地球科学进展 ›› 2023, Vol. 38 ›› Issue (12): 1271 -1284. doi: 10.11867/j.issn.1001-8166.2023.070

非常规储层地质力学 上一篇    下一篇

泸州北区深层页岩现今地应力场分布特征及扰动规律
刘绍军 1 , 2 , 3( ), 刘勇 1, 赵圣贤 1 , 2 , 3, 张鉴 1 , 2 , 3, 邓乃尔 4, 邓虎成 4, 何建华 4, 徐浩 4( ), 曹埒焰 2 , 3, 何沅翰 2 , 3, 尹美璇 2 , 3   
  1. 1.中国石油西南油气田公司,四川 成都 610051
    2.中国石油西南油气田公司页岩气研究院,四川 成都 610051
    3.页岩气评价与开采四川省重点实验室,四川 成都 610051
    4.油气藏地质及开发工程全国重点实验室(成都理工大学),四川 成都 610059
  • 收稿日期:2023-07-09 修回日期:2023-10-13 出版日期:2023-12-10
  • 通讯作者: 徐浩 E-mail:liushaojun@petrochina.com.cn;xuhao19@cdut.edu.cn
  • 基金资助:
    国家自然科学基金项目(42002157);四川省科技计划杰出青年科技人才项目(2020JDJQ0058);成都理工大学2022年中青年骨干教师发展资助计划(10912-SJGG2022-07702)

Distribution Characteristics and Pattern of Deep Shale Present Geostress Field in Northern Luzhou

Shaojun LIU 1 , 2 , 3( ), Yong LIU 1, Shengxian ZHAO 1 , 2 , 3, Jian ZHANG 1 , 2 , 3, Naier DENG 4, Hucheng DENG 4, Jianhua HE 4, Hao XU 4( ), Lieyan CAO 2 , 3, Yuanhan HE 2 , 3, Meixuan YIN 2 , 3   

  1. 1.Petro China Southwest Oil & Gasfield Company, Chengdu 610051, China
    2.Shale Gas Research Institute, Petro China Southwest Oil & Gasfield Company, Chengdu 610051, China
    3.Key Laboratory of Shale Gas Evaluation and Exploitation of Sichuan Province, Chengdu 610051, China
    4.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation on Chengdu University of Technology, Chengdu 610059, China
  • Received:2023-07-09 Revised:2023-10-13 Online:2023-12-10 Published:2023-12-26
  • Contact: Hao XU E-mail:liushaojun@petrochina.com.cn;xuhao19@cdut.edu.cn
  • About author:LIU Shaojun, Senior engineer, research areas include shale gas exploration and development. E-mail: liushaojun@petrochina.com.cn
  • Supported by:
    Projecti supported by the National Natural Science Foundation of China(42002157);Sichuan Science and Technology Programme Outstanding Young Scientific and Technological Talents Project(2020JDJQ0058);Chengdu University of Science and Technology 2022 Young and Middle-aged Cadre Teachers Development Funding Scheme(10912-SJGG2022-07702)

地应力场特征分析评价是深层页岩气勘探开发的重要环节,对压裂裂缝走向预测、井网部署和水平井位部署具有重要的指导意义。以四川盆地泸州北区龙一1亚段为例,通过室内实验、测井解释对比和应力场模拟预测,建立了岩石力学动静态参数转换关系式,明确单井地应力特征,完成应力场扰动分析,实现了对研究区应力场的分区刻画。结果表明: 岩石力学参数呈现出“高杨氏模量、低泊松比”的特征,表明目的层具有较高的脆性。三向应力随埋深的增加而增大,且表现为水平最大主应力>垂向主应力>水平最小主应力。 4种应力方向判别方法的对比分析得出,研究区水平最大主应力方向在105°~115°。福集向斜相对于区域应力方向发生逆时针偏转,在75°~85°,得胜向斜常保持区域应力方向。 对比区域应力状态,背斜区受张应力影响,应力值减小、应力方向顺时针偏转;受挤压应力的影响,向斜区表现出相反的趋势。断裂对应力扰动最大范围可达1.8 km,不同走向断裂对应力扰动强度排序为NEE、NE和NNE。 依据断裂和应力场扰动的特征,将研究区划分为调整带、转换带和稳定带3种类型。这为后续研究区开发单元的优化提供了有效支撑,实现单井平均经济可采储量稳步上升。

Stress field characterization and evaluation is an important part of deep shale gas exploration and development, and is important in guiding the prediction of fracture crack direction, well network deployment, and horizontal well location deployment. Using the Longyi 1 subsection in Luzhou North District, Sichuan Basin, as an example; through indoor experiments, logging interpretation comparison, and stress field simulation prediction; we established the conversion relation equation of rock mechanics dynamic and static parameters, clarified the single well geostress characteristics, and completed the stress field perturbation analysis. This enabled us to realize the zoning portrayal of the stress field in the study area. The results of the study showed that: the rock mechanical parameters show the characteristics of “high Young’s modulus and low Poisson's ratio,” which indicates that the target layer is highly brittle. The three-directional stress increased with increasing burial depth, and the relationship between the stresses was as follows: SH > Sv > Sh . A comparison and analysis of the four stress direction discrimination methods showed that the maximum horizontal principal stresses in the study area ranged 105-115°. The Fuji oblique inclination was deflected counter-clockwise with respect to the regional stress direction in the range 75-85°, whereas the Desheng oblique inclination often maintained the regional stress direction. Comparing the regional stress state, the dorsal inclined area was shown to be affected by the tensile stress, with the stress value decreasing and the stress direction being deflected clockwise, whereas the oblique inclined area showed the opposite tendency owing to the influence of the extruding stress. The maximum range of stress perturbation by fractures reaches up to 1.8 km, and the intensity of stress perturbation by fractures with different strikes is ranked as NEE, NE, and NNE. Based on the characteristics of fractures and stress field perturbations, the study area was classified into three types: adjusting, transforming, and stabilizing zones. The results of this study provide effective support for the optimization of subsequent development units to achieve a steady increase in the average EUR of a single well.

中图分类号: 

图1 泸州北区构造区域(a)和构造断裂分布(b 29
Fig. 1 Tectonic areaaand distribution of tectonic rupturesbin Northern Luzhou Block 29
图2 岩样三轴抗压实验应力—应变曲线
Fig. 2 Stress-strain curve of triaxial compression test on rock samples
表1 泸州北区三轴抗压实验岩石力学参数数据
Table 1 Data sheet of rock mechanical parameters of triaxial compressive experiments in Northern Luzhou
图3 动静态杨氏模量(a)与动静态泊松比(b)拟合分布图
Fig. 3 Fitted distribution of dynamic and static Young’s modulusaversus dynamic and static Poisson’s ratiob
图4 声发射实验样品(a)与阳08Kaiser曲线示意图(b
Fig. 4 Acoustic emission experiment samplesaand schematic diagram of Kaiser curve of Well Yang 08b
表2 单井声发射实验三向应力大小数据表
Table 2 Data sheet of three-way stress magnitude for single well acoustic emission experiments
图5 01井水平段水力压裂曲线图
Fig. 5 Horizontal hydraulic fracturing curve of Well Lu 01
表3 水力压裂计算与声发射实验应力值对比
Table 3 Comparison of hydraulic fracturing calculations and acoustic emission experimental stress values
图6 单井应力方向解释对比图
Fig. 6 Comparison of stress direction interpretation for a single well
表4 泸州北区单井地应力方向解释数据表
Table 4 Interpretation data sheet of geostress direction of single well in Northern Luzhou
图7 泸州北区构造断裂模型(a)与岩石力学参数分区(b
(a)立体颜色线条代表断裂展布特征;(b)A、B、C、D、E分别表示5类力学单元区块
Fig. 7 Tectonic rupture model of the study areaaand zoning map of rock mechanical parametersbin Northern Luzhou
The three-dimensional colour lines in (a) represent fracture spreading features; A, B, C, D and E in (b) represent five types of mechanical unit blocks
表5 岩石力学模型力学单元要素表
Table 5 Rock mechanics model mechanical unit element
表6 三维应力场模拟与声发射实验数据对比分析
Table 6 Comparative analysis of three-dimensional stress field simulation and acoustic emission experimental data
图8 应力场模拟平面分布图
(a)水平最大主应力分布图;(b)水平最小主应力分布图;(c)水平应力差异系数分布图;(d)水平最大主应力方向分布图
Fig. 8 Stress field simulation plan distribution
(a) The distribution of horizontal maximum principal stresses; (b) The distribution of horizontal minimum principal stresses; (c) The distribution of horizontal stress variance coefficients; (d) The distribution of horizontal maximum principal stress directions
图9 A-a剖面应力场模拟纵向分布图
(a)水平最大主应力纵向分布图;(b)水平最小主应力纵向分布图;(c)水平最大主应力方向纵向分布图
Fig. 9 Simulated longitudinal distribution of the stress field in the A-a profile
(a) The longitudinal distribution of horizontal maximum principal stress; (b) The longitudinal distribution of horizontal minimum principal stress; (c) The longitudinal distribution of horizontal maximum principal stress direction
图10 泸州北区应力扰动分区图
Fig. 10 Zoning map of stress disturbance in Northern Luzhou
1 ZOU Caineng, ZHU Rukai, DONG Dazhong, et al. Scientific and technological progress, development strategy and policy suggestion regarding shale oil and gas[J]. Acta Petrolei Sinica,2022, 43(12): 1 675-1 686.
邹才能,朱如凯,董大忠,等. 页岩油气科技进步、发展战略及政策建议[J]. 石油学报, 2022, 43(12): 1 675-1 686.
2 YANG Yueming, CHEN Yulong, LIU Shenyang, et al. Status, potential and prospect of shale gas exploration and development in the Sichuan Basin and its periphery[J]. Natural Gas Industry,2021, 41(1): 42-58.
杨跃明,陈玉龙,刘燊阳,等. 四川盆地及其周缘页岩气勘探开发现状、潜力与展望[J]. 天然气工业, 2021, 41(1): 42-58.
3 YANG Hongzhi, Zhao Shengxian, XIA Ziqiang, et al. Target selection of tridimensional development of deep shale gas in the Luzhou region, South Sichuan Basin[J]. Natural Gas Industry,2022, 42(8): 162-174.
杨洪志,赵圣贤,夏自强,等. 四川盆地南部泸州区块深层页岩气立体开发目标优选[J]. 天然气工业, 2022, 42(8): 162-174.
4 JIANG Zhenxue, LIANG Zhikai, SHEN Yinghao, et al. Coupling key factors of shale sas sweet spot and research direction of geology-engineering integration in southern Sichuan[J]. Earth Science,2023, 48(1): 110-129.
姜振学,梁志凯,申颍浩,等. 川南泸州地区页岩气甜点地质工程一体化关键要素耦合关系及攻关方向[J]. 地球科学, 2023, 48(1): 110-129.
5 ZHOU Wen, YAN Changhui, WANG Shize. A method for evaluating the present-day ground stress field in oil and gas reservoirs[M]. Beijing: Geology Press, 2007.
周文,闫长辉,王世泽. 油气藏现今地应力场评价方法[M]. 北京: 地质出版社, 2007.
6 MA Tianshou, XIANG Guofu, SHI Yufan, et al. Horizontal in-situ stress prediction method based on the bidirectional long short-term memory neural network[J]. Petroleum Science Bulletin,2022, 7(4): 487-504.
马天寿,向国富,石榆帆,等. 基于双向长短期记忆神经网络的水平地应力预测方法[J]. 石油科学通报, 2022, 7(4): 487-504.
7 DING Wenlong, WANG Xinghua, HU Qiujia, et al. Progress in tight sandstone reservoir fractures research[J]. Advances in Earth Science,2015, 30(7): 737-750.
丁文龙,王兴华,胡秋嘉,等. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 2015, 30(7): 737-750.
8 HOU Bing, PAN Yongjun, CHEN Mian, et al. Paleomagnetic experimental research on how to determine geographic orientation of insitu stress by shale reservoir cores[J]. Drilling & Production Technology,2017, 40(5): 1-4.
侯冰,潘泳君,陈勉,等. 页岩储层岩心地应力方向古地磁实验研究[J]. 钻采工艺, 2017, 40(5): 1-4.
9 LIU Libin, DUAN Dong, ZHENG Chaoyang. Study on insitu stress testing based on Kaiser effect of rock acoustic emission[J]. Coal Science and Technology, 2020, 48(12): 45-50.
刘利斌,段东,郑朝阳. 基于岩石声发射Kaiser效应的地应力测试研究[J]. 煤炭科学技术, 2020, 48(12): 45-50.
10 HE Xiaodong, MA Junxiu, SHI Shanzhi, et al. Core differential strain test of tight glutinite reservoir in mahu oilfield[J]. China Offshore Oil and Gas, 2020, 32(3): 86-93.
何小东,马俊修,石善志,等. 玛湖油田致密砂砾岩储层岩心差应变实验[J]. 中国海上油气, 2020, 32(3): 86-93.
11 MIN Jian, MA Huiyun, PENG Juanliang, et al. Study on determination of insitu stress direction using wave velocity anisotropy method combined with paleomagnetism method[J]. Drilling & Production Technology, 2020, 43(): 17-19.
闵建,马辉运,彭钧亮,等. 波速各向异性结合古地磁测试地应力方向研究[J]. 钻采工艺, 2020, 43(): 17-19.
12 IQBAL O, AHMAD M, KADIR A ABD. Effective evaluation of shale gas reservoirs by means of an integrated approach to petrophysics and geomechanics for the optimization of hydraulic fracturing: a case study of the permian roseneath and murteree shale gas reservoirs, Cooper basin, Australia[J]. Journal of Natural Gas Science and Engineering, 2018, 58(5): 34-58.
13 QIN Yuqiao, TANG Hua, WU Zhenjun, et al. A calculation model for 3D in-situ stress tensor of deep shale based on borehole wall stress relief method[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1 468-1 480.
秦雨樵,汤华,吴振君,等. 基于钻孔局部壁面应力解除法的深部页岩三维地应力计算方法[J]. 岩石力学与工程学报, 2018, 37(6): 1 468-1 480.
14 GU Ruiyao, XU Song, TANG Xiaoming, et al. Using dipole-shear wave logging to characterize VTI property and its application to stress estimation in VTI formations[J]. Well Logging Technology, 2017, 41(3): 364-368.
古锐瑶,许松,唐晓明,等. VTI各向异性地层偶极横波测井及其应用[J]. 测井技术, 2017, 41(3): 364-368.
15 LAI Jin, PANG Xiaojiao, ZHAO Xin, et al. Typical misunderstandings and scientific ideas in well logging geology research[J]. Natural Gas Industry, 2022, 42(7): 31-44.
赖锦,庞小娇,赵鑫,等. 测井地质学研究中的典型误区与科学思维[J]. 天然气工业, 2022, 42(7): 31-44.
16 QI Dunke, LIU Jianzhong. Determination of maximum horizontal principal stress orientation by monitoring the extending direction of micro-seismic multiple staged fractures in horizontal wells[J]. Acta Seismologica Sinica, 2017, 39(5): 814-817.
綦敦科,刘建中. 利用水平井分段压裂微地震裂缝方位监测确定最大水平主应力方位[J]. 地震学报, 2017, 39(5): 814-817.
17 ZHANG Guangming, XIONG Chunming, LIU He, et al. Numerical simulation method for in-situ stress field in complex fault block[J]. Fault-Block Oil and Gas Field, 2011, 18(6): 710-713.
张广明,熊春明,刘合,等. 复杂断块地应力场数值模拟方法研究[J]. 断块油气田, 2011, 18(6): 710-713.
18 MA Tianshou, XIANG Guofu, SHI Yufan, et al. Horizontal in situ stresses prediction using a cnn-bilstm-attention hybrid neural network[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(5). DOI:10.1007/s40948-022-00467-2 .
19 WANG Zhaosheng, ZENG Lianbo, LI JING, et al. Insitu stress logging interpretation methods and reliability analysis[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(6): 1-9.
王兆生,曾联波,李晶,等. 地应力测井解释方法及其可靠性对比[J]. 西南石油大学学报(自然科学版), 2022, 44(6): 1-9.
20 ZHANG Surong, DONG Dazhong, LIAO Qunshan, et al. Geological characteristics and resource prospect of deep marine shale gas in the Southern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(9): 35-45.
张素荣,董大忠,廖群山,等. 四川盆地南部深层海相页岩气地质特征及资源前景[J]. 天然气工业, 2021, 41(9): 35-45.
21 ZOU Xiaoyan, LI Xianqing, WANG Yuan, et al. Reservoir characteristics and gas content of Wufeng-Longmaxi formations deep shale in Southern Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(4): 654-665.
邹晓艳,李贤庆,王元,等. 川南地区五峰组—龙马溪组深层页岩储层特征和含气性[J]. 天然气地球科学, 2022, 33(4): 654-665.
22 LUO Chao, LI Jinxi, LI Zhiwu, et al. Structural deformation characteristics and formation process of Luzhou block in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(6): 665-673.
罗超,李金玺,李智武,等. 四川盆地泸州区块构造变形特征及形成过程[J]. 成都理工大学学报(自然科学版), 2022, 49(6): 665-673.
23 HAN Lingling, LI Xizhe, LIU Zhaoyi, et al. Study on rock mechanics characteristics of deep shale in luzhou block and the influence on reservoir fracturing[J]. Energy Science & Engineering, 2023, 11(1): 4-21.
24 FAN Yu, WANG Jiajun, LIU Houbin, et al. Formation mechanical properties and wellbore stability of the whole well section in Luzhou Block[J]. Science Technology and Engineering,2020, 20(16): 6 433-6 439.
范宇,王佳珺,刘厚彬,等. 泸州区块全井段地层力学性能及井壁稳定性[J]. 科学技术与工程, 2020, 20(16): 6 433-6 439.
25 DONG Min, GUO Wei, ZHANG Linyan, et al. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi formation in Luzhou area,Southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(1): 43-51.
董敏,郭伟,张林炎,等. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51.
26 Jiaxin LÜ, HOU Bing, MIN Jian, et al. Three-dimensional in-situ stress modeling of heterogeneous reservoirs with local faults[J]. Earth and Environmental Science, 2021, 861(3). DOI:10.1088/1755-1315/861/3/032071 .
27 TONG Kailin, CAI Hongyan, LI Jinxi, et al. Present stress orientations and controlling factors of shale reservoirs in LZ region, Sichuan Basin: example of the first member of Longmaxi formation[J]. Science Technology and Engineering,2023, 23(8): 3 224-3 236.
佟恺林,蔡鸿燕,李金玺,等. 四川LZ页岩储层现今地应力方向及主控因素——以龙一段为例[J]. 科学技术与工程, 2023, 23(8): 3 224-3 236.
28 YANG Hongzhi, ZHAO Shengxian, LIU Yong, et al. Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou block, Southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(11): 55-63.
杨洪志,赵圣贤,刘勇,等. 泸州区块深层页岩气富集高产主控因素[J]. 天然气工业, 2019, 39(11): 55-63.
29 YAN Jianping, LUO Jingchao, SHI Xuewen, et al. Fracture development models and significance of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou area, Southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(6): 60-71.
闫建平,罗静超,石学文,等. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 2022, 34(6): 60-71.
30 CHEN Gengsheng, XIE Qinghui, WU Jianfa, et al. Comprehensive application of the seismic multi-attribute technique combination in the tectonic interpretation of the Luzhou shale gas block[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1 349-1 358.
陈更生,谢清惠,吴建发,等. 地震多属性技术组合在泸州页岩气区块构造解释中的综合应用[J]. 物探与化探, 2022, 46(6): 1 349-1 358.
31 SUN Qiuming, JIA Jun. Calculation of rock mechanical parameters based on triaxial experiments using logging data[J]. Inner Mongulia Petrochemical Industry, 2011(19): 154-156.
孙秋明,贾俊. 利用测井资料计算基于三轴实验的岩石力学参数[J]. 内蒙古石油化工, 2011(19): 154-156.
32 ZHANG Jincai, QI Yuanchang. Impact of in-situ stresses on shale reservoir development and its countermeasures[J]. Oil & Gas Geology, 2020, 41(4): 776-783, 799.
张金才,亓原昌. 地应力对页岩储层开发的影响与对策[J]. 石油与天然气地质, 2020, 41(4): 776-783, 799.
33 FAN Xiangyu, YAO Bowei, ZHANG Qiangui, et al. Study on the calculated method of horizontal in-situ stress based on the kaiser stress point predicted by acoustic signal[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(2): 40-48.
范翔宇,么勃卫,张千贵,等. 基于声波信号预测Kaiser应力点的水平地应力[J]. 西南石油大学学报(自然科学版), 2022, 44(2): 40-48.
34 MA Tianshou, WANG Haonan, YANG Yun, et al. Wellbore fracture regularity of inclined wells in anisotropic formation under different in-situ stress states[J]. Journal of Central South University(Science and Technology), 2022, 53(3): 1 123-1 135.
马天寿,王浩男,杨赟,等. 不同地应力状态下各向异性地层斜井井壁破裂规律[J]. 中南大学学报(自然科学版), 2022, 53(3): 1 123-1 135.
35 SUN Dongsheng, ZHUO Xizhun, DAN Yong, et al. Measurement and distribution of horizontal minimum principle stress of shale reservoir[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(5): 80-87.
孙东生,禚喜准,淡永,等. 页岩储层水平最小主应力实测与分布规律[J]. 中国石油大学学报(自然科学版), 2021, 45(5): 80-87.
36 CAO Feng, HE Jianhua, WANG Yuanyuan, et al. Methods to evaluate present-day in-situ stress direction for low anisotropic reservoirs in the second member of the Xujiahe formation in Hechuan area[J]. Advances in Earth Science, 2022, 37(7): 742-755.
曹峰,何建华,王园园,等. 合川地区须二段低各向异性储层现今地应力方向评价方法[J]. 地球科学进展, 2022, 37(7): 742-755.
37 WU Xiaoguang, JI Fengling, LI Decai. Application status and research progress of dipole acoustic well logging[J]. Progress in Geophysics, 2016, 31(1): 380-389.
吴晓光,季凤玲,李德才. 偶极声波测井技术应用现状及研究进展[J]. 地球物理学进展, 2016, 31(1): 380-389.
38 JU Wei, NIU Xiaobing, FENG Shengbin, et al. The present day insitu stress state and fracture effectiveness evaluation in shale oil reservoir: a case study of the Yanchang Formation Chang7 oil bearing layer in the Ordos Basin[J]. Journal of China University of Mining & Technology, 2020, 49(5): 931-940.
鞠玮,牛小兵,冯胜斌,等. 页岩油储层现今地应力场与裂缝有效性评价——以鄂尔多斯盆地延长组长7油层组为例[J]. 中国矿业大学学报, 2020, 49(5): 931-940.
39 LIU Yunbin, AN Guangzhu, ZHANG Liehui. Confirming characteristics of ground stress field of toutai oil field in Songliao Basin by microseismic wave method[J]. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(3): 29-30.
刘云彬,安广柱,张烈辉. 用微地震波法确定松辽盆地头台油田地应力场特征[J]. 大庆石油地质与开发, 2006, 25(3): 29-30.
40 LU Yunhu, CHEN Mian, JIN Yan, et al. A new method for determination of geographic orientation of deep formation geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 233-237.
卢运虎,陈勉,金衍,等. 深层地应力地理方位确定的新方法[J]. 岩石力学与工程学报, 2011, 30(2): 233-237.
41 NING Wenxiang, HE Bo, LI Fengxia, et al. Experimental study on fractures morphology of hydraulic fracturing in continental shale oil reservoir[J]. Science Technology and Engineering,2021, 21(18): 7 505-7 512.
宁文祥,何柏,李凤霞,等. 陆相页岩油储层水力压裂裂缝形态的试验[J]. 科学技术与工程, 2021, 21(18): 7 505-7 512.
42 XU Ke, DAI Junsheng, SHANG Lin, et al. Characteristics and influencing factors of in-situ stress of NanPu Sag, BoHai Bay Basin, China[J]. Journal of China University of Mining & Technology, 2019, 48(3): 570-583.
徐珂,戴俊生,商琳,等. 南堡凹陷现今地应力特征及影响因素[J]. 中国矿业大学学报, 2019, 48(3): 570-583.
43 LIU Xiaolong, ANDREAS Eckert, PETER Connolly. Stress evolution during 3d single-layer visco-elastic buckle folding: implications for the initiation of fractures[J]. Tectonophysics, 2016, 679(2): 140-155.
44 FAULKNER D R, MITCHELL T M, HEALY D, et al. Slip on ‘weak’ faults by the rotation of regional stress in the fracture damage zone[J]. Nature, 2006, 444(7 121): 922-925.
45 WENG Jianqiao, ZENG Lianbo, Wenya LÜ, et al. Width of stress disturbed zone near fault and its influencing factors[J]. Journal of Geomechanics, 2020, 26(1): 39-47.
翁剑桥,曾联波,吕文雅,等. 断层附近地应力扰动带宽度及其影响因素[J]. 地质力学学报, 2020, 26(1): 39-47.
46 DENG Yu, ZHANG Qingguo, CHEN Yajun. Oil-controlling rule research of fault deflection and fault assemblage stress characteristic[J]. China’s Manganese Industry, 2018, 36(1): 88-92, 114.
邓宇,张庆国,陈亚军. 断层转折及其断层组合应力特征控油规律研究[J]. 中国锰业, 2018, 36(1): 88-92, 114.
47 CHEN Shijie, XIAO Ming, CHEN Juntao, et al. Disturbance law of faults to in-situ stress field directions and its inversion analysis method[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1 434-1 444.
陈世杰,肖明,陈俊涛,等. 断层对地应力场方向的扰动规律及反演分析方法[J]. 岩石力学与工程学报, 2020, 39(7): 1 434-1 444.
[1] 尹帅, 刘翰林, 何建华, 王瑞飞, 李香雪, 黄郑, 周永强, 贺子潇. 动静态地质力学方法约束的致密油砂岩地应力综合评估[J]. 地球科学进展, 2023, 38(12): 1285-1296.
[2] 王任一, 张登辉, 郭书生, 黄导武, 许彪. 基于互信息矩阵的油层气油比识别新方法——以南海北部湾盆地涠洲油田为例[J]. 地球科学进展, 2022, 37(8): 851-862.
[3] 曹峰, 何建华, 王园园, 邓虎成, 徐庆龙. 合川地区须二段低各向异性储层现今地应力方向评价方法[J]. 地球科学进展, 2022, 37(7): 742-755.
[4] 许小勇, 张颖, 鲁银涛, 马宏霞, 闫春, 刘忻蕾, 徐宁, 邵大力, 孙辉, 丁梁波. 孟加拉扇更新统加积型深水水道规模和演化[J]. 地球科学进展, 2022, 37(3): 268-276.
[5] 康逊, 胡瑞璞, 胡文瑄, 谭静强. 准噶尔盆地下三叠统百口泉组烃类热氧化的氧化性物质研究[J]. 地球科学进展, 2021, 36(10): 1004-1014.
[6] 杨丽华, 刘池洋, 代双和, 周义军, 毕明波, 刘永涛. 鄂尔多斯盆地古峰庄地区断裂特征及油气地质意义[J]. 地球科学进展, 2021, 36(10): 1039-1051.
[7] 鲍园, 唐佳阳, 琚宜文, 安超. 鄂尔多斯盆地东南缘黄陵矿区中生代煤系烃源层构造—热演化过程与生物气生成[J]. 地球科学进展, 2021, 36(10): 993-1003.
[8] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[9] 陈愿愿, 杨晓, 邓小江, 王小兰, 何奇, 程莉莉, 陈科贵. 海鸥优化算法在四川盆地渝西区块 H井区页岩气储层最优化测井解释中的应用[J]. 地球科学进展, 2020, 35(7): 761-768.
[10] 秦磊,毛金昕,倪凤玲,徐少华,李小刚,蔡长娥,尚文亮,刘家恺. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6): 632-642.
[11] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[12] 郑明贵,李期. 中国 20202030年石油资源需求情景预测[J]. 地球科学进展, 2020, 35(3): 286-296.
[13] 陈科贵, 刘思序, 王兆峰, 张翼飞. 基于曲线重构的缝洞型碳酸盐岩储层测井识别研究——以南图尔盖盆地Karabulak油田Pz层为例 *[J]. 地球科学进展, 2018, 33(11): 1154-1160.
[14] 陈科贵, 刘思序, 王兆峰, 张翼飞. 基于曲线重构的缝洞型碳酸盐岩储层测井识别研究——以南图尔盖盆地Karabulak油田Pz层为例[J]. 地球科学进展, 0, (): 15-.
[15] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
阅读次数
全文


摘要