: 1933900634@qq.com
  • Supported by:
    the National Key Research and Development Program of China(2019YFE0124800);The Science and Technology R & D Project of Shanghai Meteorological Bureau(QM202408);Youth Innovation Team of China Meteorological Administration(CMA2024QN14)

伴随着近年来高性能计算资源的快速提高,模式的水平分辨率逐渐精细化。对流允许尺度(分辨率为4 km及以上)区域气候模式已成为当前区域气候模式发展和应用的主要方向之一。通过文献调研对对流允许尺度区域气候模式的4种建模方式、相比于传统分辨率区域气候模式的增值能力以及未来气候预估进行了回顾和总结。对流允许尺度区域气候模式无需使用对流参数化方案就可以显式表示深对流过程,在一定程度上改善了模式对复杂地形和地表强迫的表现能力。对流允许尺度区域气候模式在模拟降水特征(降水日变化、持续时间、次日尺度降水强度和短时强降水强度)、积雪特征(雪深和覆盖率)、中尺度对流系统特征(数量和周期)、热带气旋特征(强度、路径)以及城市热岛形态等方面存在显著增值能力。目前,对流允许尺度区域气候模式仍然存在诸多挑战和不确定性,今后可利用更高分辨率数据集、改进的云微物理过程和边界层参数化方案以及更高性能的计算资源,进一步提高对流允许尺度区域气候模拟和应用能力。

With rapid improvements in high-performance computational resources, the horizontal resolution of models has gradually been refined. Convection-Permitting (≤4 km) Models (CPMs) have become one of the main directions in the development and application of regional climate models. This study reviewed four CPM methods, the added value of CPMs compared to regional climate models with traditional resolution, and future climate projections based on a comprehensive literature review. CPMs can explicitly represent deep convection processes without using convective parameterization schemes, which significantly improves their ability to represent complex topographies and surface forcing. CPMs have added value in simulating the characteristics of precipitation (precipitation diurnal cycle, duration, precipitation intensity at sub-daily scale, and intensity of extreme precipitation with short duration), snow (snow depth and coverage), mesoscale convective systems (number and duration), tropical cyclones (intensity and track), urban heat island patterns, and the effects of urbanization on precipitation. Several challenges and uncertainties remain in CPMs, but in the future, higher-resolution datasets, improved cloud microphysical processes, boundary layer parameterization schemes, and higher-performance computational resources can be used to further improve the ability of convection, permitting regional climate simulation and application.

中图分类号: 

图1 可视化对流允许尺度气候模拟的4种建模方法 12
(a)区域嵌套;(b)全球对流允许尺度气候模拟;(c)超参数化;(d)拉伸网格
Fig. 1 Visualization of four different modeling approaches for convection-permitting climate simulations 12
(a)Limited-area modeling;(b)Global Convection Permitting Model (CPM) climate simulations;(c)Super parameterizations;(d) Stretched-grid
表1 相对较粗分辨率区域气候模式( RCMs)的高分辨率对流允许尺度区域气候模式( CPMs)模拟增值能力的总结
Table 1 Summary of the added value between the high-resolution Convection Permitting ModelsCPMsagainst coarser resolution Regional Climate ModelsRCMs
模拟变量 较粗分辨率的RCMs CPMs
降水

由于RCMs采用了对流参数化方案,过早模拟出对流不稳定性,导致模拟的降水峰值出现偏早

RCMs模拟的降水往往过于频繁,降水强度较小

RCMs在模拟高海拔降水存在湿偏差,模拟山麓降水存在干偏差

由于CPMs可显式表征深对流,大气中的不稳定能量在白天积累,并且在下午以降水的形式释放,因此可以更好地模拟降水日循环;对于山脉地区,CPMs可以模拟出夜间的降水峰值

由于CPMs可以更真实地模拟中尺度对流系统、热带气旋、飑线等中小尺度系统,进而改善对次日尺度降水特别是短时强降水模拟能力

由于地形分辨率高,CPMs可以显示更真实的地形降水,改善降水的空间分布

气温 RCMs模拟的地表气温和2 m气温往往偏高

CPMs显式表征深对流,高估了云顶反射率,导致晴空出现频率增加,过多的短波辐射到达地表,导致模拟的气温仍存在暖偏差

2 m气温日变化的模拟有所改进,这也许和CPMs对降水日变化模拟的改进有关

积雪 积雪与地表温度的模拟息息相关,因此RCMs对积雪特征的模拟往往存在偏差

在山区,CPMs提供了模拟高至极高海拔积雪覆盖的可能性,并能更好地解释随海拔增加的雪量及其相关反馈

但模拟积雪特征仍存在实质性偏差,CPMs分辨率越细,积雪参数化不确定性在一定程度上会被放大,模拟的积雪量偏多

中尺度对流系统 受限于模式的分辨率和积云对流参数化方案的不确定性,RCMs一直以来难以准确模拟中尺度对流系统(Mesoscale Convective Systems, MCSs) CPMs在模拟MCSs数量、生命周期、几何形状和降水特征方面优于RCMs,但MCSs导致的降水量和降水面积较观测仍存在偏差
热带气旋 RCMs模拟的热带气旋往往强度偏弱 CPMs模拟的热带气旋的强度、路径有所改善,但还是低估了最大风速和中心气压,导致模拟的热带气旋强度依旧比观测偏弱
城市气候 RCMs对在复杂地形、下垫面地区的气温空间分布的模拟存在偏差,因此不能较好地刻画城市热岛 空间形态 CPMs能够精细刻画地形和土地利用分类等下垫面信息,进而准确表征城市热岛形态等局地特征
1 RANDALL D A, WOOD R A, BONY S, et al. Climate models and their evaluation[M]// Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR). Cambridge:Cambridge University Press, 2007: 589-662.
2 HU Yamin, DING Yihui. The progress of RCMs simulation on East Asia region[J]. Advances in Earth Science, 2006, 21(9): 956-964.
胡娅敏, 丁一汇. 东亚地区区域气候模拟的研究进展[J]. 地球科学进展, 2006, 21(9): 956-964.
3 TABARI H, de TROCH R, GIOT O, et al. Local impact analysis of climate change on precipitation extremes: are high-resolution climate models needed for realistic simulations?[J]. Hydrology and Earth System Sciences, 2016, 20(9): 3 843-3 857.
4 MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge, UK and New York, USA: Cambridge University Press, 2021.
5 GIORGI F, GUTOWSKI W J. Regional dynamical downscaling and the CORDEX initiative[J]. Annual Review of Environment and Resources, 2015, 40: 467-490.
6 DOSIO A, PANITZ H J. Climate change projections for CORDEX-Africa with COSMO-CLM regional climate model and differences with the driving global climate models[J]. Climate Dynamics, 2016, 46(5): 1 599-1 625.
7 WU F T, WANG S Y, FU C B, et al. Evaluation and projection of summer extreme precipitation over East Asia in the Regional Model Inter-comparison Project[J]. Climate Research, 2016, 69(1): 45-58.
8 ZHOU W D, TANG J P, WANG X Y, et al. Evaluation of regional climate simulations over the CORDEX-EA-II domain using the COSMO-CLM model[J]. Asia-Pacific Journal of Atmospheric Sciences, 2016, 52(2): 107-127.
9 GAO X J, GIORGI F. Use of the RegCM system over East Asia: review and perspectives[J]. Engineering, 2017, 3(5): 766-772.
10 JIANG Zhihong, LIU Zhengyu, YUE Xu, et al. Response and ensemble projection of East Asian climate system under the global warming of 1.5 ℃[J]. China Basic Science, 2017, 19(5): 29-34.
江志红, 刘征宇, 乐旭, 等. 全球增暖1.5 ℃下东亚气候系统的响应及其情景预估[J]. 中国基础科学, 2017, 19(5): 29-34.
11 FOSSER G, KHODAYAR S, BERG P. Benefit of convection permitting climate model simulations in the representation of convective precipitation[J]. Climate Dynamics, 2015, 44(1): 45-60.
12 PREIN A F, LANGHANS W, FOSSER G, et al. A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges[J]. Reviews of Geophysics, 2015, 53(2): 323-361.
13 RUMMUKAINEN M. Added value in regional climate modeling[J]. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7(1): 145-159.
14 SUN X G, XUE M, BROTZGE J, et al. An evaluation of dynamical downscaling of Central Plains summer precipitation using a WRF-based regional climate model at a convection-permitting 4 km resolution[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(23): 13 801-13 825.
15 LEUTWYLER D, LÜTHI D, BAN N, et al. Evaluation of the convection-resolving climate modeling approach on continental scales[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(10): 5 237-5 258.
16 FOWLER H J, EKSTRÖM M, BLENKINSOP S, et al. Estimating change in extreme European precipitation using a multimodel ensemble[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D18). DOI: 10.1029/2007JD008619 .
17 DIRMEYER P A, CASH B A, KINTER J L, et al. Simulating the diurnal cycle of rainfall in global climate models: resolution versus parameterization[J]. Climate Dynamics, 2012, 39(1): 399-418.
18 BOBERG F, BERG P, THEJLL P, et al. Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble[J]. Climate Dynamics, 2009, 32(7): 1 097-1 106.
19 KENDON E J, STRATTON R A, TUCKER S, et al. Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale[J]. Nature Communications, 2019, 10. DOI:10.1038/s41467-019-09776-9 .
20 MASS C F, OVENS D, WESTRICK K, et al. Does increasing horizontal resolution produce more skillful forecasts?[J]. Bulletin of the American Meteorological Society, 2002, 83(3): 407-430.
21 KAIN J S, WEISS S J, LEVIT J J, et al. Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: the SPC/NSSL spring program 2004[J]. Weather and Forecasting, 2006, 21(2): 167-181.
22 SCHWARTZ C S, KAIN J S, WEISS S J, et al. Next-day convection-allowing WRF model guidance: a second look at 2-km versus 4-km grid spacing[J]. Monthly Weather Review, 2009, 137(10): 3 351-3 372.
23 TRUSILOVA K, FRÜH B, BRIENEN S, et al. Implementation of an urban parameterization scheme into the regional climate model COSMO-CLM[J]. Journal of Applied Meteorology and Climatology, 2013, 52(10): 2 296-2 311.
24 BRISSON E, DEMUZERE M, van LIPZIG N P M. Modelling strategies for performing convection-permitting climate simulations[J]. Meteorologische Zeitschrift, 2016, 25(2): 149-163.
25 FOSSER G, KENDON E J, STEPHENSON D, et al. Convection‐permitting models offer promise of more certain extreme rainfall projections[J]. Geophysical Research Letters, 2020, 47(13). DOI: 10.1029/2020GL088151 .
26 CALDWELL P M, TERAI C R, HILLMAN B, et al. Convection-permitting simulations with the E3SM global atmosphere model[J]. Journal of Advances in Modeling Earth Systems, 2021, 13(11). DOI: 10.1029/2021MS002544 .
27 KLEIN C, JACKSON L S, PARKER D J, et al. Combining CMIP data with a regional convection-permitting model and observations to project extreme rainfall under climate change[J]. Environmental Research Letters, 2021, 16(10). DOI: 10.1088/1748-9326/ac26f1 .
28 SENIOR C A, MARSHAM J H, BERTHOU S, et al. Convection-permitting regional climate change simulations for understanding future climate and informing decision-making in Africa[J]. Bulletin of the American Meteorological Society, 2021, 102(6): E1206-E1223.
29 ZHANG X Z, XIONG Z, ZHENG J Y, et al. High-resolution precipitation data derived from dynamical downscaling using the WRF model for the Heihe River Basin, northwest China[J]. Theoretical and Applied Climatology, 2018, 131(3): 1 249-1 259.
30 ZHU K F, XUE M, ZHOU B W, et al. Evaluation of real-time convection-permitting precipitation forecasts in China during the 2013-2014 summer season[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(2): 1 037-1 064.
31 GUO Z Y, FANG J, SUN X G, et al. Decadal long convection-permitting regional climate simulations over Eastern China: evaluation of diurnal cycle of precipitation[J]. Climate Dynamics, 2020, 54(3): 1 329-1 349.
32 DONG G T, JIANG Z Y, WANG Y, et al. Evaluation of extreme precipitation in the Yangtze River Delta region of China using a 1.5km mesh convection-permitting regional climate model[J]. Climate Dynamics, 2022, 59(7): 2 257-2 273.
33 GUO Z Y, FANG J, SHAO M, et al. Improved summer daily and sub-daily precipitation over Eastern China in convection-permitting simulations[J]. Atmospheric Research, 2022, 265. DOI: 10.1016/j.atmosres.2021.105929 .
34 TANG J P, LU Y, WANG S G, et al. Projection of hourly extreme precipitation using the WRF model over eastern China[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(1). DOI:10.1029/2022JD036448 .
35 WANG J Z, CHEN J, XUE H L, et al. The roles of small-scale topographic perturbations in precipitation forecasting using a convection-permitting ensemble prediction system over Southern China[J]. Quarterly Journal of the Royal Meteorological Society, 2022, 148(746): 2 468-2 489.
36 LU Yun, GUO Ziyue, TANG Jianping. Research progress of convection permitting regional climate modeling[J]. Journal of the Meteorological Sciences, 2021, 41(6): 818-827.
陆云, 郭子悦, 汤剑平. 对流允许尺度区域气候模拟的研究进展[J]. 气象科学, 2021, 41(6): 818-827.
37 XU M Y, ZHAO C, GU J, et al. Convection-permitting hindcasting of diurnal variation of Mei-yu rainfall over East China with a global variable-resolution model[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(14). DOI: 10.1029/2021JD034823 .
38 MURATA A, SASAKI H, KAWASE H, et al. Evaluation of precipitation over an oceanic region of Japan in convection-permitting regional climate model simulations[J]. Climate Dynamics, 2017, 48(5): 1 779-1 792.
39 STEPHENS G. Challenges and advances in convection-permitting climate modeling[J]. Bulletin of the American Meteorological Society, 2017, 98(5): 1 027-1 030.
40 WCRP Report Report of the third session of the CORDEX Science Advisory Team (SAT) UKMO[R]. Exeter, England, 2017.
41 COLLINS M, MINOBE S, BARREIRO M, et al. Challenges and opportunities for improved understanding of regional climate dynamics[J]. Nature Climate Change, 2018, 8: 101-108.
42 BECKER T, HOHENEGGER C. Entrainment and its dependency on environmental conditions and convective organization in convection-permitting simulations[J]. Monthly Weather Review, 2021, 149(2): 537-550.
43 FEIJOÓ M, SOLMAN S. Convection-permitting modeling strategies for simulating extreme rainfall events over southeastern South America[J]. Climate Dynamics, 2022, 59(9): 2 549-2 569.
44 MÜLLER S K, CAILLAUD C, CHAN S, et al. Evaluation of Alpine-Mediterranean precipitation events in convection-permitting regional climate models using a set of tracking algorithms[J]. Climate Dynamics, 2023, 61(1): 939-957.
45 LIU C H, IKEDA K, RASMUSSEN R, et al. Continental-scale convection-permitting modeling of the current and future climate of North America[J]. Climate Dynamics, 2017, 49(1): 71-95.
46 PREIN A F, LIU C H, IKEDA K, et al. Simulating North American mesoscale convective systems with a convection-permitting climate model[J]. Climate Dynamics, 2020, 55(1): 95-110.
47 PREIN A F, RASMUSSEN R, CASTRO C L, et al. Special issue: advances in convection-permitting climate modeling[J]. Climate Dynamics, 2020, 55(1): 1-2.
48 BERNARDET L R, GRASSO L D, NACHAMKIN J E, et al. Simulating convective events using a high-resolution mesoscale model[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D11): 14 963-14 982.
49 KRUEGER S K. Cloud system modeling[M]// International geophysics. Amsterdam: Elsevier, 2000: 605-640.
50 MIURA H, SATOH M, NASUNO T, et al. A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model[J]. Science, 2007, 318(5 857): 1 763-1 765.
51 SATOH M, MATSUNO T, TOMITA H, et al. Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations[J]. Journal of Computational Physics, 2008, 227(7): 3 486-3 514.
52 MIYAMOTO Y, KAJIKAWA Y, YOSHIDA R, et al. Deep moist atmospheric convection in a subkilometer global simulation[J]. Geophysical Research Letters, 2013, 40(18): 4 922-4 926.
53 RANDALL D, KHAIROUTDINOV M, ARAKAWA A, et al. Breaking the cloud parameterization deadlock[J]. Bulletin of the American Meteorological Society, 2003, 84(11): 1 547-1 564.
54 SKAMAROCK W C, KLEMP J B, DUDA M G, et al. A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and C-grid staggering[J]. Monthly Weather Review, 2012, 140(9): 3 090-3 105.
55 HAGOS S, LEUNG R, RAUSCHER S A, et al. Error characteristics of two grid refinement approaches in aquaplanet simulations: MPAS-A and WRF[J]. Monthly Weather Review, 2013, 141(9): 3 022-3 036.
56 TANG Y M, LEAN H W, BORNEMANN J. The benefits of the Met Office variable resolution NWP model for forecasting convection[J]. Meteorological Applications, 2013, 20(4): 417-426.
57 SLINGO J, BATES K, NIKIFORAKIS N, et al. Developing the next-generation climate system models: challenges and achievements[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367(1 890): 815-831.
58 PREIN A F, GOBIET A, SUKLITSCH M, et al. Added value of convection permitting seasonal simulations[J]. Climate Dynamics, 2013, 41(9): 2 655-2 677.
59 ROWELL D P, BERTHOU S. Fine-scale climate projections: what additional fixed spatial detail is provided by a convection-permitting model?[J]. Journal of Climate, 2023, 36(4): 1 229-1 246.
60 CAILLAUD C, SOMOT S, ALIAS A, et al. Modelling Mediterranean heavy precipitation events at climate scale: an object-oriented evaluation of the CNRM-AROME convection-permitting regional climate model[J]. Climate Dynamics, 2021, 56(5): 1 717-1 752.
61 LI P X, GUO Z, FURTADO K, et al. Prediction of heavy precipitation in the Eastern China flooding events of 2016: added value of convection-permitting simulations[J]. Quarterly Journal of the Royal Meteorological Society, 2019, 145(724): 3 300-3 319.
62 LI P X, FURTADO K, ZHOU T J, et al. The diurnal cycle of East Asian summer monsoon precipitation simulated by the Met Office Unified Model at convection-permitting scales[J]. Climate Dynamics, 2020, 55(1): 131-151.
63 CAPECCHI V, PASI F, GOZZINI B, et al. A convection-permitting and limited-area model hindcast driven by ERA5 data: precipitation performances in Italy[J]. Climate Dynamics, 2023, 61(3): 1 411-1 437.
64 KENDON E J, ROBERTS N M, SENIOR C A, et al. Realism of rainfall in a very high-resolution regional climate model[J]. Journal of Climate, 2012, 25(17): 5 791-5 806.
65 BAN N, SCHMIDLI J, SCHÄR C. Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(13): 7 889-7 907.
66 STOCCHI P, PICHELLI E, TORRES A J A, et al. Non-hydrostatic Regcm4 (Regcm4-NH): evaluation of precipitation statistics at the convection-permitting scale over different domains[J]. Atmosphere, 2022, 13(6). DOI:10.3390/atmos/3060801 .
67 MEREDITH E P, ULBRICH U, RUST H W. Subhourly rainfall in a convection-permitting model[J]. Environmental Research Letters, 2020, 15(3). DOI: 10.1088/1748-9326/ab6787 .
68 KARKI R, ul HASSON S, GERLITZ L, et al. Quantifying the added value of convection-permitting climate simulations in complex terrain: a systematic evaluation of WRF over the Himalayas[J]. Earth System Dynamics, 2017, 8(3): 507-528.
69 FU P L, ZHU K F, ZHAO K, et al. Role of the nocturnal low-level jet in the formation of the morning precipitation peak over the Dabie Mountains[J]. Advances in Atmospheric Sciences, 2019, 36(1): 15-28.
70 CAI S X, HUANG A N, ZHU K F, et al. Diurnal cycle of summer precipitation over the Eastern Tibetan Plateau and surrounding regions simulated in a convection-permitting model[J]. Climate Dynamics, 2021, 57(1): 611-632.
71 YUN Y X, LIU C H, LUO Y L, et al. Convection-permitting regional climate simulation of warm-season precipitation over Eastern China[J]. Climate Dynamics, 2020, 54(3): 1 469-1 489.
72 LI P X, FURTADO K, ZHOU T J, et al. Convection-permitting modelling improves simulated precipitation over the central and eastern Tibetan Plateau[J]. Quarterly Journal of the Royal Meteorological Society, 2021, 147(734): 341-362.
73 ZHAO Y, ZHOU T J, LI P X, et al. Added value of a convection permitting model in simulating atmospheric water cycle over the Asian water tower[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(13). DOI:10.1029/2021JD034788 .
74 CHERUY F, DUFRESNE J L, HOURDIN F, et al. Role of clouds and land-atmosphere coupling in midlatitude continental summer warm biases and climate change amplification in CMIP5 simulations[J]. Geophysical Research Letters, 2014, 41(18): 6 493-6 500.
75 LUCAS-PICHER P, BRISSON E, CAILLAUD C, et al. Evaluation of the convection-permitting regional climate model CNRM-AROME41t1 over northwestern Europe[J]. Climate Dynamics, 2023. DOI: 10.1007/S00382-022-06637-y .
76 QIN H C, KLEIN S A, MA H Y, et al. Summertime near-surface temperature biases over the central United States in convection-permitting simulations[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(22). DOI: 10.1029/2023JD038624 .
77 BRISSON E, van WEVERBERG K, DEMUZERE M, et al. How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics?[J]. Climate Dynamics, 2016, 47(9): 3 043-3 061.
78 LIN Q, CHEN J, OU T H, et al. Performance of the WRF model at the convection-permitting scale in simulating snowfall and lake-effect snow over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(16). DOI: 10.1029/2022JD038433 .
79 MA M N, OU T H, LIU D Q, et al. Summer regional climate simulations over Tibetan Plateau: from gray zone to convection permitting scale[J]. Climate Dynamics, 2023, 60(1): 301-322.
80 GAO Y H, CHEN F, JIANG Y S. Evaluation of a convection-permitting modeling of precipitation over the Tibetan Plateau and its influences on the simulation of snow-cover fraction[J]. Journal of Hydrometeorology, 2020, 21(7): 1 531-1 548.
81 IKEDA K, RASMUSSEN R, LIU C H, et al. Snowfall and snowpack in the Western U.S. as captured by convection permitting climate simulations: current climate and pseudo global warming future climate[J]. Climate Dynamics, 2021, 57(7): 2 191-2 215.
82 MINDER J R, LETCHER T W, SKILES S M. An evaluation of high-resolution regional climate model simulations of snow cover and albedo over the Rocky Mountains, with implications for the simulated snow-albedo feedback[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(15): 9 069-9 088.
83 JACOB D, TEICHMANN C, SOBOLOWSKI S, et al. Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community[J]. Regional Environmental Change, 2020, 20(2). DOI:10.1007/s10113-020-01606-9 .
84 HERRMANN M, SOMOT S, SEVAULT F, et al. Modeling the deep convection in the northwestern Mediterranean Sea using an eddy-permitting and an eddy-resolving model: case study of winter 1986-1987[J]. Journal of Geophysical Research: Oceans, 2008, 113(C4). DOI:10.1029/2006JC003991 .
85 FENG Z, LEUNG L R, HARDIN J, et al. Mesoscale convective systems in DYAMOND global convection-permitting simulations[J]. Geophysical Research Letters, 2023, 50(4). DOI: 10.1029/2022GL102603 .
86 PREIN A F, RASMUSSEN R M, WANG D, et al. Sensitivity of organized convective storms to model grid spacing in current and future climates[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379(2 195). DOI: 10.1098/rsta.2019.0546 .
87 ZHANG Z X, VARBLE A, FENG Z, et al. Growth of mesoscale convective systems in observations and a seasonal convection-permitting simulation over Argentina [J]. Monthly Weather Review, 2021, 149(10): 3 469-3 490.
88 YUN Y X, LIU C H, LUO Y L, et al. Warm-season mesoscale convective systems over Eastern China: convection-permitting climate model simulation and observation[J]. Climate Dynamics, 2021, 57(11): 3 599-3 617.
89 DING T, GUO Z, ZOU L W, et al. Impact of convection-permitting and model resolution on the simulation of mesoscale convective system properties over East Asia[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(24). DOI: 10.1029/2023JD039395 .
90 BRAUN S A. A cloud-resolving simulation of hurricane bob (1991): storm structure and eyewall buoyancy[J]. Monthly Weather Review, 2002, 130(6): 1 573-1 592.
91 GENTRY M S, LACKMANN G M. Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution[J]. Monthly Weather Review, 2010, 138(3): 688-704.
92 TARAPHDAR S, MUKHOPADHYAY P, LEUNG L R, et al. The role of moist processes in the intrinsic predictability of Indian Ocean cyclones[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(13): 8 032-8 048.
93 JUDT F, RIOS-BERRIOS R, BRYAN G H. Marathon versus sprint: two modes of tropical cyclone rapid intensification in a global convection-permitting simulation[J]. Monthly Weather Review, 2023, 151(10): 2 683-2 699.
94 LEE M, MIN S K, CHA D H. Convection-permitting simulations reveal expanded rainfall extremes of tropical cyclones affecting South Korea due to anthropogenic warming[J]. NPJ Climate and Atmospheric Science, 2023, 6. DOI:10.1038/s41612-023-00509-w .
95 BUONOMO E, SAVAGE N, DONG G T, et al. Tropical cyclone changes in convection-permitting regional climate projections: a study over the Shanghai region[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(5). DOI: 10.1029/2023JD038508 .
96 GROSSMAN-CLARKE S, ZEHNDER J A, STEFANOV W L, et al. Urban modifications in a mesoscale meteorological model and the effects on near-surface variables in an arid metropolitan region[J]. Journal of Applied Meteorology, 2005, 44(9): 1 281-1 297.
97 TRUSILOVA K, JUNG M, CHURKINA G, et al. Urbanization impacts on the climate in Europe: numerical experiments by the PSU-NCAR Mesoscale Model (MM5)[J]. Journal of Applied Meteorology and Climatology, 2008, 47(5): 1 442-1 455.
98 LEMONSU A, CAILLAUD C, ALIAS A, et al. What added value of CNRM-AROME convection-permitting regional climate model compared to CNRM-ALADIN regional climate model for urban climate studies? Evaluation over Paris area (France)[J]. Climate Dynamics, 2023, 61(3): 1 643-1 661.
99 WOUTERS H, de RIDDER K, DEMUZERE M, et al. The diurnal evolution of the urban heat island of Paris: a model-based case study during Summer 2006[J]. Atmospheric Chemistry and Physics, 2013, 13(17): 8 525-8 541.
100 LUO Y L, ZHANG J H, YU M, et al. On the influences of urbanization on the extreme rainfall over Zhengzhou on 20 July 2021: a convection-permitting ensemble modeling study[J]. Advances in Atmospheric Sciences, 2023, 40(3): 393-409.
101 HU C X, TAM C Y, LOI C L, et al. Urbanization impacts on tropical cyclone rainfall extremes-inferences from observations and convection-permitting model experiments over South China[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(21). DOI:10.1029/2023JD038813 .
102 HALL A. Projecting regional change[J]. Science, 2014, 346(6 216): 1 461-1 462.
103 PREIN A F, RASMUSSEN R M, IKEDA K, et al. The future intensification of hourly precipitation extremes[J]. Nature Climate Change, 2017, 7: 48-52.
104 BAN N, SCHMIDLI J, SCHÄR C. Heavy precipitation in a changing climate: does short-term summer precipitation increase faster?[J]. Geophysical Research Letters, 2015, 42(4): 1 165-1 172.
105 KENDON E J, ROBERTS N M, FOWLER H J, et al. Heavier summer downpours with climate change revealed by weather forecast resolution model[J]. Nature Climate Change, 2014, 4: 570-576.
106 PREIN A F, LIU C H, IKEDA K, et al. Increased rainfall volume from future convective storms in the US[J]. Nature Climate Change, 2017, 7: 880-884.
107 PAL S, CHANG H I, CASTRO C L, et al. Credibility of convection-permitting modeling to improve seasonal precipitation forecasting in the southwestern United States[J]. Frontiers in Earth Science, 2019, 7. DOI:10.3389/feart.2019.00011 .
108 KNIST S, GOERGEN K, SIMMER C. Evaluation and projected changes of precipitation statistics in convection-permitting WRF climate simulations over Central Europe[J]. Climate Dynamics, 2020, 55(1): 325-341.
109 PICHELLI E, COPPOLA E, SOBOLOWSKI S, et al. The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: historical and future simulations of precipitation[J]. Climate Dynamics, 2021, 56: 3 581-3 602.
110 RASMUSSEN K L, PREIN A F, RASMUSSEN R M, et al. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States[J]. Climate Dynamics, 2020, 55(1): 383-408.
111 DAI A G, RASMUSSEN R M, LIU C H, et al. A new mechanism for warm-season precipitation response to globalwarming based on convection-permitting simulations[J]. Climate Dynamics, 2020, 55(1): 343-368.
112 LIND P, BELUŠIĆ D, MÉDUS E, et al. Climate change information over Fenno-Scandinavia produced with a convection-permitting climate model[J]. Climate Dynamics, 2023, 61(1): 519-541.
113 MARINIER S, THÉRIAULT J M, IKEDA K. Changes in freezing rain occurrence over eastern Canada using convection-permitting climate simulations[J]. Climate Dynamics, 2023, 60(5): 1 369-1 384.
114 GENSINI V A, HABERLIE A M, ASHLEY W S. Convection-permitting simulations of historical and possible future climate over the contiguous United States[J]. Climate Dynamics, 2023, 60(1): 109-126.
115 ARCHER L, HATCHARD S, DEVITT L, et al. Future change in urban flooding using new convection-permitting climate projections[J]. Water Resources Research, 2024, 60(1). DOI:10.1029/2023WR035533 .
116 QING Y M, WANG S. Multi-decadal convection-permitting climate projections for China’s Greater Bay area and surroundings[J]. Climate Dynamics, 2021, 57(1): 415-434.
117 WANG G L, WANG D G, TRENBERTH K E, et al. The peak structure and future changes of the relationships between extreme precipitation andtemperature[J]. Nature Climate Change, 2017, 7: 268-274.
118 LENDERINK G, de VRIES H, FOWLER H J, et al. Scaling and responses of extreme hourly precipitation in three climate experiments with a convection-permitting model[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379(2 195). DOI:10.1098/rsta.2019.0544 .
119 ZHU T A, ZHANG W, WANG J, et al. Investigating spatial variations of compound heat-precipitation events in Guangdong, China through a convection-permitting model[J]. Remote Sensing, 2023, 15(19): 4 745. DOI:10.3390/rs15194745 .
120 TAMM O, KOKKONEN T, WARSTA L, et al. Modelling urban stormwater management changes using SWMM and convection-permitting climate simulations in cold areas[J]. Journal of Hydrology, 2023, 622. DOI:10.1016/j.jhydrol.2023.129656 .
121 HWANG Y, ZHAO X H, YOU C H, et al. Climatological features of future mesoscale convective systems in convection-permitting climate models using CMIP6 and ERA5 in the central United States[J]. Quarterly Journal of the Royal Meteorological Society, 2023, 149(757): 3 135-3 163.
122 DOUGHERTY E M, PREIN A F, GUTMANN E D, et al. Future simulated changes in central U.S. mesoscale convective system rainfall caused by changes in convective and stratiform structure[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(4). DOI: 10.1029/2022JD037537 .
123 CAMARGO S J. Global and regional aspects of tropical cyclone activity in the CMIP5 models[J]. Journal of Climate, 2013, 26(24): 9 880-9 902.
124 FENG Z, LEUNG L R, HOUZE R A, et al. Structure and evolution of mesoscale convective systems: sensitivity to cloud microphysics in convection-permitting simulations over the United States[J]. Journal of Advances in Modeling Earth Systems, 2018, 10(7): 1 470-1 494.
125 GUO Z Y, FANG J, SUN X G, et al. Sensitivity of summer precipitation simulation to microphysics parameterization over eastern China: convection-permitting regional climate simulation[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(16): 9 183-9 204.
126 KENDON E J, PREIN A F, SENIOR C A, et al. Challenges and outlook for convection-permitting climate modelling[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379(2 195). DOI:10.1098/esa.2019.0547 .
127 YANG B, BERG L K, QIAN Y, et al. Parametric and structural sensitivities of turbine-height wind speeds in the boundary layer parameterizations in the weather research and forecasting model[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(12): 5 951-5 969.
[1] 邹立维,周天军. 区域海气耦合模式研究进展[J]. 地球科学进展, 2012, 27(8): 857-865.
[2] 胡娅敏,丁一汇. 东亚地区区域气候模拟的研究进展[J]. 地球科学进展, 2006, 21(9): 956-964.
阅读次数
全文


摘要