地球科学进展 ›› 2023, Vol. 38 ›› Issue (12): 1224 -1242. doi: 10.11867/j.issn.1001-8166.2023.083

综述与评述 上一篇    下一篇

利用 CiteSpace可视化分析中国黑色页岩研究现状
王青山( ), 常超, 吴来源, 张兴亮( )   
  1. 西北大学地质学系,陕西省早期生命与环境重点实验室,大陆动力学国家重点实验室,陕西 西安 710069
  • 收稿日期:2023-07-05 修回日期:2023-11-09 出版日期:2023-12-10
  • 通讯作者: 张兴亮 E-mail:wangqingshan@stumail.nwu.edu.cn;xzhang69@nwu.edu.cn
  • 基金资助:
    国家自然科学基金项目(42242201);陕西省自然科学基础研究计划项目(2022JC-DW5-01)

Using CiteSpace to Visualize Black Shale Research of China

Qingshan WANG( ), Chao CHANG, Laiyuan WU, Xingliang ZHANG( )   

  1. State Key Laboratory of the Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi’an 710069, China
  • Received:2023-07-05 Revised:2023-11-09 Online:2023-12-10 Published:2023-12-26
  • Contact: Xingliang ZHANG E-mail:wangqingshan@stumail.nwu.edu.cn;xzhang69@nwu.edu.cn
  • About author:WANG Qingshan, Master student, research area includes paleontology and stratigraphy. E-mail: wangqingshan@stumail.nwu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(42242201);The Shaanxi Provincial Natural Science Basic Research Program(2022JC-DW5-01)

黑色页岩是地球深部及地表多圈层联动条件下生命过程和非生命过程共同作用的产物,含有丰富的社会发展不可或缺的能源资源,是坚持“四个面向”、开展学科交叉基础前沿研究、服务国家高质量发展的广阔研究领域。为全面了解中国黑色页岩研究现状,厘清热点研究课题,深入挖掘研究前沿与热点并掌握其发展动向,使用CiteSpace可视化软件对收录在中国知网(1 466篇)和Web of Science(1 069篇)数据库中有关中国黑色页岩的文献进行了知识图谱分析。结果显示:相关论文发表量自21世纪以来逐年上升,机构间合作研究网络逐渐增强,研究走向国际化,学术影响力显著提升;核心研究主题包括页岩气、龙马溪组和四川盆地等关键词;研究前沿聚类涵盖“南华北盆地”(Southern North China Basin)“五峰—龙马溪组”“奥陶系—志留系过渡时期”“早寒武世”“镍钼多金属硫化物层”“埃迪卡拉纪放射性成因Sr同位素偏移”“奥陶系—志留系五峰—龙马溪页岩”“鄂尔多斯”“华南”“页岩气潜力”“寒武纪沉积相”“早寒武世黑色页岩”等12个子域。总结得出,中国黑色页岩研究正处于快速发展阶段,热点研究学科为石油与天然气地质学,热点研究区域为四川盆地,热点关注地层有五峰组—龙马溪组和牛蹄塘组等。前沿研究主题由早期的矿床学和沉积学研究等向现在的石油与天然气地质学研究转移。整体上看,中国黑色页岩研究在“学科”“区域”以及“地层”方面关注力度不均衡,尤其学科间分割现象较明显,合作不紧密,多学科协同研究没有体现;对黑色页岩本身的研究重点关注沉积环境和氧化还原条件,沉积过程和机理研究不够显著。建议加强学科节交叉和融合,从面向科学前沿和服务国家需求两方面开展黑色页岩综合研究。

Black shale is the product of the joint action of life and non-life processes under the condition of multi-circle linkage in the deep inside and on the surface of the Earth and contains abundant energy resources indispensable for social development. To comprehensively understand the research status of black shale in China, clarify the notable research topics, deeply assess the research frontiers and hot spots, and grasp their development trends; a knowledge graph analysis of the literature on black shale in China included in the CNKI (1 466 articles) and Web of Science (1 069 articles) databases was performed using CiteSpace visualization software. The results showed that the number of published papers has increased annually since the beginning of this century, inter-institutional and international cooperation has gradually strengthened, and academic influence has notably expanded. The core research topics included shale gas, Longmaxi Formation, the Sichuan Basin, and other keywords. The research frontier clusters cover 12 subdomains, including “Southern North China Basin”, “Wufeng-Longmaxi Formation”, “Ordovician-Silurian Transition”, “Early Cambrian”, “Ni-Mo Polymetallic Sulfide Bed”, “Ediacaran Radiogenic Sr Isotope Excursion”, “Ordovician-Silurian Wufeng-Longmaxi Shale”, “Ordos”, “South China”, “Shale Gas Potential”, “Cambrian Facies”, and “Early Cambrian Black Shale”. The research on black shale in China is concluded to be in a stage of rapid development, with the most notable research discipline being petroleum geology. The hottest research area is the Sichuan Basin, and the hottest strata include the Wufeng-Longmaxi and Niutitang formations. Frontier research topics have shifted from mineral deposits and sedimentology to petroleum geology. Overall, biased attention has been given to black shale research in China in terms of the discipline, targeted regions, and strata. Multidisciplinary collaborative research remains rare, and its scientific strengths require to be adequately explored. In addition, the study of black shale has been mainly limited to sedimentary environments and redox conditions, whereas the sedimentary processes and mechanisms have not been adequately studied. Currently, an urgent requirement prevailsto strengthen interdisciplinary cooperation and integration and perform major comprehensive research projects on black shale to lead scientific research frontiers and serve the developmental needs of our country.

中图分类号: 

图1 CNKIWeb of Science数据库中国黑色页岩论文年发表量
Fig. 1 Annual published papers on Chinese black shalebased on databases of CNKI and Web of Science
图2 中国黑色页岩的机构合作图谱
(a) CNKI数据库; (b) Web of Science 数据库;左下角是时间分区图例;图中节点大小代表机构合作发文量,节点同心圆的宽度和颜色对应发文量和时间分区,连线代表合作关系
Fig. 2 Diagram showing institutional cooperations on black shale research in China
(a) CNKI database; (b) Web of Science database;The legend of time partition is annotated on the lower left of the diagrams; The size of the nodes in the diagrams represents the number of paper cooperation for the institution, the width and color of the concentric circles correspond to the number of documents published and the time partition, and the connection reveals the cooperative relationships
表1 中国黑色页岩研究发文量前 10位的机构
Table 1 Top 10 institutions by the number of published papers on black shale research in China
图3 中国黑色页岩研究关键词共现图谱
(a) CNKI数据库; (b) Web of Science 数据库;左下角是时间分区图例;图中节点大小代表关键词频次,节点同心圆的宽度和颜色对应发文量和时间分区,连线代表关键词共同出现在同一篇文章中
Fig. 3 Keyword co-occurrence diagram on black shale research in China
(a) CNKI database; (b) Web of Science database;The legend of time partition are annotated on the lower left of the diagrams; The size of the nodes in the diagrams represents the frequency of the keywords, the width and color of the concentric circles corresponds to the number of documents published and the time partition, and the connecting lines indicate the keywords used in the same article
图4 中国黑色页岩各相关学科发文趋势图
Fig. 4 Temporal trend of the number of published papers on Chinese black shale by different subjects
图5 代表性页岩气地层年发文量统计
Fig. 5 Statistics of annual yield of publications on gas shale formations in China
图6 中国黑色页岩分布区域发文趋势图
Fig. 6 Temporal trend of the number of published papers on black shale from different areas in China
图7 中国不同时代黑色页岩地层发文趋势图
Fig. 7 Temporal trend of the number of published papers on black shale units in China
图8 中国黑色页岩研究文献共被引聚类图谱(Web of Science数据库)
图谱左下角是聚类图例;图中聚类名称由施引文献标题确定,序号越小,聚类越大;聚类中的节点是被引文献节点,其中标红的文献是被引频次最多的文献
Fig. 8 Literature co-citation clustering diagram on black shale research in Chinabased on Web of Science database
The legend of clusters are annotated on the lower left of the diagrams; The cluster name in the diagram is determined by the title of the cited literatures, and the clusters are numbered in descending order by size. The nodes in the cluster represent the cited literatures, with the most frequently cited annotated in red
表2 中国黑色页岩研究领域高频共引文献(频次≥ 40 38 - 47
Table 2 High-frequency co-citation literature in the field of black shale research in Chinafrequency40 38 - 47
表3 中国黑色页岩研究领域高中心性共引文献(中心性≥ 0.1 43 47 - 64
Table 3 Highly centralized co-citation literature in the field of black shale research in Chinacentrality0.1 43 47 - 64
序号 中心性 年份 文献信息 序号 中心性 年份 文献信息
1 0.41 2014 FENG L J. Precambrian Research, 2014,246. DOI:10.1016/j.precamres.2014.03.002. 11 0.14 2012 XU L G. Chemical Geology, 2012,318. DOI:10. 1016/j.chemgeo.2012.05.016.
2 0.25 2015 ZHOU L. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015,420. DOI:10.1016/j.palaeo.2014.12.012. 12 0.14 2012 WANG J G. Chemical Geology, 2012,306. DOI:10.1016/j.chemgeo.2012.03.005.
3 0.23 2006 JIANG S Y. Mineralium Deposita, 2006,41. DOI:10.1007/s00126-006-0066-6. 13 0.13 2015 TIAN H. Marine and Petroleum Geology, 2015, 62. DOI:10.1016/j.marpetgeo.2015.01.004.
4 0.23 2008 PASAVA J. Resource Geology, 2008,58. DOI:10.1111/j.1751-3928.2007.00042.x. 14 0.12 2016 JIN C S. Earth and Planetary Science Letters, 2016,441. DOI:10.1016/j.epsl.2016.02.019.
5 0.20 2013 OCH L M. Precambrian Research, 2013, 225. DOI:10.1016/j.precamres.2011.10.005. 15 0.11 2016 MA Y Q. Marine and Petroleum Geology, 2016, 75. DOI:10.1016/j.marpetgeo.2016.04.024.
6 0.16 2015 YAN D T. Marine and Petroleum Geology, 2015,65. DOI:10.1016/j.marpetgeo.2015.04.016. 16 0.11 2015 CHEN D Z. Terra Nova, 2015, 27. DOI:10. 1111/ter.12134.
7 0.16 2010 POULTON S W. Nature Geoscience, 2010,3. DOI:10.1038/NGEO889. 17 0.11 2011 XU L G. Economic Geology, 2011, 106. DOI:10.2113/econgeo.106.3.511.
8 0.15 2015 WANG S F. Marine and Petroleum Geology, 2015,66. DOI:10.1016/j.marpetgeo.2015.07.009. 18 0.10 2002 MAO J W. Economic Geology and the Bulletin of the Society of Economic, 2002, 97. DOI:10.2113/97.5.1051.
9 0.15 2008 CANFIELD D E. Science, 2008,321. DOI:10.1126/science.1154499. 19 0.10 2004 YANG J H. Progress in Natural Science: Materials International, 2004, 14. DOI:10.1080/10020070412331343291.
10 0.15 2013 TAN J Q. Marine and Petroleum Geology, 2013, 48. DOI:10.1016/j.marpetgeo.2013.07.013.
表4 中国黑色页岩研究 12个聚类的名称及结果
Table 4 Names and results of 12 clusters on black shale research in China
图9 中国黑色页岩研究文献共被引聚类时线图谱
图谱左下角是时间分区图例;图中节点大小代表被引文献频次,节点同心圆的宽度和颜色对应发文量和时间分区
Fig. 9 Diagram showing timeline of the literature co-citation clusters on black shale research in China
The legend of time partition are annotated on the lower left of the diagrams; The size of the node in the diagram represents the frequency of the cited literatures, and the width and color of the concentric circle corresponds to the number of documents published and the time partition
1 WIGNALL P B. Black shales[M]. Oxford: Clarendon Press, 1994.
2 PETERS S E, QUINN D P, HUSSON J M, et al. Macrostratigraphy: insights into cyclic and secular evolution of the earth-life system[J]. Annual Review of Earth and Planetary Sciences, 2022, 50: 419-449.
3 SCHIEBER J. Black shales[M]// MIDDLETON G V, CHURCH M J, CONIGLIO M, et al. Encyclopedia of sediments and sedimentary rocks encyclopedia of Earth sciences. Dordrecht: Springer, 1978.
4 ZHANG X L. Uncover the black box of black shales[J]. The Innovation Geoscience, 2023, 1(1). DOI:10.59717/j.xinn-geo.2023.100005 .
5 LI Zhixing, QIN Mingkuan, LIU Xinyang, et al. Characteristics, genesis and research significance of multi-element enrichment layer of black rock system[J]. World Nuclear Geology, 2022, 39(1): 14-26.
李治兴, 秦明宽, 刘鑫扬, 等. 黑色岩系多元素富集层特征、成因和研究意义[J]. 世界核地质科学, 2022, 39(1): 14-26.
6 TIAN Xin, ZHANG Leichun, LI Xiaoyan, et al. Progress in international shale gas research: based on bibliometric analysis[J]. Natural Gas Geoscience, 2014, 25(11): 1 804-1 810.
田欣, 张蕾春, 李小燕, 等. 国际页岩气研究进展:基于文献计量分析[J]. 天然气地球科学, 2014, 25(11): 1 804-1 810.
7 JIN Shengxi, LIN Zhengjun. Graph analysis of scientific knowledge graph of international metonymy research dynamics(2007-2016)[J]. Journal of Foreign Language Research, 2017, 34(3): 18-23.
金胜昔, 林正军. 国际转喻研究动态的科学知识图谱分析(2007—2016)[J]. 外语研究, 2017, 34(3):18-23.
8 YANG Hui, ZHANG Yong. Knowledge graph analysis of shale gas research in China[J]. China Coal Geology, 2017, 29(4):18-22,61.
杨辉, 张勇. 我国页岩气研究的知识图谱分析[J]. 中国煤炭地质, 2017, 29(4):18-22,61.
9 YANG Zhenheng. Research hotspot of shale gas in foreign countries: research based on visual literature analysis software RefViz[J]. Computer Applications in Petroleum Industry, 2010(2): 30-32.
杨振恒. 国外页岩气研究热点——基于可视化文献分析软件RefViz的研究[J]. 石油工业计算机应用, 2010(2): 30-32.
10 LI Jie, CHEN Chaomei. CiteSpace: text mining and visualization in scientific literature[M]. Beijing: Capital University of Economics & Business Press, 2016.
李杰, 陈超美. CiteSpace:科技文本挖掘及可视化[M]. 北京: 首都经济贸易大学出版社, 2016.
11 REN Yongcan, ZHANG Jianwei, ZHAO Hui. A comparative study on team creativity at home and abroad since the 21st century[J]. Research Management, 2022, 43(11): 65-72.
任永灿, 张建卫, 赵辉. 21世纪以来国内外团队创造力的比较研究[J]. 科研管理, 2022, 43(11): 65-72.
12 Ventilator Safety Teaching and Research Group, Department of Mining, China Institute of Mining and Metallurgy. Study on spontaneous combustion factors of black shale of Tanxiang manganese ore[J]. Journal of Central South University (Natural Science Edition), 1959(1): 49-56.
中国矿冶学院采矿系通风及安全教研组. 潭湘锰矿黑色页岩自燃因素研究[J]. 中南大学学报(自然科学版), 1959(1): 49-56.
13 JIN Shengxi, LIN Zhengjun. Bibliometric analysis of domestic translation cognition research[J]. Foreign Language Teaching, 2016, 37(5): 96-101.
金胜昔, 林正军. 国内翻译认知研究的文献计量分析[J]. 外语教学, 2016, 37(5): 96-101.
14 CHEN Shaopeng, DUAN Yuefang. Current situation, hotspots and trends of China’s agricultural carbon effect research[J]. Advances in Earth Science, 2023, 38(1): 86-98.
陈少鹏, 段跃芳. 中国农业碳效应研究的现状、热点与趋势[J]. 地球科学进展, 2023, 38(1): 86-98.
15 QIU Junping, Hong LÜ. Research on the development of domestic knowledge management based on knowledge graph[J]. Journal of the Chinese Society for Information Technology, 2013, 32(5): 548-560.
邱均平, 吕红. 基于知识图谱的国内知识管理发展研究[J]. 情报学报, 2013, 32(5): 548-560.
16 FAN Delian, YANG Xiuzhen, WANG Lianfang, et al. Petrological and geochemical characteristics of nickel-molybdenum multi-element black rock system in an underground Cambrian system[J]. Geochemistry, 1973(3): 143-164.
范德廉, 杨秀珍, 王连芳, 等. 某地下寒武统含镍钼多元素黑色岩系的岩石学及地球化学特点[J]. 地球化学, 1973(3): 143-164.
17 ZHANG Jinchuan, XU Bo, NIE Haikuan, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008(6):136-140,159-160.
张金川, 徐波, 聂海宽, 等. 中国页岩气资源勘探潜力[J]. 天然气工业, 2008(6): 136-140,159-160.
18 QIU Jiawen, LIU Shugen, SUN Wei, et al. Characteristics of black shale micropores of Wufeng Formation-Longmaxi Formation in Sichuan Basin[J]. Geological Science and Technology Information, 2015, 34(2): 78-86.
邱嘉文, 刘树根, 孙玮, 等. 四川盆地周缘五峰组—龙马溪组黑色页岩微孔特征[J]. 地质科技情报, 2015, 34(2): 78-86.
19 ZOU Caineng, ZHAO Qun, DONG Dazhong, et al. Basic characteristics, main challenges and future prospects of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1 781-1 796.
邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1 781-1 796.
20 WU Jin, WANG Hongyan, SHI Zhensheng, et al. Dominant lithofacies types and genesis mechanisms of black shale in land-sea transitional facies: a case study of Permian Shanxi Formation in the eastern margin of Ordos Basin[J]. Petroleum Exploration and Development, 2021, 48(6): 1 137-1 149.
武瑾, 王红岩, 施振生, 等. 海陆过渡相黑色页岩优势岩相类型及成因机制——以鄂尔多斯盆地东缘二叠系山西组为例[J]. 石油勘探与开发, 2021, 48(6): 1 137-1 149.
21 LI Qiqi, XU Shang. Research status and prospect of sea-land transitional shale reservoirs[J]. Geological Bulletin of China, 2022, 41(8): 1 417-1 429.
李琪琪, 徐尚. 海陆过渡相页岩储层研究现状与展望[J]. 地质通报, 2022, 41(8): 1 417-1 429.
22 CAI Guangyin, JIANG Yuqiang, LI Xingtao, et al. Differences in the characteristics of ocean-land transition facies and marine organic-rich shale reservoirs[J]. Journal of Sedimentology, 2022, 40(4): 1 030-1 042.
蔡光银, 蒋裕强, 李星涛, 等. 海陆过渡相与海相富有机质页岩储层特征差异[J]. 沉积学报, 2022, 40(4): 1 030-1 042.
23 LI Jian, WANG Xiaobo, HOU Lianhua, et al. Natural gas geochemical characteristics and resource potential of shale gas in Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(8): 1 093-1 106.
李剑, 王晓波, 侯连华, 等. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1 093-1 106.
24 DONG Dazhong, QIU Zhen, ZHANG Leifu, et al. Research progress and new discoveries of shale gas formations in terrestrial and marine transitional facies[J]. Journal of Sedimentology, 2021, 39(1): 29-45.
董大忠, 邱振, 张磊夫, 等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报, 2021, 39(1): 29-45.
25 ZHANG Liehui, HE Xiao, LI Xiaogang, et al. Shale gas exploration and development in the Sichuan Basin: progress, challenge and countermeasures[J]. Natural Gas Industry, 2021, 41(8): 143-152.
张烈辉, 何骁, 李小刚, 等. 四川盆地页岩气勘探开发进展、挑战及对策[J]. 天然气工业, 2021, 41(8): 143-152.
26 ZHANG Jinchuan, TAO Jia, LI Zhen, et al. The prospect and exploration potential of deep shale gas resources in China[J]. Natural Gas Industry, 2021, 41(1): 15-28.
张金川, 陶佳, 李振, 等. 中国深层页岩气资源前景和勘探潜力[J]. 天然气工业, 2021, 41(1): 15-28.
27 ZHANG Jinchuan, SHI Miao, WANG Dongsheng, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry, 2021, 41(8): 69-80.
张金川, 史淼, 王东升, 等. 中国页岩气勘探领域和发展方向[J]. 天然气工业, 2021, 41(8): 69-80.
28 ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14.
邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14.
29 WANG N, WEN L, LI M J, et al. The origin of abnormally 13C-depleted organic carbon isotope signatures in the early Cambrian Yangtze Platform[J]. Marine and Petroleum Geology, 2021, 128. DOI:10.1016/J.MARPETGEO.2021.105051 .
30 WU Kunyu, ZHANG Tingshan, YANG Yang, et al. Contribution of oxygenic photosynthesis to palaeo-oceanic organic carbon sink fluxes in Early Cambrian Upper Yangtze shallow sea: evidence from black shale record[J]. Journal of Earth Science, 2016, 27: 211-224.
31 ZHANG Shuichang, WANG Huajian, WANG Xiaomei, et al. Mesoproterozoic marine biocarbon pump:organic matter source, degradation and enrichment[J]. Chinese Science Bulletin, 2022, 67(15): 1 624-1 643.
张水昌, 王华建, 王晓梅, 等. 中元古代海洋生物碳泵:有机质来源、降解与富集[J]. 科学通报, 2022, 67(15): 1 624-1 643.
32 ZHANG Junpeng, LI Chao, ZHANG Yuandong. Geological record and background mechanism of marine hypoxia events in the early Paleozoic era[J]. Chinese Science Bulletin, 2022, 67(15): 1 644-1 659.
张俊鹏, 李超, 张元动.早古生代海洋缺氧事件的地质记录与背景机制[J]. 科学通报, 2022, 67(15): 1 644-1 659.
33 ZHAO Xianye, WANG Wei, GUAN Chengguo, et al. Early and middle Paleoproterozoic oxidation events and carbon cycle disturbances[J]. Advances in Earth Science,2023, 38(8): 838-851.
赵显烨,王伟,关成国,等.古元古代早中期大氧化事件及碳循环扰动[J].地球科学进展,2023, 38(8): 838-851.
34 ZHANG Xingliang. Marine inert dissolved organic carbon pool and marine intrusion black shale[J]. Chinese Science Bulletin, 2022, 67(15): 1 607-1 613.
张兴亮. 海洋惰性溶解有机碳库与海侵黑色页岩[J]. 科学通报, 2022, 67(15): 1 607-1 613.
35 XIE Shucheng, JIAO Nianzhi, WANG Pinxian. Strengthening the research on the geological evolution of marine carbon pumps[J]. Chinese Science Bulletin, 2022, 67(15): 1 597-1 599.
谢树成, 焦念志, 汪品先. 加强海洋生物碳泵地质演化的研究[J]. 科学通报, 2022, 67(15): 1 597-1 599.
36 LI Sanzhong, LIU Lijun, SUO Yanhui, et al. Carbon tectonics:a new paradigm of Earth system science[J]. Chinese Science Bulletin, 2023, 68(4): 309-338.
李三忠, 刘丽军, 索艳慧, 等. 碳构造:一个地球系统科学新范式[J]. 科学通报, 2023, 68(4): 309-338.
37 CHEN C M. Science mapping: a systematic review of the literature[J]. Journal of Data and Information Science, 2017, 2: 1-40.
38 LI Y F, ZHANG T W, ELLIS G S, et al. Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze Platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 252-264.
39 GUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 31-40.
40 ZOU Caineng, ZHU Rukai, CHEN Zhongqiang, et al. Organic-matter-rich shales of China[J]. Earth-Science Reviews, 2019, 189: 51-78.
41 YANG R, HE S, HU Q H, et al. Pore characterization and methane sorption capacity of over-mature organic-rich Wufeng and Longmaxi shales in the southeast Sichuan Basin, China[J]. Marine and Petroleum Geology, 2016, 77: 247-261.
42 DAI J X, ZOU C N, LIAO S M, et al. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin[J]. Organic Geochemistry, 2014, 74: 3-12.
43 JIN C S, LI C, ALGEO T J, et al. A highly redox-heterogeneous ocean in South China during the early Cambrian (∼529-514 Ma): implications for biota-environment co-evolution[J]. Earth and Planetary Science Letters, 2016, 441: 38-51.
44 LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1 071-1 098.
45 TIAN H, PAN L, XIAO X M, et al. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods[J]. Marine and Petroleum Geology, 2013, 48: 8-19.
46 ZHAO J H, JIN Z K, JIN Z J, et al. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: implications for pore evolution[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 21-38.
47 MA Y Q, FAN M J, LU Y C, et al. Geochemistry and sedimentology of the Lower Silurian Longmaxi mudstone in southwestern China: implications for depositional controls on organic matter accumulation[J]. Marine and Petroleum Geology, 2016, 75: 291-309.
48 FENG L J, LI C, HUANG J, et al. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529-521 Ma) Yangtze platform, South China[J]. Precambrian Research, 2014, 246: 123-133.
49 ZHOU L, ALGEO T J, SHEN J, et al. Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 420: 223-234.
50 JIANG S Y, CHEN Y Q, LING H F, et al. Trace- and rare-earth element geochemistry and Pb-Pb dating of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China[J]. Mineralium Deposita, 2006, 41(5): 453-467.
51 PAŠAVA J, KŘÍBEK B, VYMAZALOVÁ A, et al. Multiple sources of metals of mineralization in lower Cambrian black shales of South China: evidence from geochemical and petrographic study[J]. Resource Geology, 2008, 58(1): 25-42.
52 OCH L M, SHIELDS-ZHOU G A, POULTON S W, et al. Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China[J]. Precambrian Research, 2013, 225: 166-189.
53 YAN D, WANG H, FU Q L, et al. Geochemical characteristics in the Longmaxi Formation (Early Silurian) of South China: implications for organic matter accumulation[J]. Marine and Petroleum Geology, 2015, 65: 290-301.
54 POULTON S W, FRALICK P W, CANFIELD D E. Spatial variability in oceanic redox structure 1.8 billion years ago[J]. Nature Geoscience, 2010, 3(7): 486-490.
55 WANG S F, ZOU C N, DONG D Z, et al. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: geochemical and organic carbon isotopic evidence[J]. Marine and Petroleum Geology, 2015, 66: 660-672.
56 CANFIELD D E, POULTON S W, KNOLL A H, et al. Ferruginous conditions dominated later neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5 891): 949-952.
57 TAN J Q, HORSFIELD B, MAHLSTEDT N, et al. Physical properties of petroleum formed during maturation of Lower Cambrian shale in the Upper Yangtze Platform, South China, as inferred from Phase Kinetics modelling[J]. Marine and Petroleum Geology, 2013, 48: 47-56.
58 XU L G, LEHMANN B, MAO J W, et al. Mo isotope and trace element patterns of Lower Cambrian black shales in South China: multi-proxy constraints on the paleoenvironment[J]. Chemical Geology, 2012, 318: 45-59.
59 WANG J G, CHEN D Z, YAN D T, et al. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation[J]. Chemical Geology, 2012, 306/307: 129-138.
60 TIAN H, PAN L, ZHANG T W, et al. Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province, Southwestern China[J]. Marine and Petroleum Geology, 2015, 62: 28-43.
61 CHEN D Z, ZHOU X Q, FU Y, et al. New U-Pb zircon ages of the Ediacaran-Cambrian boundary strata in South China[J]. Terra Nova, 2015, 27(1): 62-68.
62 XU Lingang, LEHMANN B, MAO Jingwen, et al. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China—a reassessment[J]. Economic Geology, 2011, 106(3): 511-522.
63 MAO J, LEHMANN B, DU A, et al. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in lower Cambrian black shales of South China and its geologic significance[J]. Economic Geology, 2002, 97(5): 1 051-1 061.
64 YANG J H, JIANG S Y, LING H F, et al. Paleoceangraphic significance of redox-sensitive metals of black shales in the basal Lower Cambrian Niutitang Formation in Guizhou Province, South China[J]. Progress in Natural Science, 2004, 14(2): 152-157.
65 CHEN Yue, CHEN Chaomei, HU Zhigang. Principles and applications of analyzing a citation space[M]. Beijing: Science Press, 2014.
陈悦, 陈超美, 胡志刚. 引文空间分析原理与应用:CiteSpace实用指南[M]. 北京: 科学出版社, 2014.
66 LI Jie, CHEN Chaomei. Citespace science and technology text mining and visualization[M]. 3rd edition. Beijing: Beijing Capital University of Economics and Business Press, 2022.
李杰, 陈超美. Citespace科技文本挖掘及可视化[M]. 第3版. 北京:北京首都经济贸易大学出版社, 2022.
67 CHEN Q, ZHANG J C, TANG X, et al. Pore structure characterization of the Lower Permian marine-continental transitional black shale in the southern North China Basin, central China[J]. Energy & Fuels, 2016, 30(12): 10 092-10 105.
68 TANG S, ZHANG J C, ELSWORTH D, et al. Lithofacies and pore characterization of the Lower Permian Shanxi and Taiyuan shales in the southern North China Basin[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 644-661.
69 ZHANG Y, LIAO Z W, WU Z G, et al. Climate change controls on extreme organic matter enrichment in Late Permian marine-terrestrial transitional shales in Guizhou, South China[J]. Journal of Petroleum Science and Engineering, 2022, 218. DOI:10.1016/j.petrol.2022.111062 .
70 WANG E Z, GUO T L, LI M W, et al. Depositional environment variation and organic matter accumulation mechanism of marine-continental transitional shale in the upper Permian Longtan formation, Sichuan Basin, SW China[J]. ACS Earth and Space Chemistry, 2022, 6(9): 2 199-2 214.
71 LIU X X, JIANG Z X, ZHANG K, et al. Mechanism analysis of organic matter enrichment of Middle Ordovician-lower Silurian shale in the Upper Yangtze area: taking Jiaoye-1 well in the Jiaoshiba block as an example[J]. Geofluids, 2019, 2019: 1-13.
72 WEI C, DONG T, HE Z L, et al. Major, trace-elemental and sedimentological characterization of the Middle Ordovician Wufeng-lower Silurian Longmaxi formations, Sichuan Basin, South China: insights into the effect of relative sea-level fluctuations on organic matter accumulation in shales[J]. Marine and Petroleum Geology, 2021, 126. DOI:10.1016/j.marpetgeo.2021.104905 .
73 QIU Z, LIU B, LU B, et al. Mineralogical and petrographic characteristics of the Ordovician-Silurian Wufeng-Longmaxi Shale in the Sichuan Basin and implications for depositional conditions and diagenesis of black shales[J]. Marine and Petroleum Geology, 2022, 135. DOI:10.1016/j.marpetgeo.2021.105428 .
74 WANG N, LI M J, TIAN X W, et al. Climate-ocean control on the depositional watermass conditions and organic matter enrichment in lower Cambrian black shale in the Upper Yangtze Platform[J]. Marine and Petroleum Geology, 2020, 120. DOI:10.1016/j.marpetgeo.2020.104570 .
75 YEASMIN R, CHEN D Z, FU Y, et al. Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid-Upper Yangtze Block, NE Guizhou, South China[J]. Journal of Asian Earth Sciences, 2017, 134: 365-386.
76 STEINER M, WALLIS E, ERDTMANN B D, et al. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils—insights into a Lower Cambrian facies and bio-evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(3/4): 165-191.
77 JIANG S Y, YANG J H, LING H F, et al. Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the Lower Cambrian Niutitang Formation, South China[J]. Progress in Natural Science, 2003, 13(10): 788-794.
78 SAWAKI Y, OHNO T, TAHATA M, et al. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo formation in the Three Gorges area, South China[J]. Precambrian Research, 2010, 176(1/2/3/4): 46-64.
79 WANG C, WANG Q X, CHEN G J, et al. Influence of volcanism on the development of black shales in the Chang 7 Member of Yanchang Formation in the Ordos Basin[J]. International Journal of Earth Sciences, 2021, 110(6): 1 939-1 960.
80 CHEN L, LIN W B, CHEN P, et al. Porosity prediction from well logs using back propagation neural network optimized by genetic algorithm in one heterogeneous oil reservoirs of Ordos Basin, China[J]. Journal of Earth Science, 2021, 32(4): 828-838.
81 ZHANG K, LIU R, LIU Z J. Sedimentary sequence evolution and organic matter accumulation characteristics of the Chang 8-Chang 7 members in the Upper Triassic Yanchang Formation, southwest Ordos Basin, central China[J]. Journal of Petroleum Science and Engineering, 2021, 196. DOI:10.1016/j.petrol.2020.107751 .
82 ZHANG L, CHANG S, KHAN M Z, et al. Influence of palaeo-redox and diagenetic conditions on the spatial distribution of Cambrian biotas: a case study from the upper Shuijingtuo Formation (Cambrian Series 2, Stage 3), Three Gorges area of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 548. DOI:10.1016/j.palaeo.2020.109696 .
83 TAN J Q, HORSFIELD B, FINK R, et al. Shale gas potential of the major marine shale formations in the Upper Yangtze platform, South China, part III: mineralogical, lithofacial, petrophysical, and rock mechanical properties[J]. Energy & Fuels, 2014, 28(4): 2 322-2 342.
84 TAN J Q, WENIGER P, KROOSS B, et al. Shale gas potential of the major marine shale formations in the Upper Yangtze Platform, South China, part II: methane sorption capacity[J]. Fuel, 2014, 129: 204-218.
85 GAO Z Y, XIONG S L. Methane adsorption capacity reduction process of water-bearing shale samples and its influencing factors: one example of Silurian Longmaxi Formation shale from the southern Sichuan Basin in China[J]. Journal of Earth Science, 2021, 32(4): 946-959.
[1] 刘绍军, 刘勇, 赵圣贤, 张鉴, 邓乃尔, 邓虎成, 何建华, 徐浩, 曹埒焰, 何沅翰, 尹美璇. 泸州北区深层页岩现今地应力场分布特征及扰动规律[J]. 地球科学进展, 2023, 38(12): 1271-1284.
[2] 房婷婷, 付广裕. 卫星重力与地球重力场的文献计量分析[J]. 地球科学进展, 2021, 36(5): 543-552.
[3] 邓腾, 丁正鹏, 许德如. 浅论造山型金矿中碳质黑色页岩的来源及其在金成矿过程中的作用[J]. 地球科学进展, 2021, 36(10): 1077-1091.
[4] 陈愿愿, 杨晓, 邓小江, 王小兰, 何奇, 程莉莉, 陈科贵. 海鸥优化算法在四川盆地渝西区块 H井区页岩气储层最优化测井解释中的应用[J]. 地球科学进展, 2020, 35(7): 761-768.
[5] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[6] 曹天正, 韩冬梅, 宋献方, 刘伟, 杜荻. 滨海地区地表水—地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166.
[7] 杨福强,陈科贵,黄长兵,陈愿愿,李进,马小林. PSO-LIBSVM在钾盐矿层识别中的应用研究[J]. 地球科学进展, 2019, 34(7): 757-764.
[8] 何尹杰, 吴大放, 刘艳艳. 城市轨道交通对土地利用的影响研究综述——基于Citespace的计量分析 *[J]. 地球科学进展, 2018, 33(12): 1259-1271.
[9] 李强. 基于文献计量学分析2016年度岩溶学研究热点[J]. 地球科学进展, 2017, 32(5): 535-545.
[10] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
[11] 琚宜文, 戚宇, 房立志, 朱洪建, 王国昌, 王桂梁. 中国页岩气的储层类型及其制约因素[J]. 地球科学进展, 2016, 31(8): 782-799.
[12] 徐祖新, 郭少斌. 基于NMR和X-CT的页岩储层孔隙结构研究 *[J]. 地球科学进展, 2014, 29(5): 624-631.
[13] 琚宜文, 卜红玲, 王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014, 29(4): 492-506.
[14] 陈科贵, 李利, 李春梅, 于静, 王林, 林新. 活动陆块背景下蒸发盆地后生阶段富钾区的演变[J]. 地球科学进展, 2014, 29(4): 515-522.
[15] 张盼盼, 刘小平, 王雅杰, 孙雪娇. 页岩纳米孔隙研究新进展[J]. 地球科学进展, 2014, 29(11): 1242-1249.
阅读次数
全文


摘要