1 |
QUINN P K, COLLINS D B, GRASSIAN V H, et al. Chemistry and related properties of freshly emitted sea spray aerosol[J]. Chemical Reviews, 2015, 115(10): 4 383-4 399.
|
2 |
CLARKE A D, OWENS S R, ZHOU J C. An ultrafine sea-salt flux from breaking waves: implications for cloud condensation nuclei in the remote marine atmosphere[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D6). DOI:10.1029/2005JD006565 .
|
3 |
de LEEUW G, ANDREAS E L, ANGUELOVA M D, et al. Production flux of sea spray aerosol[J]. Reviews of Geophysics, 2011, 49(2). DOI:10.1029/2010RG000349 .
|
4 |
ERLICK C, RUSSELL L M, RAMASWAMY V. A microphysics-based investigation of the radiative effects of aerosol-cloud interactions for two MAST experiment case studies[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D1): 1 249-1 269.
|
5 |
BLANCHARD D C. Sea-to-air transport of surface active material[J]. Science, 1964, 146(3 642): 396-397.
|
6 |
LHUISSIER H, VILLERMAUX E. Bursting bubble aerosols[J]. Journal of Fluid Mechanics, 2012, 696: 5-44.
|
7 |
BLANCO-RODRÍGUEZ F J, GORDILLO J M. On the sea spray aerosol originated from bubble bursting jets[J]. Journal of Fluid Mechanics, 2020, 886. DOI:10.1017/jfm.2019.1061 .
|
8 |
COCHRAN R E, LASKINA O, TRUEBLOOD J V, et al. Molecular diversity of sea spray aerosol particles: impact of ocean biology on particle composition and hygroscopicity[J]. Chem, 2017, 2(5): 655-667.
|
9 |
RASTELLI E, CORINALDESI C, DELL’ANNO A, et al. Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: an experimental approach[J]. Scientific Reports, 2017, 7(1): 1-10.
|
10 |
PENDERGRAFT M A, BELDA-FERRE P, PETRAS D, et al. Bacterial and chemical evidence of coastal water pollution from the Tijuana River in sea spray aerosol[J]. Environmental Science & Technology, 2023, 57(10): 4 071-4 081.
|
11 |
COCHRAN R E, RYDER O S, GRASSIAN V H, et al. Sea spray aerosol: the chemical link between the oceans, atmosphere, and climate[J]. Accounts of Chemical Research, 2017, 50(3): 599-604.
|
12 |
EASTOE J, DALTON J S. Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface[J]. Advances in Colloid and Interface Science, 2000, 85(2/3): 103-144.
|
13 |
MODINI R L, RUSSELL L M, DEANE G B, et al. Effect of soluble surfactant on bubble persistence and bubble-produced aerosol particles[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(3): 1 388-1 400.
|
14 |
PETERSON R E, TYLER B J. Analysis of organic and inorganic species on the surface of atmospheric aerosol using Time-Of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS)[J]. Atmospheric Environment, 2002, 36(39/40): 6 041-6 049.
|
15 |
NGUYEN Q T, KJÆR K H, KLING K I, et al. Impact of fatty acid coating on the CCN activity of sea salt particles[J]. Tellus B: Chemical and Physical Meteorology, 2017, 69(1). DOI: 10.1080/16000889.2017.1304064 .
|
16 |
ALLER J Y, RADWAY J C, KILTHAU W P, et al. Size-resolved characterization of the polysaccharidic and proteinaceous components of sea spray aerosol[J]. Atmospheric Environment, 2017, 154: 331-347.
|
17 |
DONALDSON D J, GEORGE C. Sea-surface chemistry and its impact on the marine boundary layer[J]. Environmental Science & Technology, 2012, 46(19): 10 385-10 389.
|
18 |
WATNE Å K, WESTERLUND J, HALLQUIST Å M, et al. Ozone and OH-induced oxidation of monoterpenes: changes in the thermal properties of Secondary Organic Aerosol (SOA)[J]. Journal of Aerosol Science, 2017, 114: 31-41.
|
19 |
ENDERS A A, ELLIOTT S M, ALLEN H C. Carbon on the ocean surface: temporal and geographical investigation[J]. ACS Earth and Space Chemistry, 2023, 7(2): 360-369.
|
20 |
SALTER M E, UPSTILL-GODDARD R C, NIGHTINGALE P D, et al. Impact of an artificial surfactant release on air-sea gas fluxes during deep ocean gas exchange experiment II[J]. Journal of Geophysical Research: Oceans, 2011, 116(C11). DOI:10.1029/2011JC007023 .
|
21 |
PEREIRA R, ASHTON I, SABBAGHZADEH B, et al. Reduced air-sea CO2 exchange in the Atlantic Ocean due to biological surfactants[J]. Nature Geoscience, 2018, 11(7): 492-496.
|
22 |
LATIF M T, BRIMBLECOMBE P. Surfactants in atmospheric aerosols[J]. Environmental Science & Technology, 2004, 38(24): 6 501-6 506.
|
23 |
CINCINELLI A, STORTINI A M, PERUGINI M, et al. Organic pollutants in sea-surface microlayer and aerosol in the coastal environment of Leghorn—Tyrrhenian Sea[J]. Marine Chemistry, 2001, 76(1/2): 77-98.
|
24 |
FRANKLIN E B, AMIRI S, CROCKER D, et al. Anthropogenic and biogenic contributions to the organic composition of coastal submicron sea spray aerosol[J]. Environmental Science & Technology, 2022, 56(23): 16 633-16 642.
|
25 |
KALUARACHCHI C P, LEE H D, LAN Y L, et al. Surface tension measurements of aqueous liquid-air interfaces probed with microscopic indentation[J]. Langmuir, 2021, 37(7): 2 457-2 465.
|
26 |
FROSSARD A A, GÉRARD V, DUPLESSIS P, et al. Properties of seawater surfactants associated with primary marine aerosol particles produced by bursting bubbles at a model air-sea interface[J]. Environmental Science & Technology, 2019, 53(16): 9 407-9 417.
|
27 |
WURL O, MILLER L, RÖTTGERS R, et al. The distribution and fate of surface-active substances in the sea-surface microlayer and water column[J]. Marine Chemistry, 2009, 115(1/2): 1-9.
|
28 |
BARTHELMEß T, ENGEL A. How biogenic polymers control surfactant dynamics in the surface microlayer: insights from a coastal Baltic Sea study[J]. Biogeosciences, 2022, 19(20): 4 965-4 992.
|
29 |
SHAHAROM S, LATIF M T, KHAN M F, et al. Surfactants in the sea surface microlayer, subsurface water and fine marine aerosols in different background coastal areas[J]. Environmental Science and Pollution Research, 2018, 25(27): 27 074-27 089.
|
30 |
HUANG Y J, BRIMBLECOMBE P, LEE C L, et al. Surfactants in the sea-surface microlayer and sub-surface water at estuarine locations: their concentration, distribution, enrichment, and relation to physicochemical characteristics[J]. Marine Pollution Bulletin, 2015, 97(1/2): 78-84.
|
31 |
COCHRAN R E, LASKINA O, JAYARATHNE T, et al. Analysis of organic anionic surfactants in fine and coarse fractions of freshly emitted sea spray aerosol[J]. Environmental Science & Technology, 2016, 50(5): 2 477-2 486.
|
32 |
BURDETTE T C, FROSSARD A A. Characterization of seawater and aerosol particle surfactants using solid phase extraction and mass spectrometry[J]. Journal of Environmental Sciences, 2021, 108: 164-174.
|
33 |
LI Zhong, CHEN Liqi, YAN Jinpei. Review on application of aerosol mass spectrometric technique in characterizing submicron particles in marine aerosols[J]. Advances in Earth Science, 2015, 30(2): 226-236.
|
|
李忠, 陈立奇, 颜金培. 气溶胶质谱技术在海洋气溶胶亚微米级颗粒物特征的研究进展[J]. 地球科学进展, 2015, 30(2): 226-236.
|
34 |
BURDETTE T C, BRAMBLETT R L, ZIMMERMANN K, et al. Influence of air mass source regions on signatures of surface-active organic molecules in size resolved atmospheric aerosol particles[J]. ACS Earth and Space Chemistry, 2023, 7(8): 1 578-1 591.
|
35 |
FACCHINI M C, RINALDI M, DECESARI S, et al. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates[J]. Geophysical Research Letters, 2008, 35(17). DOI: 10.1029/2008GL034210 .
|
36 |
LONG M S, KEENE W C, KIEBER D J, et al. Light-enhanced primary marine aerosol production from biologically productive seawater[J]. Geophysical Research Letters, 2014, 41(7): 2 661-2 670.
|
37 |
QUINN P K, BATES T S, SCHULZ K S, et al. Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol[J]. Nature Geoscience, 2014, 7(3): 228-232.
|
38 |
HU Jie, LI Jianlong, LI Kun, et al. Laboratory simulation of sea spray aerosol[J]. Environmental Chemistry, 2023, 42(3): 963-975.
|
|
胡杰, 李建龙, 李坤, 等. 海洋飞沫气溶胶的实验模拟[J]. 环境化学, 2023, 42(3): 963-975.
|
39 |
TYREE C A, HELLION V M, ALEXANDROVA O A, et al. Foam droplets generated from natural and artificial seawaters[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D12). DOI:10.1029/2006JD007729 .
|
40 |
FROSSARD A A, LONG M S, KEENE W C, et al. Marine aerosol production via detrainment of bubble plumes generated in natural seawater with a forced-air venturi[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(20): 10 931-10 950.
|
41 |
ZÁBORI J, MATISĀNS M, KREJCI R, et al. Artificial primary marine aerosol production: a laboratory study with varying water temperature, salinity, and succinic acid concentration[J]. Atmospheric Chemistry and Physics, 2012, 12(22): 10 709-10 724.
|
42 |
GARRETT W D. The influence of monomolecular surface films on the production of condensation nuclei from bubbled sea water[J]. Journal of Geophysical Research, 1968, 73(16): 5 145-5 150.
|
43 |
KING S M, BUTCHER A C, ROSENOERN T, et al. Investigating primary marine aerosol properties: CCN activity of sea salt and mixed inorganic-organic particles[J]. Environmental Science & Technology, 2012, 46(19): 10 405-10 412.
|
44 |
LIU L R, DU L, XU L, et al. Molecular size of surfactants affects their degree of enrichment in the sea spray aerosol formation[J]. Environmental Research, 2022, 206. DOI:10.1016/j.envres.2021.112555 .
|
45 |
SELLEGRI K, O’DOWD C D, YOON Y J, et al. Surfactants and submicron sea spray generation[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D22). DOI:10.1029/2005JD006658 .
|
46 |
FUENTES E, COE H, GREEN D, et al. On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol-part 1: source fluxes[J]. Atmospheric Chemistry and Physics, 2010, 10(19): 9 295-9 317.
|
47 |
ALPERT P A, KILTHAU W P, BOTHE D W, et al. The influence of marine microbial activities on aerosol production: a laboratory mesocosm study[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(17): 8 841-8 860.
|
48 |
ZHOU J C, SWIETLICKI E, BERG O H, et al. Hygroscopic properties of aerosol particles over the central Arctic Ocean during summer[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D23): 32 111-32 123.
|
49 |
MOCHIDA M, NISHITA-HARA C, FURUTANI H, et al. Hygroscopicity and cloud condensation nucleus activity of marine aerosol particles over the western North Pacific[J]. Journal of Geophysical Research, 2011, 116(D6). DOI:10.1029/2010JD014759 .
|
50 |
SCHILL S R, COLLINS D B, LEE C, et al. The impact of aerosol particle mixing state on the hygroscopicity of sea spray aerosol[J]. ACS Central Science, 2015, 1(3): 132-141.
|
51 |
CHEN Y Y, LEE W M G. Hygroscopic properties of inorganic-salt aerosol with surface-active organic compounds[J]. Chemosphere, 1999, 38(10): 2 431-2 448.
|
52 |
PETTERS M D, KREIDENWEIS S M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity-part 3: including surfactant partitioning[J]. Atmospheric Chemistry and Physics, 2013, 13(2): 1 081-1 091.
|
53 |
ESTILLORE A D, MORRIS H S, OR V W, et al. Linking hygroscopicity and the surface microstructure of model inorganic salts, simple and complex carbohydrates, and authentic sea spray aerosol particles[J]. Physical Chemistry Chemical Physics, 2017, 19(31): 21 101-21 111.
|
54 |
BRAMBLETT R L, FROSSARD A A. Constraining the effect of surfactants on the hygroscopic growth of model sea spray aerosol particles[J]. The Journal of Physical Chemistry A, 2022, 126(46): 8 695-8 710.
|
55 |
LIU H C, PEI X Y, ZHANG F, et al. Relative humidity dependence of growth factor and real refractive index for sea salt/malonic acid internally mixed aerosols[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(6). DOI:10.1029/2022JD037579 .
|
56 |
CRUZ C N, PANDIS S N. Deliquescence and hygroscopic growth of mixed inorganic-organic atmospheric aerosol[J]. Environmental Science & Technology, 2000, 34(20): 4 313-4 319.
|
57 |
FORESTIERI S D, STAUDT S M, KUBORN T M, et al. Establishing the impact of model surfactants on cloud condensation nuclei activity of sea spray aerosol mimics[J]. Atmospheric Chemistry and Physics, 2018, 18(15): 10 985-11 005.
|
58 |
SWANSON B E, FROSSARD A A. Influence of selected cationic, anionic, and nonionic surfactants on hygroscopic growth of individual aqueous coarse mode aerosol particles[J]. Aerosol Science and Technology, 2023, 57(1): 63-76.
|
59 |
FARMER D K, CAPPA C D, KREIDENWEIS S M. Atmospheric processes and their controlling influence on cloud condensation nuclei activity[J]. Chemical Reviews, 2015, 115(10): 4 199-4 217.
|
60 |
KÖHLER H. The nucleus in and the growth of hygroscopic droplets[J]. Transactions of the Faraday Society, 1936, 32(0): 1 152-1 161.
|
61 |
SORJAMAA R, SVENNINGSSON B, RAATIKAINEN T, et al. The role of surfactants in Köhler theory reconsidered[J]. Atmospheric Chemistry and Physics, 2004, 4(8): 2 107-2 117.
|
62 |
LIN J J, KRISTENSEN T B, CALDERÓN S M, et al. Effects of surface tension time-evolution for CCN activation of a complex organic surfactant[J]. Environmental Science: Processes & Impacts, 2020, 22(2): 271-284.
|
63 |
RUEHL C R, CHUANG P Y, NENES A, et al. Strong evidence of surface tension reduction in microscopic aqueous droplets[J]. Geophysical Research Letters, 2012, 39(23). DOI: 10.1029/2012GL053706 .
|
64 |
MOORE M J K, FURUTANI H, ROBERTS G C, et al. Effect of organic compounds on Cloud Condensation Nuclei (CCN) activity of sea spray aerosol produced by bubble bursting[J]. Atmospheric Environment, 2011, 45(39): 7 462-7 469.
|
65 |
TARANIUK I, GRABER E R, KOSTINSKI A, et al. Surfactant properties of atmospheric and model Humic-Like Substances (HULIS)[J]. Geophysical Research Letters, 2007, 34(16). DOI:10.1029/2007GL029576 .
|
66 |
VANHANEN J, HYVÄRINEN A P, ANTTILA T, et al. Ternary solution of sodium chloride, succinic acid and water: surface tension and its influence on cloud droplet activation[J]. Atmospheric Chemistry and Physics, 2008, 8(16): 4 595-4 604.
|
67 |
PRISLE N L, RAATIKAINEN T, LAAKSONEN A, et al. Surfactants in cloud droplet activation: mixed organic-inorganic particles[J]. Atmospheric Chemistry and Physics, 2010, 10(12): 5 663-5 683.
|
68 |
ABBATT J P D, BROEKHUIZEN K, PRADEEP K P. Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles[J]. Atmospheric Environment, 2005, 39(26): 4 767-4 778.
|
69 |
HARTERY S, MACINNIS J, CHANG R Y W. Effect of sodium dodecyl benzene sulfonate on the production of cloud condensation nuclei from breaking waves[J]. ACS Earth and Space Chemistry, 2022, 6(12): 2 944-2 954.
|
70 |
SCHWIER A N, SAREEN N, LATHEM T L, et al. Ozone oxidation of oleic acid surface films decreases aerosol cloud condensation nuclei activity[J]. Journal of Geophysical Research, 2011, 116(D16). DOI:10.1029/2010JD015520 .
|
71 |
CHRISTIANSEN S, ICKES L, BULATOVIC I, et al. Influence of Arctic microlayers and algal cultures on sea spray hygroscopicity and the possible implications for mixed-phase clouds[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(19). DOI:10.1029/2020JD032808 .
|
72 |
CORNWELL G C, MCCLUSKEY C S, LEVIN E J T, et al. Direct online mass spectrometry measurements of ice nucleating particles at a California coastal site[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(22): 12 157-12 172.
|
73 |
WILSON T W, LADINO L A, ALPERT P A, et al. A marine biogenic source of atmospheric ice-nucleating particles[J]. Nature, 2015, 525(7 568): 234-238.
|
74 |
MCCLUSKEY C S, HILL T C J, SULTANA C M, et al. A mesocosm double feature: insights into the chemical makeup of marine ice nucleating particles[J]. Journal of the Atmospheric Sciences, 2018, 75(7): 2 405-2 423.
|
75 |
MCCLUSKEY C S, HILL T C J, MALFATTI F, et al. A dynamic link between ice nucleating particles released in nascent sea spray aerosol and oceanic biological activity during two mesocosm experiments[J]. Journal of the Atmospheric Sciences, 2017, 74(1): 151-166.
|
76 |
DEMOTT P J, MASON R H, MCCLUSKEY C S, et al. Ice nucleation by particles containing long-chain fatty acids of relevance to freezing by sea spray aerosols[J]. Environmental Science: Processes & Impacts, 2018, 20(11): 1 559-1 569.
|
77 |
KNOPF D A, FORRESTER S M. Freezing of water and aqueous NaCl droplets coated by organic monolayers as a function of surfactant properties and water activity[J]. The Journal of Physical Chemistry A, 2011, 115(22): 5 579-5 591.
|
78 |
QIU Y Q, ODENDAHL N, HUDAIT A, et al. Ice nucleation efficiency of hydroxylated organic surfaces is controlled by their structural fluctuations and mismatch to ice[J]. Journal of the American Chemical Society, 2017, 139(8): 3 052-3 064.
|
79 |
BUCK R C, FRANKLIN J, BERGER U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4): 513-541.
|
80 |
SCHWIDETZKY R, SUN Y L, FRÖHLICH-NOWOISKY J, et al. Ice nucleation activity of perfluorinated organic acids[J]. The Journal of Physical Chemistry Letters, 2021, 12(13): 3 431-3 435.
|