地球科学进展 ›› 2023, Vol. 38 ›› Issue (12): 1203 -1212. doi: 10.11867/j.issn.1001-8166.2023.080

综述与评述 上一篇    下一篇

表面活性物质对海洋飞沫气溶胶的产生和理化性质的影响
徐名兰 1( ), 杜林 1( ), 葛茂发 2   
  1. 1.山东大学 环境研究院,山东 青岛 266237
    2.中国科学院化学研究所,分子动态与稳态结构国家重点实验室,北京 100190
  • 收稿日期:2023-08-10 修回日期:2023-11-07 出版日期:2023-12-10
  • 通讯作者: 杜林 E-mail:xuminglan@mail.sdu.edu.cn;lindu@sdu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(22076099)

Effect of Surface-Active Substances on the Generation and Physicochemical Properties of Sea Spray Aerosol

Minglan XU 1( ), Lin DU 1( ), Maofa GE 2   

  1. 1.Environment Research Institute, Shandong University, Qingdao 266237, China
    2.State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2023-08-10 Revised:2023-11-07 Online:2023-12-10 Published:2023-12-26
  • Contact: Lin DU E-mail:xuminglan@mail.sdu.edu.cn;lindu@sdu.edu.cn
  • About author:XU Minglan, Ph.D student, research area includes interfacial reaction of marine aerosols. E-mail: xuminglan@mail.sdu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(22076099)

由于气候和环境效应的影响,海洋上空气溶胶受到研究者的关注。海水中气泡上升至海面破裂时,会把海洋微表层的表面活性物质富集到海洋飞沫气溶胶中,从而影响其物理和化学性质。总结了海洋表面活性物质的来源及其表征量化方法,阐述了表面活性物质对海洋飞沫气溶胶数浓度及粒径分布的影响,进而归纳了对吸湿性、云凝结核活性和冰核活性的影响机制。由于来源、类型、结构及其他环境条件的不同,表面活性物质对海洋飞沫气溶胶的产生及理化性质的影响具有显著差异,给研究海洋飞沫气溶胶的环境和气候效应造成困难,需要进一步开展表面活性物质的观测和模拟研究,为改进海洋飞沫气溶胶区域和全球建模提供科学支撑。

Ocean aerosols are of important because of their climatic and environmental effects. When bubbles in seawater rise to the surface and burst, they enrich the surface-active substances present in the sea-surface microlayer into Sea Spray Aerosol (SSA), thus affecting their physical and chemical properties. In this study, the sources and quantitative characterization methods for marine surface-active substances are reviewed. The effects of surface-active substances on the concentration and particle size distribution of SSA are addressed, and the influencing mechanisms of hygroscopicity, cloud condensation nucleation activity, and ice nucleation activity are summarized. Owing to different sources, types, and other environmental conditions; the effects of surface-active substances on SSA generation and physicochemical properties vary significantly, making it difficult to study the environmental and climatic effects of SSA. In the future, further observational and modeling research on surface-active substances is required to provide scientific support for improved regional and global modeling of SSA.

中图分类号: 

表1 海洋环境中表面活性物质的表征和量化方法
Table 1 Methods for characterization and quantification of surfactant in the marine environment
图1 气溶胶颗粒(a)和河口水体(b)表面活性剂类有机物的Van Krevelen 32
Fig. 1 Van Krevelen diagrams of surfactant organics in aerosol particleaand estuarine waterb 32
图2 实验室模拟海洋飞沫气溶胶(SSA)的产生装置图
Fig. 2 Diagram of the Sea Spray AerosolSSAgeneration device for laboratory simulation
图3 油酸对人工海水产生的海洋飞沫气溶胶(SSA)粒径分布的影响(据参考文献[ 39 ]修改)
Fig. 3 Effect of oleic acid on the particle size distribution of Sea Spray AerosolSSAproduced from artificial seawatermodified after reference 39 ])
图4 单一组分或混合组分气溶胶的吸湿性生长因子
Fig. 4 Hygroscopic growth factors for single or mixed component aerosols
表2 表面活性物质对云凝结核( CCN)活性的影响
Table 2 Effect of surfactants on the activity of Cloud Condensation NucleiCCN
研究对象 主要结论 参考文献
α-蒎烯臭氧化产物 大气颗粒主要由表面活性物质组成时(约80%)会增加CCN活性 63
十二烷基硫酸钠、油酸 十二烷基硫酸钠和油酸通过降低溶液表面张力,有助于增强产生的NaCl颗粒的CCN活性 64
高分子量类腐殖质物质 表面活性的类腐殖质物质可以到达液滴表面,降低气溶胶形成云滴的表面张力 65
戊二酸、丙二酸、琥珀酸 低分子量二羧酸是水溶性表面活性分子,也可以导致表面张力下降并影响CCN活性 66
辛酸钠、癸酸钠、十二酸钠、十二烷基硫酸钠 如果仅考虑表面张力降低,而忽略表面活性物质的表面分配,则会大大低估实验的临界过饱和度 67
丙二酸、壬二酸、己酸、顺式蒎烯酸、油酸、硬脂酸 无机—有机混合颗粒的CCN活性与溶解度相关,硬脂酸形成厚的有机涂层阻碍了水蒸气的扩散,能够完全抑制硫酸铵的吸湿能力 68
十二烷基苯磺酸钠 十二烷基苯磺酸钠可以通过降低所产生颗粒的吸湿性,产生更小的颗粒以及减少产生的颗粒总数量的方式导致CCN总数减少63%~75% 69
油酸、棕榈酸、肉豆蔻酸 除了在有机质量比例过大时(>0.9),有机质量对无机盐颗粒CCN活性的影响可以忽略不计 57
棕榈酸、硬脂酸、棕榈油酸、油酸 不饱和脂肪酸涂层对海盐颗粒的CCN活性几乎没有影响,可能与不饱和脂肪酸形成的涂层不完整,以及双键的存在导致涂层压缩程度较低有关,从而导致通过液态不饱和脂肪酸涂层的扩散比通过相应的固体饱和脂肪酸涂层的扩散更快 15
油酸、油酸钠 包裹1层油酸钠或油酸涂层的颗粒表现出与纯钠盐颗粒相似的CCN活性,而当有机浓度增加10倍时也仅会略微抑制CCN活性 70
硅藻培养物 由人工海水、含硅藻培养物的人工海水及北大西洋和北冰洋收集的真实样品生成的SSA颗粒具有相似的CCN活性,说明SSA中生物源有机组分的内部混合对北极混合相云的云滴活化过程没有实质性影响 71
1 QUINN P K, COLLINS D B, GRASSIAN V H, et al. Chemistry and related properties of freshly emitted sea spray aerosol[J]. Chemical Reviews, 2015, 115(10): 4 383-4 399.
2 CLARKE A D, OWENS S R, ZHOU J C. An ultrafine sea-salt flux from breaking waves: implications for cloud condensation nuclei in the remote marine atmosphere[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D6). DOI:10.1029/2005JD006565 .
3 de LEEUW G, ANDREAS E L, ANGUELOVA M D, et al. Production flux of sea spray aerosol[J]. Reviews of Geophysics, 2011, 49(2). DOI:10.1029/2010RG000349 .
4 ERLICK C, RUSSELL L M, RAMASWAMY V. A microphysics-based investigation of the radiative effects of aerosol-cloud interactions for two MAST experiment case studies[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D1): 1 249-1 269.
5 BLANCHARD D C. Sea-to-air transport of surface active material[J]. Science, 1964, 146(3 642): 396-397.
6 LHUISSIER H, VILLERMAUX E. Bursting bubble aerosols[J]. Journal of Fluid Mechanics, 2012, 696: 5-44.
7 BLANCO-RODRÍGUEZ F J, GORDILLO J M. On the sea spray aerosol originated from bubble bursting jets[J]. Journal of Fluid Mechanics, 2020, 886. DOI:10.1017/jfm.2019.1061 .
8 COCHRAN R E, LASKINA O, TRUEBLOOD J V, et al. Molecular diversity of sea spray aerosol particles: impact of ocean biology on particle composition and hygroscopicity[J]. Chem, 2017, 2(5): 655-667.
9 RASTELLI E, CORINALDESI C, DELL’ANNO A, et al. Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: an experimental approach[J]. Scientific Reports, 2017, 7(1): 1-10.
10 PENDERGRAFT M A, BELDA-FERRE P, PETRAS D, et al. Bacterial and chemical evidence of coastal water pollution from the Tijuana River in sea spray aerosol[J]. Environmental Science & Technology, 2023, 57(10): 4 071-4 081.
11 COCHRAN R E, RYDER O S, GRASSIAN V H, et al. Sea spray aerosol: the chemical link between the oceans, atmosphere, and climate[J]. Accounts of Chemical Research, 2017, 50(3): 599-604.
12 EASTOE J, DALTON J S. Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface[J]. Advances in Colloid and Interface Science, 2000, 85(2/3): 103-144.
13 MODINI R L, RUSSELL L M, DEANE G B, et al. Effect of soluble surfactant on bubble persistence and bubble-produced aerosol particles[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(3): 1 388-1 400.
14 PETERSON R E, TYLER B J. Analysis of organic and inorganic species on the surface of atmospheric aerosol using Time-Of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)[J]. Atmospheric Environment, 2002, 36(39/40): 6 041-6 049.
15 NGUYEN Q T, KJÆR K H, KLING K I, et al. Impact of fatty acid coating on the CCN activity of sea salt particles[J]. Tellus B: Chemical and Physical Meteorology, 2017, 69(1). DOI: 10.1080/16000889.2017.1304064 .
16 ALLER J Y, RADWAY J C, KILTHAU W P, et al. Size-resolved characterization of the polysaccharidic and proteinaceous components of sea spray aerosol[J]. Atmospheric Environment, 2017, 154: 331-347.
17 DONALDSON D J, GEORGE C. Sea-surface chemistry and its impact on the marine boundary layer[J]. Environmental Science & Technology, 2012, 46(19): 10 385-10 389.
18 WATNE Å K, WESTERLUND J, HALLQUIST Å M, et al. Ozone and OH-induced oxidation of monoterpenes: changes in the thermal properties of Secondary Organic Aerosol (SOA)[J]. Journal of Aerosol Science, 2017, 114: 31-41.
19 ENDERS A A, ELLIOTT S M, ALLEN H C. Carbon on the ocean surface: temporal and geographical investigation[J]. ACS Earth and Space Chemistry, 2023, 7(2): 360-369.
20 SALTER M E, UPSTILL-GODDARD R C, NIGHTINGALE P D, et al. Impact of an artificial surfactant release on air-sea gas fluxes during deep ocean gas exchange experiment II[J]. Journal of Geophysical Research: Oceans, 2011, 116(C11). DOI:10.1029/2011JC007023 .
21 PEREIRA R, ASHTON I, SABBAGHZADEH B, et al. Reduced air-sea CO2 exchange in the Atlantic Ocean due to biological surfactants[J]. Nature Geoscience, 2018, 11(7): 492-496.
22 LATIF M T, BRIMBLECOMBE P. Surfactants in atmospheric aerosols[J]. Environmental Science & Technology, 2004, 38(24): 6 501-6 506.
23 CINCINELLI A, STORTINI A M, PERUGINI M, et al. Organic pollutants in sea-surface microlayer and aerosol in the coastal environment of Leghorn—Tyrrhenian Sea[J]. Marine Chemistry, 2001, 76(1/2): 77-98.
24 FRANKLIN E B, AMIRI S, CROCKER D, et al. Anthropogenic and biogenic contributions to the organic composition of coastal submicron sea spray aerosol[J]. Environmental Science & Technology, 2022, 56(23): 16 633-16 642.
25 KALUARACHCHI C P, LEE H D, LAN Y L, et al. Surface tension measurements of aqueous liquid-air interfaces probed with microscopic indentation[J]. Langmuir, 2021, 37(7): 2 457-2 465.
26 FROSSARD A A, GÉRARD V, DUPLESSIS P, et al. Properties of seawater surfactants associated with primary marine aerosol particles produced by bursting bubbles at a model air-sea interface[J]. Environmental Science & Technology, 2019, 53(16): 9 407-9 417.
27 WURL O, MILLER L, RÖTTGERS R, et al. The distribution and fate of surface-active substances in the sea-surface microlayer and water column[J]. Marine Chemistry, 2009, 115(1/2): 1-9.
28 BARTHELMEß T, ENGEL A. How biogenic polymers control surfactant dynamics in the surface microlayer: insights from a coastal Baltic Sea study[J]. Biogeosciences, 2022, 19(20): 4 965-4 992.
29 SHAHAROM S, LATIF M T, KHAN M F, et al. Surfactants in the sea surface microlayer, subsurface water and fine marine aerosols in different background coastal areas[J]. Environmental Science and Pollution Research, 2018, 25(27): 27 074-27 089.
30 HUANG Y J, BRIMBLECOMBE P, LEE C L, et al. Surfactants in the sea-surface microlayer and sub-surface water at estuarine locations: their concentration, distribution, enrichment, and relation to physicochemical characteristics[J]. Marine Pollution Bulletin, 2015, 97(1/2): 78-84.
31 COCHRAN R E, LASKINA O, JAYARATHNE T, et al. Analysis of organic anionic surfactants in fine and coarse fractions of freshly emitted sea spray aerosol[J]. Environmental Science & Technology, 2016, 50(5): 2 477-2 486.
32 BURDETTE T C, FROSSARD A A. Characterization of seawater and aerosol particle surfactants using solid phase extraction and mass spectrometry[J]. Journal of Environmental Sciences, 2021, 108: 164-174.
33 LI Zhong, CHEN Liqi, YAN Jinpei. Review on application of aerosol mass spectrometric technique in characterizing submicron particles in marine aerosols[J]. Advances in Earth Science, 2015, 30(2): 226-236.
李忠, 陈立奇, 颜金培. 气溶胶质谱技术在海洋气溶胶亚微米级颗粒物特征的研究进展[J]. 地球科学进展, 2015, 30(2): 226-236.
34 BURDETTE T C, BRAMBLETT R L, ZIMMERMANN K, et al. Influence of air mass source regions on signatures of surface-active organic molecules in size resolved atmospheric aerosol particles[J]. ACS Earth and Space Chemistry, 2023, 7(8): 1 578-1 591.
35 FACCHINI M C, RINALDI M, DECESARI S, et al. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates[J]. Geophysical Research Letters, 2008, 35(17). DOI: 10.1029/2008GL034210 .
36 LONG M S, KEENE W C, KIEBER D J, et al. Light-enhanced primary marine aerosol production from biologically productive seawater[J]. Geophysical Research Letters, 2014, 41(7): 2 661-2 670.
37 QUINN P K, BATES T S, SCHULZ K S, et al. Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol[J]. Nature Geoscience, 2014, 7(3): 228-232.
38 HU Jie, LI Jianlong, LI Kun, et al. Laboratory simulation of sea spray aerosol[J]. Environmental Chemistry, 2023, 42(3): 963-975.
胡杰, 李建龙, 李坤, 等. 海洋飞沫气溶胶的实验模拟[J]. 环境化学, 2023, 42(3): 963-975.
39 TYREE C A, HELLION V M, ALEXANDROVA O A, et al. Foam droplets generated from natural and artificial seawaters[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D12). DOI:10.1029/2006JD007729 .
40 FROSSARD A A, LONG M S, KEENE W C, et al. Marine aerosol production via detrainment of bubble plumes generated in natural seawater with a forced-air venturi[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(20): 10 931-10 950.
41 ZÁBORI J, MATISĀNS M, KREJCI R, et al. Artificial primary marine aerosol production: a laboratory study with varying water temperature, salinity, and succinic acid concentration[J]. Atmospheric Chemistry and Physics, 2012, 12(22): 10 709-10 724.
42 GARRETT W D. The influence of monomolecular surface films on the production of condensation nuclei from bubbled sea water[J]. Journal of Geophysical Research, 1968, 73(16): 5 145-5 150.
43 KING S M, BUTCHER A C, ROSENOERN T, et al. Investigating primary marine aerosol properties: CCN activity of sea salt and mixed inorganic-organic particles[J]. Environmental Science & Technology, 2012, 46(19): 10 405-10 412.
44 LIU L R, DU L, XU L, et al. Molecular size of surfactants affects their degree of enrichment in the sea spray aerosol formation[J]. Environmental Research, 2022, 206. DOI:10.1016/j.envres.2021.112555 .
45 SELLEGRI K, O’DOWD C D, YOON Y J, et al. Surfactants and submicron sea spray generation[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D22). DOI:10.1029/2005JD006658 .
46 FUENTES E, COE H, GREEN D, et al. On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol-part 1: source fluxes[J]. Atmospheric Chemistry and Physics, 2010, 10(19): 9 295-9 317.
47 ALPERT P A, KILTHAU W P, BOTHE D W, et al. The influence of marine microbial activities on aerosol production: a laboratory mesocosm study[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(17): 8 841-8 860.
48 ZHOU J C, SWIETLICKI E, BERG O H, et al. Hygroscopic properties of aerosol particles over the central Arctic Ocean during summer[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D23): 32 111-32 123.
49 MOCHIDA M, NISHITA-HARA C, FURUTANI H, et al. Hygroscopicity and cloud condensation nucleus activity of marine aerosol particles over the western North Pacific[J]. Journal of Geophysical Research, 2011, 116(D6). DOI:10.1029/2010JD014759 .
50 SCHILL S R, COLLINS D B, LEE C, et al. The impact of aerosol particle mixing state on the hygroscopicity of sea spray aerosol[J]. ACS Central Science, 2015, 1(3): 132-141.
51 CHEN Y Y, LEE W M G. Hygroscopic properties of inorganic-salt aerosol with surface-active organic compounds[J]. Chemosphere, 1999, 38(10): 2 431-2 448.
52 PETTERS M D, KREIDENWEIS S M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity-part 3: including surfactant partitioning[J]. Atmospheric Chemistry and Physics, 2013, 13(2): 1 081-1 091.
53 ESTILLORE A D, MORRIS H S, OR V W, et al. Linking hygroscopicity and the surface microstructure of model inorganic salts, simple and complex carbohydrates, and authentic sea spray aerosol particles[J]. Physical Chemistry Chemical Physics, 2017, 19(31): 21 101-21 111.
54 BRAMBLETT R L, FROSSARD A A. Constraining the effect of surfactants on the hygroscopic growth of model sea spray aerosol particles[J]. The Journal of Physical Chemistry A, 2022, 126(46): 8 695-8 710.
55 LIU H C, PEI X Y, ZHANG F, et al. Relative humidity dependence of growth factor and real refractive index for sea salt/malonic acid internally mixed aerosols[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(6). DOI:10.1029/2022JD037579 .
56 CRUZ C N, PANDIS S N. Deliquescence and hygroscopic growth of mixed inorganic-organic atmospheric aerosol[J]. Environmental Science & Technology, 2000, 34(20): 4 313-4 319.
57 FORESTIERI S D, STAUDT S M, KUBORN T M, et al. Establishing the impact of model surfactants on cloud condensation nuclei activity of sea spray aerosol mimics[J]. Atmospheric Chemistry and Physics, 2018, 18(15): 10 985-11 005.
58 SWANSON B E, FROSSARD A A. Influence of selected cationic, anionic, and nonionic surfactants on hygroscopic growth of individual aqueous coarse mode aerosol particles[J]. Aerosol Science and Technology, 2023, 57(1): 63-76.
59 FARMER D K, CAPPA C D, KREIDENWEIS S M. Atmospheric processes and their controlling influence on cloud condensation nuclei activity[J]. Chemical Reviews, 2015, 115(10): 4 199-4 217.
60 KÖHLER H. The nucleus in and the growth of hygroscopic droplets[J]. Transactions of the Faraday Society, 1936, 32(0): 1 152-1 161.
61 SORJAMAA R, SVENNINGSSON B, RAATIKAINEN T, et al. The role of surfactants in Köhler theory reconsidered[J]. Atmospheric Chemistry and Physics, 2004, 4(8): 2 107-2 117.
62 LIN J J, KRISTENSEN T B, CALDERÓN S M, et al. Effects of surface tension time-evolution for CCN activation of a complex organic surfactant[J]. Environmental Science: Processes & Impacts, 2020, 22(2): 271-284.
63 RUEHL C R, CHUANG P Y, NENES A, et al. Strong evidence of surface tension reduction in microscopic aqueous droplets[J]. Geophysical Research Letters, 2012, 39(23). DOI: 10.1029/2012GL053706 .
64 MOORE M J K, FURUTANI H, ROBERTS G C, et al. Effect of organic compounds on Cloud Condensation Nuclei (CCN) activity of sea spray aerosol produced by bubble bursting[J]. Atmospheric Environment, 2011, 45(39): 7 462-7 469.
65 TARANIUK I, GRABER E R, KOSTINSKI A, et al. Surfactant properties of atmospheric and model Humic-Like Substances (HULIS)[J]. Geophysical Research Letters, 2007, 34(16). DOI:10.1029/2007GL029576 .
66 VANHANEN J, HYVÄRINEN A P, ANTTILA T, et al. Ternary solution of sodium chloride, succinic acid and water: surface tension and its influence on cloud droplet activation[J]. Atmospheric Chemistry and Physics, 2008, 8(16): 4 595-4 604.
67 PRISLE N L, RAATIKAINEN T, LAAKSONEN A, et al. Surfactants in cloud droplet activation: mixed organic-inorganic particles[J]. Atmospheric Chemistry and Physics, 2010, 10(12): 5 663-5 683.
68 ABBATT J P D, BROEKHUIZEN K, PRADEEP K P. Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles[J]. Atmospheric Environment, 2005, 39(26): 4 767-4 778.
69 HARTERY S, MACINNIS J, CHANG R Y W. Effect of sodium dodecyl benzene sulfonate on the production of cloud condensation nuclei from breaking waves[J]. ACS Earth and Space Chemistry, 2022, 6(12): 2 944-2 954.
70 SCHWIER A N, SAREEN N, LATHEM T L, et al. Ozone oxidation of oleic acid surface films decreases aerosol cloud condensation nuclei activity[J]. Journal of Geophysical Research, 2011, 116(D16). DOI:10.1029/2010JD015520 .
71 CHRISTIANSEN S, ICKES L, BULATOVIC I, et al. Influence of Arctic microlayers and algal cultures on sea spray hygroscopicity and the possible implications for mixed-phase clouds[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(19). DOI:10.1029/2020JD032808 .
72 CORNWELL G C, MCCLUSKEY C S, LEVIN E J T, et al. Direct online mass spectrometry measurements of ice nucleating particles at a California coastal site[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(22): 12 157-12 172.
73 WILSON T W, LADINO L A, ALPERT P A, et al. A marine biogenic source of atmospheric ice-nucleating particles[J]. Nature, 2015, 525(7 568): 234-238.
74 MCCLUSKEY C S, HILL T C J, SULTANA C M, et al. A mesocosm double feature: insights into the chemical makeup of marine ice nucleating particles[J]. Journal of the Atmospheric Sciences, 2018, 75(7): 2 405-2 423.
75 MCCLUSKEY C S, HILL T C J, MALFATTI F, et al. A dynamic link between ice nucleating particles released in nascent sea spray aerosol and oceanic biological activity during two mesocosm experiments[J]. Journal of the Atmospheric Sciences, 2017, 74(1): 151-166.
76 DEMOTT P J, MASON R H, MCCLUSKEY C S, et al. Ice nucleation by particles containing long-chain fatty acids of relevance to freezing by sea spray aerosols[J]. Environmental Science: Processes & Impacts, 2018, 20(11): 1 559-1 569.
77 KNOPF D A, FORRESTER S M. Freezing of water and aqueous NaCl droplets coated by organic monolayers as a function of surfactant properties and water activity[J]. The Journal of Physical Chemistry A, 2011, 115(22): 5 579-5 591.
78 QIU Y Q, ODENDAHL N, HUDAIT A, et al. Ice nucleation efficiency of hydroxylated organic surfaces is controlled by their structural fluctuations and mismatch to ice[J]. Journal of the American Chemical Society, 2017, 139(8): 3 052-3 064.
79 BUCK R C, FRANKLIN J, BERGER U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4): 513-541.
80 SCHWIDETZKY R, SUN Y L, FRÖHLICH-NOWOISKY J, et al. Ice nucleation activity of perfluorinated organic acids[J]. The Journal of Physical Chemistry Letters, 2021, 12(13): 3 431-3 435.
[1] 李莉, 于蒙, 赵美训. 甾醇类单体化合物纯化分析技术及其同位素应用的研究进展[J]. 地球科学进展, 2022, 37(12): 1223-1231.
[2] 张晓潼, 袁华茂, 宋金明, 段丽琴. 海洋 ReMoU对氧化还原环境的指示作用[J]. 地球科学进展, 2022, 37(4): 358-369.
[3] 刘建安, 于雪晴, 彭彤, 杜金洲. 近海海水养殖海域海底地下水排放的研究进展[J]. 地球科学进展, 2021, 36(12): 1235-1246.
[4] 泮枫敏,袁华茂,宋金明,段丽琴. 海水痕量元素—有机配体的配分特征与影响因素研究进展[J]. 地球科学进展, 2019, 34(5): 499-512.
[5] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[6] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[7] 任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.
[8] 马其琦, 柯长青. 江苏近海有色可溶有机物时空分布特征[J]. 地球科学进展, 2017, 32(5): 524-534.
[9] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[10] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[11] 黄鹏, 陈立奇, 蔡明刚. 全球海洋人为碳储量估算及时空分布研究进展[J]. 地球科学进展, 2015, 30(9): 952-959.
[12] 黄鹏, 陈立奇, 蔡明刚. 全球海洋人为碳储量估算及时空分布研究进展[J]. 地球科学进展, 2015, 30(8): 952-959.
[13] 卢汐, 宋金明, 袁华茂, 李宁. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214-225.
[14] 王江海, 孙贤贤, 徐小明, 吴酬飞, 彭娟, 袁建平. 海洋碳封存技术:现状、问题与未来[J]. 地球科学进展, 2015, 30(1): 17-25.
[15] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
阅读次数
全文


摘要