地球科学进展 ›› 2024, Vol. 39 ›› Issue (6): 565 -575. doi: 10.11867/j.issn.1001-8166.2024.046

综述与评述 上一篇    下一篇

大气成因放射性宇生核素 10Be指示土壤演化:机理与进展
刘彧 1 , 2( ), 刘金涛 3, 刘承帅 1, 罗维均 1 , 2, 程安云 1 , 2, 王世杰 1 , 2   
  1. 1.中国科学院地球化学研究所 环境地球化学国家重点实验室, 贵州 贵阳 550081
    2.中国科学院普定喀斯特生态系统观测研究站, 贵州 普定 562100
    3.河海大学 水灾害防御全国重点实验室, 江苏 南京 210098
  • 收稿日期:2024-03-18 修回日期:2024-05-15 出版日期:2024-06-10
  • 基金资助:
    国家自然科学基金项目(42330712);环境地球化学国家重点实验室自主部署项目(SKLEG2024104);中国科学院“西部之光”人才培养引进计划资助

Meteoric Cosmogenic Radionuclide 10Be Trace the Soil Evolution: Mechanism and Progress

Yu LIU 1 , 2( ), Jintao LIU 3, Chengshuai LIU 1, Weijun LUO 1 , 2, Anyun CHENG 1 , 2, Shijie WANG 1 , 2   

  1. 1.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistrys Chinese Academy of Sciences, Guiyang 550081, China
    2.Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding Guizhou 562100, China
    3.The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
  • Received:2024-03-18 Revised:2024-05-15 Online:2024-06-10 Published:2024-07-15
  • About author:LIU Yu, Associate professor, research areas include cosmogenic nuclide geochronology and landscape evolution. E-mail: liuyu@mail.gyig.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(42330712);Autonomous Strategy Project of the State Key Laboratory of Environmental Geochemistry(SKLEG2024104);Chinese Academy of Sciences “Light of West China” Program

在全球变化背景下,我国土壤面临严重的污染、侵蚀和退化问题,正在威胁生态系统稳定性和粮食安全性。如何量化土壤的形成演化(时间和速率等)是地球科学领域的重要科学问题。大气成因放射性宇生核素10Be(以下简称大气10Be)是天然示踪剂,其在土壤中的含量受成土时间、地表侵蚀和化学风化等土壤演化过程综合控制,是定量示踪千万年来土壤形成演化过程的有效手段,具有广阔的应用前景。首先系统梳理了10Be在地球大气层的生成、传输、沉降以及在土壤中累积和迁移过程的最新研究进展,指出大气10Be长期沉降速率及其在风化带中迁移性的精确估算,是该研究领域亟待解决的重要难题;其次评述了大气10Be用于估算成土时间、成土速率、指示土壤侵蚀及在坡地运移等方面的方法,提出深入调查区域地质和环境过程并对模型参数和结果进行合理约束,是应用大气10Be技术的关键前提。我国加速器质谱分析技术和能力的快速发展,将有力推动大气10Be技术在土壤演化定量研究中的广泛应用,帮助解决环境生态系统演变预测及耕地土壤保育等难题。

Soil is currently facing serious pollution, erosion, and degradation owing to global change, threatening the ecosystem stability and food security of China. Quantifying soil formation and evolution (time, rate, etc.) is a critical scientific issue in Earth sciences. Meteoric radioactive isotope 10Be (hereinafter referred to as meteoric 10Be) serves as a natural tracer, and its inventory in soil is controlled by soil age, surface erosion, and chemical weathering processes. Therefore, meteoric 10Be is an effective tool for quantitatively tracing soil formation and evolution over ten million years and has broad application prospects. First, this study summarizes and reviews the latest progress in the production, delivery, and deposition of meteoric 10Be in the Earth atmosphere, as well as its accumulation and migration in the soil profile. Reasonable estimation of the long-term deposition rate of meteoric 10Be and its migration to weathering zones are important challenges that urgently require resolution. Second, this study introduces the main methods used by meteoric 10Be to estimate the soil formation (residence) age and formation rate, indicating soil erosion and transportation on hill slopes. The key premise for applying meteoric 10Be technology is an understanding of the geological and environmental processes in the study area and a rational assessment of the calculation model. With the rapid development of accelerator mass spectrometry analysis capabilities in China, the widespread application of meteoric 10Be technology in quantitative research on soil evolution has helped solve problems such as predicting environmental ecosystem evolution and soil conservation on arable land.

中图分类号: 

1 DUNAI T J. Cosmogenic nuclides: principles, concepts and applications in the Earth surface sciences[M]. Cambridge: Cambridge University Press, 2010.
2 SCHOENEMANN S W, BRYANT M M, LARSON W B, et al. A cosmogenic 10Be moraine chronology of arid, alpine Late Pleistocene glaciation in the Pioneer Mountains of Montana, USA[J]. Quaternary Science Reviews, 2023, 317. DOI: 10.1016/j.quascirev.2023.108283 .
3 ENGELBERG S, SAGY A, SHAAR R, et al. Northward propagation of the Gulf of Elat-Aqaba constrained by cosmogenic burial ages and magnetostratigraphy of onshore sediments[J]. Tectonophysics, 2024, 871. DOI:10.1016/j.tecto.2023.230178 .
4 BHATTACHARJEE S, BOOKHAGEN B, SINHA R, et al. 26Al and 10Be concentrations from alluvial drill cores across the Indo-Gangetic Plain reveal multimillion-year sediment-transport lag times[J]. Earth and Planetary Science Letters, 2023, 619. DOI: 10.1016/j.epsl.2023.118318 .
5 LIU Y, WANG S J, XU S, et al. New chronological constraints on the Plio-Pleistocene uplift of the Guizhou Plateau, SE margin of the Tibetan Plateau[J]. Quaternary Geochronology, 2022, 67. DOI:10.1016/j.quageo.2021.101237 .
6 CORBETT L B, BIERMAN P R, NEUMANN T A, et al. Measuring multiple cosmogenic nuclides in glacial cobbles sheds light on Greenland Ice Sheet processes[J]. Earth and Planetary Science Letters, 2021, 554. DOI:10.1016/j.epsl.2020.116673 .
7 WITTMANN H, OELZE M, GAILLARDET J, et al. A global rate of denudation from cosmogenic nuclides in the Earth’s largest rivers[J]. Earth-Science Reviews, 2020, 204. DOI:10.1016/j.earscirev.2020.103147 .
8 ZERATHE S, LITTY C, BLARD P H, et al. Cosmogenic 3He and 10Be denudation rates in the Central Andes: comparison with a natural sediment trap over the last 18 ka[J]. Earth and Planetary Science Letters, 2022, 599. DOI:10.1016/j.epsl.2022.117869 .
9 YANG Y, LANG Y C, XU S, et al. Combined unsteady denudation and climatic gradient factors constrain carbonate landscape evolution: new insights from in situ cosmogenic 36Cl[J]. Quaternary Geochronology, 2020, 58. DOI:10.1016/j.quageo.2020.101075 .
10 CORNU S, MONTAGNE D, VASCONCELOS P M. Dating constituent formation in soils to determine rates of soil processes: a review[J]. Geoderma, 2009, 153(3/4): 293-303.
11 SONG Yunhong, LIU Kai, DAI Huimin, et al. The first report of the AMS 14C age of Mollisol-Paleosol profile of Songliao Plain[J]. Geology in China, 2020, 47(6): 1 926-1 927.
宋运红, 刘凯, 戴慧敏, 等. 松辽平原典型黑土—古土壤剖面AMS14C年龄首次报道[J]. 中国地质, 2020, 47(6): 1 926-1 927.
12 CUI Jingyi, GUO Licheng, CHEN Yulu, et al. Spatial distribution of 14C age and depth of mollisol sections in the Songnen Plain during the Holocene[J]. Quaternary Sciences, 2021, 41(5): 1 332-1 341.
崔静怡, 郭利成, 陈雨露, 等. 松嫩平原全新世黑土14C年龄—深度关系空间格局[J]. 第四纪研究, 2021, 41(5): 1 332-1 341.
13 ZHANG G L, LONG H, YANG F. Understanding the formation time of black soils[J]. The Innovation Geoscience, 2023, 1(1). DOI: 10.59717/j.xinn-geo.2023.100010 .
[1] 夏亚飞, 刘宇晖, 高庭, 刘承帅. 基于金属稳定同位素的矿冶影响区土壤重金属污染源解析研究进展[J]. 地球科学进展, 2023, 38(4): 331-348.
[2] 宋文婕, 梁誉正, 陶贞, 钟庆祥, 贺一聪. 微生物介导的土壤有机碳动态研究进展[J]. 地球科学进展, 2023, 38(12): 1213-1223.
[3] 钟庆祥, 张豫, 陶贞, 贺一聪, 吴迪, 林培松. 土壤—植物系统硒的迁移转化机制研究进展[J]. 地球科学进展, 2023, 38(1): 44-56.
[4] 陈少鹏, 段跃芳. 中国农业碳效应研究的现状、热点与趋势[J]. 地球科学进展, 2023, 38(1): 86-98.
[5] 陈庆强, 王雪悦, 姚振兴, 杨钦川. 长江口不同年代围垦区土壤有机质结构组成特征[J]. 地球科学进展, 2022, 37(9): 915-924.
[6] 田子晗, 张勇勇, 赵文智, 王丽莎, 王川, 康文蓉, 吴绍雄. 宇宙射线中子技术的中尺度土壤水研究进展及在荒漠绿洲区的应用[J]. 地球科学进展, 2022, 37(9): 979-990.
[7] 张彧行, 翁白莎, 严登华. 基于文献可视化分析的土壤团聚体研究进展[J]. 地球科学进展, 2022, 37(4): 429-438.
[8] 段勋, 李哲, 刘淼, 邹元春. 铁介导的土壤有机碳固持和矿化研究进展[J]. 地球科学进展, 2022, 37(2): 202-211.
[9] 刘强, 袁延飞, 刘一帆, 石美, 王潇, 罗先香, 李霄云, 郑浩, 李锋民. 生物炭对盐渍化土壤改良的研究进展[J]. 地球科学进展, 2022, 37(10): 1005-1024.
[10] 潘颜霞, 张亚峰, 虎瑞. 吸湿凝结水对荒漠地区生物土壤结皮生态功能的影响综述[J]. 地球科学进展, 2022, 37(1): 99-109.
[11] 李芦頔,吴冰,李鑫璐,杨洁,林良国. 土壤侵蚀中的片蚀研究综述[J]. 地球科学进展, 2021, 36(7): 712-726.
[12] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[13] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[14] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[15] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
阅读次数
全文


摘要