1 |
CAMENZIND T, MASON-JONES K, MANSOUR I, et al. Formation of necromass-derived soil organic carbon determined by microbial death pathways[J]. Nature Geoscience, 2023, 16(2): 115-122.
|
2 |
WITZGALL K, VIDAL A, SCHUBERT D I, et al. Particulate organic matter as a functional soil component for persistent soil organic carbon[J]. Nature Communications, 2021, 12(1). DOI:10.1038/s41467-021-24192-8 .
|
3 |
KELL D B. Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1 595): 1 589-1 597.
|
4 |
LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5 677): 1 623-1 627.
|
5 |
HICKS PRIES C E, CASTANHA C, PORRAS R C, et al. The whole-soil carbon flux in response to warming[J]. Science, 2017, 355(6 332): 1 420-1 423.
|
6 |
LEHMANN J, KLEBER M. The contentious nature of soil organic matter[J]. Nature, 2015, 528(7 580): 60-68.
|
7 |
RASSE D P, RUMPEL C, DIGNAC M F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation[J].Plant and Soil, 2005, 269(1/2): 341-356.
|
8 |
KUZYAKOV Y, FRIEDEL J K, STAHR K. Review of mechanisms and quantification of priming effects[J]. Soil Biology and Biochemistry, 2000, 32(11/12): 1 485-1 498.
|
9 |
SCHIMEL J P, SCHAEFFER S M. Microbial control over carbon cycling in soil[J]. Frontiers in Microbiology, 2012, 3. DOI: 10.3389/fmicb.2012.00348 .
|
10 |
LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2(8): 1-6.
|
11 |
JOOS F, PRENTICE I C, SITCH S, et al. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios[J]. Global Biogeochemical Cycles, 2001, 15(4): 891-907.
|
12 |
PATERSON E, HALL J M, RATTRAY E A S, et al. Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes[J]. Global Change Biology, 1997, 3(4): 363-377.
|
13 |
KUZYAKOV Y. Priming effects: interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 2010, 42(9): 1 363-1 371.
|
14 |
KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change, 2015, 5(6): 588-595.
|
15 |
VORONEY R P, PAUL E A, ANDERSON D W. Decomposition of wheat straw and stabilization of microbial products[J]. Canadian Journal of Soil Science, 1989, 69(1): 63-77.
|
16 |
MARTIN J P, HAIDFR K, FARMKR W J, et al. Decomposition and distribution of residual activity of some 13C-microbial polysaccharides and cells, glucose, cellulose and wheat straw in soil[J]. Soil Biology and Biochemistry, 1974, 6(4): 221-230.
|
17 |
SOONG J L, COTRUFO M F. Annual burning of a tallgrass prairie inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic matter storage while reducing N availability[J]. Global Change Biology, 2015, 21(6): 2 321-2 333.
|
18 |
COTRUFO M F, SOONG J L, HORTON A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience, 2015, 8(10): 776-779.
|
19 |
KAISER K, KALBITZ K. Cycling downwards-dissolved organic matter in soils[J]. Soil Biology and Biochemistry, 2012, 52: 29-32.
|
20 |
COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4): 988-995.
|
21 |
MAMBELLI S, BIRD J A, GLEIXNER G, et al. Relative contribution of foliar and fine root pine litter to the molecular composition of soil organic matter after in situ degradation[J]. Organic Geochemistry, 2011, 42(9): 1 099-1 108.
|
22 |
SOKOL N W, BRADFORD M A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input[J]. Nature Geoscience, 2019, 12(1): 46-53.
|
23 |
SOKOL N, KUEBBING S E, KARLSEN-AYALA E, et al. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon[J]. New Phytologist, 2018. DOI:10.1111/nph.15361 .
|
24 |
OTTO A, SHUNTHIRASINGHAM C, SIMPSON M J. A comparison of plant and microbial biomarkers in grassland soils from the Prairie Ecozone of Canada[J]. Organic Geochemistry, 2005, 36(3): 425-448.
|
25 |
LIANG C, AMELUNG W, LEHMANN J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Global Change Biology, 2019, 25(11): 3 578-3 590.
|
26 |
NI X Y, LIAO S, TAN S Y, et al. A quantitative assessment of amino sugars in soil profiles[J]. Soil Biology and Biochemistry, 2020, 143. DOI:10.1016/j.soilbio.2020.107762 .
|
27 |
ZHANG X D, AMELUNG W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils[J]. Soil Biology and Biochemistry, 1996, 28(9): 1 201-1 206.
|
28 |
PATOINE G, EISENHAUER N, CESARZ S, et al. Drivers and trends of global soil microbial carbon over two decades[J]. Nature Communications, 2022, 13. DOI:10.1038/s41467-022-31833-z .
|
29 |
LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology, 2020, 26(1): 261-273.
|
30 |
YANG Ying, WU Fuzhong, WU Qiuxia, et al. Soil organic carbon associated with iron oxides in terrestrial ecosystems: content, distribution and control[J]. Chinese Science Bulletin, 2023, 68(6): 695-704.
|
|
杨颖, 吴福忠, 吴秋霞, 等. 陆地生态系统土壤铁结合态有机碳: 含量、分布与调控[J]. 科学通报, 2023, 68(6): 695-704.
|
31 |
XIAO K Q, ZHAO Y, LIANG C, et al. Introducing the soil mineral carbon pump[J]. Nature Reviews Earth & Environment, 2023, 4(3): 135-136.
|
32 |
COTRUFO M F, LAVALLEE J M. Soil organic matter formation, persistence, and functioning: a synthesis of current understanding to inform its conservation and regeneration[M]// Advances in agronomy. Amsterdam: Elsevier, 2022: 1-66.
|
33 |
HERNDON E M, MARTÍNEZ C E, BRANTLEY S L. Spectroscopic (XANES/XRF) characterization of contaminant Manganese cycling in a temperate watershed[J]. Biogeochemistry, 2014, 121(3): 505-517.
|
34 |
KRAMER M G, CHADWICK O A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale[J]. Nature Climate Change, 2018, 8(12): 1 104-1 108.
|
35 |
MAN M L, PIERSON D, CHIU R, et al. Twenty years of litter manipulation reveals that above-ground litter quantity and quality controls soil organic matter molecular composition[J]. Biogeochemistry, 2022, 159(3): 393-411.
|
36 |
ALMEIDA L F J, SOUZA I F, HURTARTE L C C, et al. Forest litter constraints on the pathways controlling soil organic matter formation[J]. Soil Biology and Biochemistry, 2021, 163. DOI:10.1016/j.soilbio.2021.108447 .
|
37 |
CANESSA R, BRINK L, SALDAÑA A, et al. Relative effects of climate and litter traits on decomposition change with time, climate and trait variability[J]. Journal of Ecology, 2020, 109: 447-458.
|
38 |
CASTELLANO M J, MUELLER K E, OLK D C, et al. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept[J]. Global Change Biology, 2015, 21(9): 3 200-3 209.
|
39 |
WONG D W S. Structure and action mechanism of ligninolytic enzymes[J]. Applied Biochemistry and Biotechnology, 2009, 157(2): 174-209.
|
40 |
KHAN M U, AHRING B K. Lignin degradation under anaerobic digestion: influence of lignin modifications—a review[J]. Biomass and Bioenergy, 2019, 128. DOI:10.1016/J.BIOMBIOE.2019.105325 .
|
41 |
VALÁŠKOVÁ V, BALDRIAN P. Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus-production of extracellular enzymes and characterization of the major cellulases[J]. Microbiology, 2006, 152(12): 3 613-3 622.
|
42 |
LI H Y, WANG H, WANG H T, et al. The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales[J].Microbiome, 2018, 6(1): 1-16.
|
43 |
KALBITZ K, SCHWESIG D, SCHMERWITZ J, et al. Changes in properties of soil-derived dissolved organic matter induced by biodegradation[J]. Soil Biology and Biochemistry, 2003, 35(8): 1 129-1 142.
|
44 |
KLEBER M, SOLLINS P, SUTTON R. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces[J]. Biogeochemistry, 2007, 85(1): 9-24.
|
45 |
BARDGETT R D, van der PUTTEN W H. Belowground biodiversity and ecosystem functioning[J]. Nature, 2014, 515(7 528): 505-511.
|
46 |
WANG B R, AN S S, LIANG C, et al. Microbial necromass as the source of soil organic carbon in global ecosystems[J]. Soil Biology and Biochemistry, 2021, 162. DOI:10.1016/J.BIOMBIOE.2019.105325 .
|
47 |
ENKHMAA E, WANG C W, YU W Y, et al. Carbon versus nitrogen release from root and leaf litter is modulated by litter position and plant functional type[J]. Journal of Ecology, 2022, 111(1): 198-213.
|
48 |
HE W, XU X, ZHANG C C, et al. Understory vegetation removal reduces the incidence of non-additive mass loss during leaf litter decomposition in a subtropical Pinus massoniana plantation[J]. Plant and Soil, 2020, 446(1): 529-541.
|
49 |
DU N N, LI W R, QIU L P, et al. Mass loss and nutrient release during the decomposition of sixteen types of plant litter with contrasting quality under three precipitation regimes[J]. Ecology and Evolution, 2020, 10(7): 3 367-3 382.
|
50 |
ESCH E H, KING J Y, CLELAND E E. Foliar litter chemistry mediates susceptibility to UV degradation in two dominant species from a semi-arid ecosystem[J]. Plant and Soil, 2019, 440(1): 265-276.
|
51 |
CRAIG M E, GEYER K M, BEIDLER K V, et al. Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits[J]. Nature Communications, 2022, 13(1): 1-10.
|
52 |
SHAO P S, LYNCH L, XIE H T, et al. Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils[J]. Soil Biology and Biochemistry, 2021, 153. DOI:10.1016/j.soilbio.2020.108112 .
|
53 |
BHOPLE P, KEIBLINGER K, DJUKIC I, et al. Microbial necromass formation, enzyme activities and community structure in two alpine elevation gradients with different bedrock types[J]. Geoderma, 2021, 386. DOI:10.1016/j.geoderma.2020.114922 .
|
54 |
PROMMER J, WALKER T W N, WANEK W, et al. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity[J]. Global Change Biology, 2020, 26(2): 669-681.
|
55 |
WINZLER R J, BAUMBERGER J P. The degradation of energy in the metabolism of yeast cells[J]. Journal of Cellular and Comparative Physiology, 1938, 12(2): 183-211.
|
56 |
SINSABAUGH R L, TURNER B L, TALBOT J M, et al. Stoichiometry of microbial carbon use efficiency in soils[J]. Ecological Monographs, 2016, 86(2): 172-189.
|
57 |
KALLENBACH C M, FREY S D, GRANDY A S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls[J]. Nature Communications, 2016, 7(1): 1-10.
|
58 |
SAIFUDDIN M, BHATNAGAR J M, SEGRÈ D, et al. Microbial carbon use efficiency predicted from genome-scale metabolic models[J]. Nature Communications, 2019, 10(1): 1-10.
|
59 |
PAUSCH J, KUZYAKOV Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale[J]. Global Change Biology, 2018, 24(1): 1-12.
|
60 |
KÄSTNER M, MILTNER A, THIELE-BRUHN S, et al. Microbial necromass in soils—linking microbes to soil processes and carbon turnover[J]. Frontiers in Environmental Science, 2021, 9. DOI:10.3389/fenvs.2021.756378 .
|
61 |
SAADAT N, NIES T, ROUSSET Y, et al. Thermodynamic limits and optimality of microbial growth[J]. Entropy, 2020, 22(3). DOI: 10.3390/e22030277 .
|
62 |
LU J Y, YANG J F, KEITEL C, et al. Rhizosphere priming effects of Lolium perenne and Trifolium repens depend on phosphorus fertilization and biological nitrogen fixation[J]. Soil Biology and Biochemistry, 2020, 150. DOI:10.1016/j.soilbio.2020.108005 .
|
63 |
SCHIMEL D S. Terrestrial ecosystems and the carbon cycle[J]. Global Change Biology, 1995, 1. DOI:10.1111/j.1365-2486.1995.tb00008.x .
|
64 |
YIN L M, ZHANG T S, DIJKSTRA F A, et al. Priming effect varies with root order: a case of Cunninghamia lanceolata [J]. Soil Biology and Biochemistry, 2021, 160. DOI:10.1016/j.soilbio.2021.108354 .
|
65 |
LIANG J Y, ZHOU Z H, HUO C F, et al. More replenishment than priming loss of soil organic carbon with additional carbon input[J]. Nature Communications, 2018, 9(1): 1-9.
|
66 |
LIU X, XIONG Y M, LIAO B W. Relative contributions of leaf litter and fine roots to soil organic matter accumulation in mangrove forests[J]. Plant and Soil, 2017, 421(1): 493-503.
|
67 |
GEETHANJALI P A, JAYASHANKAR P M. A review on litter decomposition by soil fungal community[J]. IOSR Journal of Pharmacy and Biological Sciences, 2016, 11(4): 1-3.
|
68 |
WILHELM R C, SINGH R, ELTIS L D, et al. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing[J]. The ISME Journal, 2019, 13(2): 413-429.
|
69 |
SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 2008, 11(11): 1 252-1 264.
|
70 |
MORRISSEY E M, BERRIER D J, NEUBAUER S C, et al. Using microbial communities and extracellular enzymes to link soil organic matter characteristics to greenhouse gas production in a tidal freshwater wetland[J]. Biogeochemistry, 2014, 117(2): 473-490.
|
71 |
PEI L X, YE S Y, YUAN H M, et al. Glomalin-related soil protein distributions in the wetlands of the Liaohe Delta, Northeast China: implications for carbon sequestration and mineral weathering of coastal wetlands[J]. Limnology and Oceanography, 2020, 65(5): 979-991.
|
72 |
RASANAYAGAM S, JEFFRIES P. Production of acid is responsible for antibiosis by some ectomycorrhizal fungi[J]. Mycological Research, 1992, 96(11): 971-976.
|
73 |
ORWIN K H, KIRSCHBAUM M U F, St JOHN M G, et al. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment[J]. Ecology Letters, 2011, 14(5): 493-502.
|
74 |
AVERILL C, TURNER B L, FINZI A C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage[J]. Nature, 2014, 505(7 484): 543-545.
|
75 |
SULMAN B N, BRZOSTEK E R, MEDICI C, et al. Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association[J]. Ecology Letters, 2017, 20(8): 1 043-1 053.
|
76 |
FERNANDEZ C W, KOIDE R T. Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter[J]. Soil Biology and Biochemistry, 2014, 77: 150-157.
|
77 |
FREY S D, SIX J, ELLIOTT E T. Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil-litter interface[J]. Soil Biology and Biochemistry, 2003, 35(7): 1 001-1 004.
|
78 |
FERNANDEZ C W, LANGLEY J A, CHAPMAN S, et al. The decomposition of ectomycorrhizal fungal necromass[J]. Soil Biology and Biochemistry, 2016, 93: 38-49.
|
79 |
TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141-163.
|
80 |
CHENG L, ZHANG N F, YUAN M T, et al. Warming enhances old organic carbon decomposition through altering functional microbial communities[J]. The ISME Journal, 2017, 11(8): 1 825-1 835.
|
81 |
SOONG J L, FUCHSLUEGER L, MARAÑON-JIMENEZ S, et al. Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling[J]. Global Change Biology, 2020, 26(4): 1 953-1 961.
|
82 |
TIAN J, ZONG N, HARTLEY I P, et al. Microbial metabolic response to winter warming stabilizes soil carbon[J]. Global Change Biology, 2021, 27(10): 2 011-2 028.
|
83 |
BAI T S, WANG P, HALL S J, et al. Interactive global change factors mitigate soil aggregation and carbon change in a semi-arid grassland[J]. Global Change Biology, 2020, 26(9): 5 320-5 332.
|
84 |
XIA J Y, WAN S Q. Global response patterns of terrestrial plant species to nitrogen addition[J]. The New Phytologist, 2008, 179(2): 428-439.
|
85 |
YE C L, CHEN D M, HALL S J, et al. Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls[J]. Ecology Letters, 2018, 21(8): 1 162-1 173.
|
86 |
SCHIMEL J P, GULLEDGE J M, CLEIN-CURLEY J S, et al. Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga[J]. Soil Biology and Biochemistry, 1999, 31(6): 831-838.
|
87 |
SANTONJA M, FERNANDEZ C, GAUQUELIN T, et al. Climate change effects on litter decomposition: intensive drought leads to a strong decrease of litter mixture interactions[J]. Plant and Soil, 2015, 393(1): 69-82.
|
88 |
HEMKEMEYER M, CHRISTENSEN B T, MARTENS R, et al. Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants[J]. Soil Biology and Biochemistry, 2015, 90: 255-265.
|
89 |
MIN K, LEHMEIER C A, IV F B, et al. Carbon availability modifies temperature responses of heterotrophic microbial respiration, carbon uptake affinity, and stable carbon isotope discrimination[J]. Frontiers in Microbiology, 2016, 7. DOI:10.3389/fmicb.2016.02083 .
|
90 |
PENG X Q, WANG W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of Northern China[J]. Soil Biology and Biochemistry, 2016, 98: 74-84.
|
91 |
JONES D L, COOLEDGE E C, HOYLE F C, et al. pH and exchangeable aluminum are major regulators of microbial energy flow and carbon use efficiency in soil microbial communities[J]. Soil Biology and Biochemistry, 2019, 138. DOI:10.1016/j.soilbio.2019.107584 .
|
92 |
TAO F, HUANG Y Y, HUNGATE B A, et al. Microbial carbon use efficiency promotes global soil carbon storage[J]. Nature, 2023, 618(7 967): 981-985.
|