1 |
WIGNALL P B. Black shales[M]. Oxford: Clarendon Press, 1994.
|
2 |
PETERS S E, QUINN D P, HUSSON J M, et al. Macrostratigraphy: insights into cyclic and secular evolution of the earth-life system[J]. Annual Review of Earth and Planetary Sciences, 2022, 50: 419-449.
|
3 |
SCHIEBER J. Black shales[M]// MIDDLETON G V, CHURCH M J, CONIGLIO M, et al. Encyclopedia of sediments and sedimentary rocks encyclopedia of Earth sciences. Dordrecht: Springer, 1978.
|
4 |
ZHANG X L. Uncover the black box of black shales[J]. The Innovation Geoscience, 2023, 1(1). DOI:10.59717/j.xinn-geo.2023.100005 .
|
5 |
LI Zhixing, QIN Mingkuan, LIU Xinyang, et al. Characteristics, genesis and research significance of multi-element enrichment layer of black rock system[J]. World Nuclear Geology, 2022, 39(1): 14-26.
|
|
李治兴, 秦明宽, 刘鑫扬, 等. 黑色岩系多元素富集层特征、成因和研究意义[J]. 世界核地质科学, 2022, 39(1): 14-26.
|
6 |
TIAN Xin, ZHANG Leichun, LI Xiaoyan, et al. Progress in international shale gas research: based on bibliometric analysis[J]. Natural Gas Geoscience, 2014, 25(11): 1 804-1 810.
|
|
田欣, 张蕾春, 李小燕, 等. 国际页岩气研究进展:基于文献计量分析[J]. 天然气地球科学, 2014, 25(11): 1 804-1 810.
|
7 |
JIN Shengxi, LIN Zhengjun. Graph analysis of scientific knowledge graph of international metonymy research dynamics(2007-2016)[J]. Journal of Foreign Language Research, 2017, 34(3): 18-23.
|
|
金胜昔, 林正军. 国际转喻研究动态的科学知识图谱分析(2007—2016)[J]. 外语研究, 2017, 34(3):18-23.
|
8 |
YANG Hui, ZHANG Yong. Knowledge graph analysis of shale gas research in China[J]. China Coal Geology, 2017, 29(4):18-22,61.
|
|
杨辉, 张勇. 我国页岩气研究的知识图谱分析[J]. 中国煤炭地质, 2017, 29(4):18-22,61.
|
9 |
YANG Zhenheng. Research hotspot of shale gas in foreign countries: research based on visual literature analysis software RefViz[J]. Computer Applications in Petroleum Industry, 2010(2): 30-32.
|
|
杨振恒. 国外页岩气研究热点——基于可视化文献分析软件RefViz的研究[J]. 石油工业计算机应用, 2010(2): 30-32.
|
10 |
LI Jie, CHEN Chaomei. CiteSpace: text mining and visualization in scientific literature[M]. Beijing: Capital University of Economics & Business Press, 2016.
|
|
李杰, 陈超美. CiteSpace:科技文本挖掘及可视化[M]. 北京: 首都经济贸易大学出版社, 2016.
|
11 |
REN Yongcan, ZHANG Jianwei, ZHAO Hui. A comparative study on team creativity at home and abroad since the 21st century[J]. Research Management, 2022, 43(11): 65-72.
|
|
任永灿, 张建卫, 赵辉. 21世纪以来国内外团队创造力的比较研究[J]. 科研管理, 2022, 43(11): 65-72.
|
12 |
Ventilator Safety Teaching and Research Group, Department of Mining, China Institute of Mining and Metallurgy. Study on spontaneous combustion factors of black shale of Tanxiang manganese ore[J]. Journal of Central South University (Natural Science Edition), 1959(1): 49-56.
|
|
中国矿冶学院采矿系通风及安全教研组. 潭湘锰矿黑色页岩自燃因素研究[J]. 中南大学学报(自然科学版), 1959(1): 49-56.
|
13 |
JIN Shengxi, LIN Zhengjun. Bibliometric analysis of domestic translation cognition research[J]. Foreign Language Teaching, 2016, 37(5): 96-101.
|
|
金胜昔, 林正军. 国内翻译认知研究的文献计量分析[J]. 外语教学, 2016, 37(5): 96-101.
|
14 |
CHEN Shaopeng, DUAN Yuefang. Current situation, hotspots and trends of China’s agricultural carbon effect research[J]. Advances in Earth Science, 2023, 38(1): 86-98.
|
|
陈少鹏, 段跃芳. 中国农业碳效应研究的现状、热点与趋势[J]. 地球科学进展, 2023, 38(1): 86-98.
|
15 |
QIU Junping, Hong LÜ. Research on the development of domestic knowledge management based on knowledge graph[J]. Journal of the Chinese Society for Information Technology, 2013, 32(5): 548-560.
|
|
邱均平, 吕红. 基于知识图谱的国内知识管理发展研究[J]. 情报学报, 2013, 32(5): 548-560.
|
16 |
FAN Delian, YANG Xiuzhen, WANG Lianfang, et al. Petrological and geochemical characteristics of nickel-molybdenum multi-element black rock system in an underground Cambrian system[J]. Geochemistry, 1973(3): 143-164.
|
|
范德廉, 杨秀珍, 王连芳, 等. 某地下寒武统含镍钼多元素黑色岩系的岩石学及地球化学特点[J]. 地球化学, 1973(3): 143-164.
|
17 |
ZHANG Jinchuan, XU Bo, NIE Haikuan, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008(6):136-140,159-160.
|
|
张金川, 徐波, 聂海宽, 等. 中国页岩气资源勘探潜力[J]. 天然气工业, 2008(6): 136-140,159-160.
|
18 |
QIU Jiawen, LIU Shugen, SUN Wei, et al. Characteristics of black shale micropores of Wufeng Formation-Longmaxi Formation in Sichuan Basin[J]. Geological Science and Technology Information, 2015, 34(2): 78-86.
|
|
邱嘉文, 刘树根, 孙玮, 等. 四川盆地周缘五峰组—龙马溪组黑色页岩微孔特征[J]. 地质科技情报, 2015, 34(2): 78-86.
|
19 |
ZOU Caineng, ZHAO Qun, DONG Dazhong, et al. Basic characteristics, main challenges and future prospects of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1 781-1 796.
|
|
邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1 781-1 796.
|
20 |
WU Jin, WANG Hongyan, SHI Zhensheng, et al. Dominant lithofacies types and genesis mechanisms of black shale in land-sea transitional facies: a case study of Permian Shanxi Formation in the eastern margin of Ordos Basin[J]. Petroleum Exploration and Development, 2021, 48(6): 1 137-1 149.
|
|
武瑾, 王红岩, 施振生, 等. 海陆过渡相黑色页岩优势岩相类型及成因机制——以鄂尔多斯盆地东缘二叠系山西组为例[J]. 石油勘探与开发, 2021, 48(6): 1 137-1 149.
|
21 |
LI Qiqi, XU Shang. Research status and prospect of sea-land transitional shale reservoirs[J]. Geological Bulletin of China, 2022, 41(8): 1 417-1 429.
|
|
李琪琪, 徐尚. 海陆过渡相页岩储层研究现状与展望[J]. 地质通报, 2022, 41(8): 1 417-1 429.
|
22 |
CAI Guangyin, JIANG Yuqiang, LI Xingtao, et al. Differences in the characteristics of ocean-land transition facies and marine organic-rich shale reservoirs[J]. Journal of Sedimentology, 2022, 40(4): 1 030-1 042.
|
|
蔡光银, 蒋裕强, 李星涛, 等. 海陆过渡相与海相富有机质页岩储层特征差异[J]. 沉积学报, 2022, 40(4): 1 030-1 042.
|
23 |
LI Jian, WANG Xiaobo, HOU Lianhua, et al. Natural gas geochemical characteristics and resource potential of shale gas in Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(8): 1 093-1 106.
|
|
李剑, 王晓波, 侯连华, 等. 四川盆地页岩气地球化学特征及资源潜力[J]. 天然气地球科学, 2021, 32(8): 1 093-1 106.
|
24 |
DONG Dazhong, QIU Zhen, ZHANG Leifu, et al. Research progress and new discoveries of shale gas formations in terrestrial and marine transitional facies[J]. Journal of Sedimentology, 2021, 39(1): 29-45.
|
|
董大忠, 邱振, 张磊夫, 等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报, 2021, 39(1): 29-45.
|
25 |
ZHANG Liehui, HE Xiao, LI Xiaogang, et al. Shale gas exploration and development in the Sichuan Basin: progress, challenge and countermeasures[J]. Natural Gas Industry, 2021, 41(8): 143-152.
|
|
张烈辉, 何骁, 李小刚, 等. 四川盆地页岩气勘探开发进展、挑战及对策[J]. 天然气工业, 2021, 41(8): 143-152.
|
26 |
ZHANG Jinchuan, TAO Jia, LI Zhen, et al. The prospect and exploration potential of deep shale gas resources in China[J]. Natural Gas Industry, 2021, 41(1): 15-28.
|
|
张金川, 陶佳, 李振, 等. 中国深层页岩气资源前景和勘探潜力[J]. 天然气工业, 2021, 41(1): 15-28.
|
27 |
ZHANG Jinchuan, SHI Miao, WANG Dongsheng, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry, 2021, 41(8): 69-80.
|
|
张金川, 史淼, 王东升, 等. 中国页岩气勘探领域和发展方向[J]. 天然气工业, 2021, 41(8): 69-80.
|
28 |
ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14.
|
|
邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14.
|
29 |
WANG N, WEN L, LI M J, et al. The origin of abnormally 13C-depleted organic carbon isotope signatures in the early Cambrian Yangtze Platform[J]. Marine and Petroleum Geology, 2021, 128. DOI:10.1016/J.MARPETGEO.2021.105051 .
|
30 |
WU Kunyu, ZHANG Tingshan, YANG Yang, et al. Contribution of oxygenic photosynthesis to palaeo-oceanic organic carbon sink fluxes in Early Cambrian Upper Yangtze shallow sea: evidence from black shale record[J]. Journal of Earth Science, 2016, 27: 211-224.
|
31 |
ZHANG Shuichang, WANG Huajian, WANG Xiaomei, et al. Mesoproterozoic marine biocarbon pump:organic matter source, degradation and enrichment[J]. Chinese Science Bulletin, 2022, 67(15): 1 624-1 643.
|
|
张水昌, 王华建, 王晓梅, 等. 中元古代海洋生物碳泵:有机质来源、降解与富集[J]. 科学通报, 2022, 67(15): 1 624-1 643.
|
32 |
ZHANG Junpeng, LI Chao, ZHANG Yuandong. Geological record and background mechanism of marine hypoxia events in the early Paleozoic era[J]. Chinese Science Bulletin, 2022, 67(15): 1 644-1 659.
|
|
张俊鹏, 李超, 张元动.早古生代海洋缺氧事件的地质记录与背景机制[J]. 科学通报, 2022, 67(15): 1 644-1 659.
|
33 |
ZHAO Xianye, WANG Wei, GUAN Chengguo, et al. Early and middle Paleoproterozoic oxidation events and carbon cycle disturbances[J]. Advances in Earth Science,2023, 38(8): 838-851.
|
|
赵显烨,王伟,关成国,等.古元古代早中期大氧化事件及碳循环扰动[J].地球科学进展,2023, 38(8): 838-851.
|
34 |
ZHANG Xingliang. Marine inert dissolved organic carbon pool and marine intrusion black shale[J]. Chinese Science Bulletin, 2022, 67(15): 1 607-1 613.
|
|
张兴亮. 海洋惰性溶解有机碳库与海侵黑色页岩[J]. 科学通报, 2022, 67(15): 1 607-1 613.
|
35 |
XIE Shucheng, JIAO Nianzhi, WANG Pinxian. Strengthening the research on the geological evolution of marine carbon pumps[J]. Chinese Science Bulletin, 2022, 67(15): 1 597-1 599.
|
|
谢树成, 焦念志, 汪品先. 加强海洋生物碳泵地质演化的研究[J]. 科学通报, 2022, 67(15): 1 597-1 599.
|
36 |
LI Sanzhong, LIU Lijun, SUO Yanhui, et al. Carbon tectonics:a new paradigm of Earth system science[J]. Chinese Science Bulletin, 2023, 68(4): 309-338.
|
|
李三忠, 刘丽军, 索艳慧, 等. 碳构造:一个地球系统科学新范式[J]. 科学通报, 2023, 68(4): 309-338.
|
37 |
CHEN C M. Science mapping: a systematic review of the literature[J]. Journal of Data and Information Science, 2017, 2: 1-40.
|
38 |
LI Y F, ZHANG T W, ELLIS G S, et al. Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze Platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 252-264.
|
39 |
GUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 31-40.
|
40 |
ZOU Caineng, ZHU Rukai, CHEN Zhongqiang, et al. Organic-matter-rich shales of China[J]. Earth-Science Reviews, 2019, 189: 51-78.
|
41 |
YANG R, HE S, HU Q H, et al. Pore characterization and methane sorption capacity of over-mature organic-rich Wufeng and Longmaxi shales in the southeast Sichuan Basin, China[J]. Marine and Petroleum Geology, 2016, 77: 247-261.
|
42 |
DAI J X, ZOU C N, LIAO S M, et al. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin[J]. Organic Geochemistry, 2014, 74: 3-12.
|
43 |
JIN C S, LI C, ALGEO T J, et al. A highly redox-heterogeneous ocean in South China during the early Cambrian (∼529-514 Ma): implications for biota-environment co-evolution[J]. Earth and Planetary Science Letters, 2016, 441: 38-51.
|
44 |
LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1 071-1 098.
|
45 |
TIAN H, PAN L, XIAO X M, et al. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods[J]. Marine and Petroleum Geology, 2013, 48: 8-19.
|
46 |
ZHAO J H, JIN Z K, JIN Z J, et al. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: implications for pore evolution[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 21-38.
|
47 |
MA Y Q, FAN M J, LU Y C, et al. Geochemistry and sedimentology of the Lower Silurian Longmaxi mudstone in southwestern China: implications for depositional controls on organic matter accumulation[J]. Marine and Petroleum Geology, 2016, 75: 291-309.
|
48 |
FENG L J, LI C, HUANG J, et al. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529-521 Ma) Yangtze platform, South China[J]. Precambrian Research, 2014, 246: 123-133.
|
49 |
ZHOU L, ALGEO T J, SHEN J, et al. Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 420: 223-234.
|
50 |
JIANG S Y, CHEN Y Q, LING H F, et al. Trace- and rare-earth element geochemistry and Pb-Pb dating of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China[J]. Mineralium Deposita, 2006, 41(5): 453-467.
|
51 |
PAŠAVA J, KŘÍBEK B, VYMAZALOVÁ A, et al. Multiple sources of metals of mineralization in lower Cambrian black shales of South China: evidence from geochemical and petrographic study[J]. Resource Geology, 2008, 58(1): 25-42.
|
52 |
OCH L M, SHIELDS-ZHOU G A, POULTON S W, et al. Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China[J]. Precambrian Research, 2013, 225: 166-189.
|
53 |
YAN D, WANG H, FU Q L, et al. Geochemical characteristics in the Longmaxi Formation (Early Silurian) of South China: implications for organic matter accumulation[J]. Marine and Petroleum Geology, 2015, 65: 290-301.
|
54 |
POULTON S W, FRALICK P W, CANFIELD D E. Spatial variability in oceanic redox structure 1.8 billion years ago[J]. Nature Geoscience, 2010, 3(7): 486-490.
|
55 |
WANG S F, ZOU C N, DONG D Z, et al. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: geochemical and organic carbon isotopic evidence[J]. Marine and Petroleum Geology, 2015, 66: 660-672.
|
56 |
CANFIELD D E, POULTON S W, KNOLL A H, et al. Ferruginous conditions dominated later neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5 891): 949-952.
|
57 |
TAN J Q, HORSFIELD B, MAHLSTEDT N, et al. Physical properties of petroleum formed during maturation of Lower Cambrian shale in the Upper Yangtze Platform, South China, as inferred from Phase Kinetics modelling[J]. Marine and Petroleum Geology, 2013, 48: 47-56.
|
58 |
XU L G, LEHMANN B, MAO J W, et al. Mo isotope and trace element patterns of Lower Cambrian black shales in South China: multi-proxy constraints on the paleoenvironment[J]. Chemical Geology, 2012, 318: 45-59.
|
59 |
WANG J G, CHEN D Z, YAN D T, et al. Evolution from an anoxic to oxic deep ocean during the Ediacaran-Cambrian transition and implications for bioradiation[J]. Chemical Geology, 2012, 306/307: 129-138.
|
60 |
TIAN H, PAN L, ZHANG T W, et al. Pore characterization of organic-rich Lower Cambrian shales in Qiannan Depression of Guizhou Province, Southwestern China[J]. Marine and Petroleum Geology, 2015, 62: 28-43.
|
61 |
CHEN D Z, ZHOU X Q, FU Y, et al. New U-Pb zircon ages of the Ediacaran-Cambrian boundary strata in South China[J]. Terra Nova, 2015, 27(1): 62-68.
|
62 |
XU Lingang, LEHMANN B, MAO Jingwen, et al. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China—a reassessment[J]. Economic Geology, 2011, 106(3): 511-522.
|
63 |
MAO J, LEHMANN B, DU A, et al. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in lower Cambrian black shales of South China and its geologic significance[J]. Economic Geology, 2002, 97(5): 1 051-1 061.
|
64 |
YANG J H, JIANG S Y, LING H F, et al. Paleoceangraphic significance of redox-sensitive metals of black shales in the basal Lower Cambrian Niutitang Formation in Guizhou Province, South China[J]. Progress in Natural Science, 2004, 14(2): 152-157.
|
65 |
CHEN Yue, CHEN Chaomei, HU Zhigang. Principles and applications of analyzing a citation space[M]. Beijing: Science Press, 2014.
|
|
陈悦, 陈超美, 胡志刚. 引文空间分析原理与应用:CiteSpace实用指南[M]. 北京: 科学出版社, 2014.
|
66 |
LI Jie, CHEN Chaomei. Citespace science and technology text mining and visualization[M]. 3rd edition. Beijing: Beijing Capital University of Economics and Business Press, 2022.
|
|
李杰, 陈超美. Citespace科技文本挖掘及可视化[M]. 第3版. 北京:北京首都经济贸易大学出版社, 2022.
|
67 |
CHEN Q, ZHANG J C, TANG X, et al. Pore structure characterization of the Lower Permian marine-continental transitional black shale in the southern North China Basin, central China[J]. Energy & Fuels, 2016, 30(12): 10 092-10 105.
|
68 |
TANG S, ZHANG J C, ELSWORTH D, et al. Lithofacies and pore characterization of the Lower Permian Shanxi and Taiyuan shales in the southern North China Basin[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 644-661.
|
69 |
ZHANG Y, LIAO Z W, WU Z G, et al. Climate change controls on extreme organic matter enrichment in Late Permian marine-terrestrial transitional shales in Guizhou, South China[J]. Journal of Petroleum Science and Engineering, 2022, 218. DOI:10.1016/j.petrol.2022.111062 .
|
70 |
WANG E Z, GUO T L, LI M W, et al. Depositional environment variation and organic matter accumulation mechanism of marine-continental transitional shale in the upper Permian Longtan formation, Sichuan Basin, SW China[J]. ACS Earth and Space Chemistry, 2022, 6(9): 2 199-2 214.
|
71 |
LIU X X, JIANG Z X, ZHANG K, et al. Mechanism analysis of organic matter enrichment of Middle Ordovician-lower Silurian shale in the Upper Yangtze area: taking Jiaoye-1 well in the Jiaoshiba block as an example[J]. Geofluids, 2019, 2019: 1-13.
|
72 |
WEI C, DONG T, HE Z L, et al. Major, trace-elemental and sedimentological characterization of the Middle Ordovician Wufeng-lower Silurian Longmaxi formations, Sichuan Basin, South China: insights into the effect of relative sea-level fluctuations on organic matter accumulation in shales[J]. Marine and Petroleum Geology, 2021, 126. DOI:10.1016/j.marpetgeo.2021.104905 .
|
73 |
QIU Z, LIU B, LU B, et al. Mineralogical and petrographic characteristics of the Ordovician-Silurian Wufeng-Longmaxi Shale in the Sichuan Basin and implications for depositional conditions and diagenesis of black shales[J]. Marine and Petroleum Geology, 2022, 135. DOI:10.1016/j.marpetgeo.2021.105428 .
|
74 |
WANG N, LI M J, TIAN X W, et al. Climate-ocean control on the depositional watermass conditions and organic matter enrichment in lower Cambrian black shale in the Upper Yangtze Platform[J]. Marine and Petroleum Geology, 2020, 120. DOI:10.1016/j.marpetgeo.2020.104570 .
|
75 |
YEASMIN R, CHEN D Z, FU Y, et al. Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid-Upper Yangtze Block, NE Guizhou, South China[J]. Journal of Asian Earth Sciences, 2017, 134: 365-386.
|
76 |
STEINER M, WALLIS E, ERDTMANN B D, et al. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils—insights into a Lower Cambrian facies and bio-evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(3/4): 165-191.
|
77 |
JIANG S Y, YANG J H, LING H F, et al. Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the Lower Cambrian Niutitang Formation, South China[J]. Progress in Natural Science, 2003, 13(10): 788-794.
|
78 |
SAWAKI Y, OHNO T, TAHATA M, et al. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo formation in the Three Gorges area, South China[J]. Precambrian Research, 2010, 176(1/2/3/4): 46-64.
|
79 |
WANG C, WANG Q X, CHEN G J, et al. Influence of volcanism on the development of black shales in the Chang 7 Member of Yanchang Formation in the Ordos Basin[J]. International Journal of Earth Sciences, 2021, 110(6): 1 939-1 960.
|
80 |
CHEN L, LIN W B, CHEN P, et al. Porosity prediction from well logs using back propagation neural network optimized by genetic algorithm in one heterogeneous oil reservoirs of Ordos Basin, China[J]. Journal of Earth Science, 2021, 32(4): 828-838.
|
81 |
ZHANG K, LIU R, LIU Z J. Sedimentary sequence evolution and organic matter accumulation characteristics of the Chang 8-Chang 7 members in the Upper Triassic Yanchang Formation, southwest Ordos Basin, central China[J]. Journal of Petroleum Science and Engineering, 2021, 196. DOI:10.1016/j.petrol.2020.107751 .
|
82 |
ZHANG L, CHANG S, KHAN M Z, et al. Influence of palaeo-redox and diagenetic conditions on the spatial distribution of Cambrian biotas: a case study from the upper Shuijingtuo Formation (Cambrian Series 2, Stage 3), Three Gorges area of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 548. DOI:10.1016/j.palaeo.2020.109696 .
|
83 |
TAN J Q, HORSFIELD B, FINK R, et al. Shale gas potential of the major marine shale formations in the Upper Yangtze platform, South China, part III: mineralogical, lithofacial, petrophysical, and rock mechanical properties[J]. Energy & Fuels, 2014, 28(4): 2 322-2 342.
|
84 |
TAN J Q, WENIGER P, KROOSS B, et al. Shale gas potential of the major marine shale formations in the Upper Yangtze Platform, South China, part II: methane sorption capacity[J]. Fuel, 2014, 129: 204-218.
|
85 |
GAO Z Y, XIONG S L. Methane adsorption capacity reduction process of water-bearing shale samples and its influencing factors: one example of Silurian Longmaxi Formation shale from the southern Sichuan Basin in China[J]. Journal of Earth Science, 2021, 32(4): 946-959.
|