地球科学进展 ›› 2022, Vol. 37 ›› Issue (8): 851 -862. doi: 10.11867/j.issn.1001-8166.2022.047

研究论文 上一篇    下一篇

基于互信息矩阵的油层气油比识别新方法——以南海北部湾盆地涠洲油田为例
王任一 1( ), 张登辉 1, 郭书生 2, 黄导武 3, 许彪 1   
  1. 1.浙江海洋大学石油化工与环境学院,浙江 舟山 316022
    2.中海石油(中国)有限公司湛江分公司,广东 湛江 524057
    3.中海石油(中国)有限公司上海分公司,上海 200030
  • 收稿日期:2022-05-12 修回日期:2022-07-14 出版日期:2022-08-10
  • 基金资助:
    浙江省自然科学基金项目“基准面旋回沉积响应机理定量研究”(LY20D020002);国家科技重大专项项目“基于边界层理论的非线性渗流模型研究”(2017ZX05072005)

A New Method for Identification of Gas-Oil Ratio of Oil Layer Based on Mutual Information Matrix: A Case Study of the Weizhou Oilfield in the Beibu Gulf Basin of the South China Sea

Renyi WANG 1( ), Denghui ZHANG 1, Shusheng GUO 2, Daowu HUANG 3, Biao XU 1   

  1. 1.School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan Zhejiang 316022, China
    2.Zhanjiang Branch of CNOOC Ltd. , Zhanjiang Zhejiang 524057, China
    3.Shanghai Branch of CNOOC Ltd. , Shanghai 200030, China
  • Received:2022-05-12 Revised:2022-07-14 Online:2022-08-10 Published:2022-09-13
  • About author:WANG Renyi (1968-), male, Tianshui City, Gansu Province, Associate professor. Research areas include marine oil and gas resources development teaching and research work. E-mail: wangry0123@163.com
  • Supported by:
    the Natural Science Foundation of Zhejiang Province “Quantitative research on the sedimentation response mechanism of base level cycle”(LY20D020002);The National Science and Technology Major Project of China “Research on the nonlinear percolation model based on boundary-layer theory”(2017ZX05072005)

针对涠洲油田不同气油比油层具有相近中子挖掘效应特征,造成高气油比油层识别困难的问题。利用测井解释、油层测试分析、岩电实验和数值模拟等方法,对不同气油比油层测井响应特征、形成机理和侵入带电阻率影响因素等方面进行综合研究表明: 中高气油比油层具有近乎接近的中子挖掘测井响应特征。只有在低气油比及相近地层压力情况下,中子挖掘效应法才能有效区分气油比高低,它是一种“窄谱”识别方法。 油气流体压缩系数对气油比变化很敏感,气油比越高,油气流体压缩系数越大,二者呈近似线性关系。利用油气流体压缩系数识别油层气油比方法,是一种“广谱”识别新方法。 通过求取重构后阵列感应电阻率测井曲线间互信息矩阵,可使隐含在阵列感应电阻率测井资料中气油比高低信息得到放大,互信息矩阵中互信息值的大小近似反映气油比高低信息。基于互信息矩阵的气油比识别方法,克服了中子挖掘效应法的适用限制条件,实现利用油气流体压缩系数对不同气油比油层的“广谱”识别。

Identifying oil layers with high gas-oil ratios in the Weizhou Oilfield is difficult because of the similar neutron excavation effect characteristics in oil layers with different gas-oil ratios. To address this problem, the logging response characteristics, formation mechanism, and influencing factors of the resistivity response in the invasion zone of oil layers with different gas-oil ratios were studied by synthetically using log interpretation, oil layer test analysis, rock electricity experiments, and numerical simulations. The results indicate the following: high gas-oil ratio oil layers have neutron excavation logging response characteristics that are close to those of medium gas-oil ratio layers. The neutron excavation effect method, which is a “narrow-spectrum” identification method, can only effectively distinguish gas-oil ratios when they are low and have close formation pressure. The oil-gas fluid compressibility is sensitive to the change in the gas-oil ratio; the higher the gas-oil ratio, the greater is the oil-gas fluid compressibility. A nearly linear relationship exists between the gas-oil ratio and the oil-gas fluid compressibility, which could serve as a new “broad-spectrum” identification method to identify the gas-oil ratio by compressibility of the oil-gas fluid. By calculating the mutual information matrix between the reconstructed array induction resistivity logging curves, information about the gas-oil ratio implicitly contained in the logging data of array induction resistivity can be highlighted. The value of mutual information in the matrix approximately reflects the information regarding the gas-oil ratio. The gas-oil ratio identification method based on a mutual information matrix can overcome the limitations of the neutron excavation effect method, and the “broad-spectrum” identification of different oil-gas ratios of the oil layer can be realized by using oil-gas fluid compressibility. This method has achieved good results in the application in the Weizhou Oilfield in the Beibu Gulf Basin of the South China Sea and provides a new idea for the quantitative identification of the gas-oil ratio of oil reservoirs in similar oilfields.

中图分类号: 

图1 地层条件下油气流体密度、含氢指数以及压缩系数与气油比关系
Fig. 1 Relationship between densityhydrogen indexcompressibilityand gas-oil ratio of hydrocarbon fluid in formation conditions
图2 岩芯分析含水饱和度与渗透率关系图
Fig. 2 Relationship between water saturation and permeability in core analysis
图3 相对侵入深度与储层渗透率、油气流体压缩系数的关系图
Fig. 3 Relationship between relative intrusion depth and reservoir permeability and compressibility of hydrocarbon fluid
图4 不同渗透率下相对侵入深度与流体压缩系数关系曲线
Fig. 4 Relationship curve between relative intrusion depth and compressibility of hydrocarbon fluid at different permeability
图5 电阻率( Rt )与含水饱和度( Sw )之间的关系
(a) 注入水和地层水电阻率接近情况下;(b) 注入水电阻率大于地层水电阻率情况下
Fig. 5 Relationship between water content saturationSwand resistivityRt
(a) When the resistivity of injected water is close to that of formation water; (b) When the resistivity of injected water is greater than that of formation water
图6 E7井不同气油比油层测井响应特征
Fig. 6 Logging response characteristics of reservoirs with various gas-oil ratios in Well E7
图7 E73个不同气油比油层的互信息曲线
Fig. 7 Mutual information curve of three oil layers with different gas-oil ratios in Well E7
表1 利用互信息矩阵油层气油比识别方法的参考标准
Table 1 Reference standard for gas-oil ratio identification method using mutual information matrix
1 SIMA Liqiang, WU Feng, MA Jianhai, et al. Quantitative calculation of GOR of a complex oil-gas-water system with logging data: a case study from the Yingdong oil/gas field, Qaidam Basin[J]. Natural Gas Industry, 2014, 34(7): 34-40.
司马立强, 吴丰, 马建海, 等. 利用测录井资料定量计算复杂油气水系统的气油比: 以柴达木盆地英东油气田为例[J]. 天然气工业, 2014, 34(7): 34-40.
2 DENG Kui, XU Wenping, LI Yaping, et al. Logging identification of oil/gas layers in N 2 2 -N1 in the Nanbaxian oil and gas field[J]. Natural Gas Industry, 2009, 29(7): 12-15, 130.
邓奎, 许文平, 李亚萍, 等. 测井方法识别南八仙油气田N 2 2 -N1储层的油气[J]. 天然气工业, 2009, 29(7): 12-15, 130.
3 ZHAO Anjun, YAN Jianqi, SHEN Hua, et al. Identification and testing of gas formations in Daliuquan structural belt of Langgu depression[J]. China Petroleum Exploration, 2012, 17(6): 85-88.
赵安军, 严建奇, 沈华, 等. 廊固凹陷大柳泉构造带气层识别与测试[J]. 中国石油勘探, 2012, 17(6): 85-88.
4 LI Fangming, TIAN Zhongyuan, JIANG Aming, et al. Prediction of reservoir depletion degree and production GOR using logging-while-drilling data[J]. Petroleum Exploration and Development, 2009, 36(5): 617-622.
李方明, 田中元, 蒋阿明, 等. 利用LWD测井资料预测油藏衰竭程度和生产气油比[J]. 石油勘探与开发, 2009, 36(5): 617-622.
5 XU Xing, ZHAO Limin, TIAN Zhongyuan, et al. Quantitative calculation and application of the logging excavation effect for high-gor oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 34(5): 151-155.
徐星, 赵丽敏, 田中元, 等. 高气油比油层测井挖掘效应定量计算及应用[J]. 大庆石油地质与开发, 2015, 34(5): 151-155.
6 ZHANG Zhaohui, GAO Chuqiao, GAO Yongde. Theoretical simulation and analysis factors of resistivity in vuggy reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(2): 79-84.
张兆辉, 高楚桥, 高永德. 孔洞型储层电阻率理论模拟及影响因素[J]. 西南石油大学学报(自然科学版), 2014, 36(2): 79-84.
7 REN Xiaofeng, WEI Jiao, MA Yining, et al. Application of excavation coefficient to fluid identification for Ma5 4 1 carbonate gas reservoirs in Sulige gas field[J]. Well Logging Technology, 2017, 41(4): 448-452.
任小锋, 魏娇, 马一宁, 等. 挖掘系数法在苏里格气田马五碳酸盐岩储层流体识别中的应用[J]. 测井技术, 2017, 41(4): 448-452.
8 MAO Zhiqiang, TAN Tingdong. Correlation between density logging and neutron logging and its application in identifying natural gas layer[J]. Chinese Journal of Geophysics, 1996, 39(1):125-133.
毛志强,谭廷栋.密度测井和中子测井的相关性及其在识别天然气层中的应用[J].地球物理学报,1996,39(1):125-133.
9 ZHANG Jinyan, LI Shurong, WANG Libin, et al. A new method for calculating gas saturation of low-resistivity shale gas reservoirs[J]. Natural Gas Industry, 2017, 37(4): 34-41.
张晋言, 李淑荣, 王利滨, 等. 低阻页岩气层含气饱和度计算新方法[J]. 天然气工业, 2017, 37(4): 34-41.
10 ZHAO Liangxiao, XING Huimin. A new parameter for gas reservoir appraisal: suffusive degree[J]. Natural Gas Industry, 2010, 30(6): 31-34, 124.
赵良孝, 邢会民. 天然气储层评价的新参数: 充盈度[J]. 天然气工业, 2010, 30(6): 31-34, 124.
11 WANG Xiuchao. New parameters for quantitative evaluation of gas-bearing property of natural gas reservoirs[J]. Natural Gas Industry, 2019, 39(3): 32-37.
王修朝. 天然气储层含气性定量评价新参数[J]. 天然气工业, 2019, 39(3): 32-37.
12 QIN Jishun, LI Aifen. Reservoir physics[M]. Dongying: China University of Petroleum Press, 2006.
秦积顺,李爱芬.油层物理学[M].东营:中国石油大学出版社,2006.
13 LI Guijie, ZHANG Jianmin, YUE Aizhong, et al. Effect of gas in the sand-mudstone layer on compensated neutron log[J]. Well Logging Technology, 2005, 29(6): 515-516, 527, 571.
李贵杰, 张建民, 岳爱忠, 等. 砂泥岩地层中气体对补偿中子测井的影响[J]. 测井技术, 2005, 29(6): 515-516, 527, 571.
14 ZHANG Wei, JIA Huichong, SUN Xiao. Identification of tight sandstone gas reservoir of T2 member in dingbei block in Ordos Basin[J]. Xinjiang Petroleum Geology, 2015, 36(1): 48-54.
张威, 贾会冲, 孙晓. 鄂尔多斯盆地定北区块太2段致密砂岩气层识别[J]. 新疆石油地质, 2015, 36(1): 48-54.
15 YAN Weilin, ZHENG Jiandong, ZHANG Puwang. Identifying method of the fluids in the complexlithology reservoirs of Tamutsag basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2012, 31(1): 158-162.
闫伟林, 郑建东, 张朴旺. 塔木察格盆地复杂岩性储层流体识别[J]. 大庆石油地质与开发, 2012, 31(1): 158-162.
16 XIE Huizhuo, LI Huiyin, YUAN Weiguo, et al. Calculation method of gas saturation in low-resistivity shale reservoirs of longmaxi formation[J]. Well Logging Technology, 2019, 43(2): 161-166.
谢慧卓, 李会银, 袁卫国, 等. 龙马溪低电阻率页岩含气饱和度计算研究[J]. 测井技术, 2019, 43(2): 161-166.
17 CHEN Q, ZHANG F, QIU F, et al. Quantitatively determining gas content using pulsed neutron logging technique in closed gas reservoir[J]. Journal of Petroleum Science and Engineering, 2021, 198: 108149.
18 MAO Keyu. Logs fluid typing methods and adaptive analysis of tight sandstone reservoir of Yingcheng Formation in Lishu Fault[J]. Advances in Earth Science, 2016,31(10):1 056-1 066.
毛克宇. 梨树断陷营城组致密砂岩测井流体识别方法及其适应性分析[J].地球科学进展, 2016, 31(10): 1 056-1 066.
19 GUI Junchuan, XIA Hongquan, YANG Shuangding, et al. Identification of gas reservoirs by overlapping envelope area with Poisson’s ratio and fluid compressibility[J]. Well Logging Technology, 2015, 39(1): 114-118.
桂俊川, 夏宏泉, 杨双定, 等. 利用泊松比和流体压缩系数重叠包络线法识别气层[J]. 测井技术, 2015, 39(1): 114-118.
20 JIANG Youlu, WAN Tao, LIN Huixi, et al. Reconstruction of hydrocarbon accumulation process by the matched relationship between surplus pressure and lower limit of reservoir displacement pressure in the hydrocarbon accumulation period: taking Chexi Sag in Jiyang depression as an example[J]. Acta Petrolei Sinica, 2011, 32(2): 265-272.
蒋有录, 万涛, 林会喜, 等. 成藏期剩余压力与储层排替压力下限耦合恢复油气成藏过程: 以济阳坳陷车西洼陷为例[J]. 石油学报, 2011, 32(2): 265-272.
21 ZENG Jianhui, YANG Zhifeng, FENG Xiao, et al. Study status and key scientific issue of tight reservoir oil and gas accumulation mechanism[J]. Advances in Earth Science, 2014, 29(6): 651-661.
曾溅辉,杨智峰,冯枭,等.致密储层油气成藏机理研究现状及其关键科学问题[J].地球科学进展,2014, 29(6): 651-661.
22 LIU Zhidi, XIA Hongquan, CHEN Ping. On calculating method of the rock Poisson ratio using well logging data[J]. Well Logging Technology, 2004, 28(6): 508-510, 566.
刘之的, 夏宏泉, 陈平. 岩石泊松比的测井计算方法研究[J]. 测井技术, 2004, 28(6): 508-510, 566.
23 SHAO Cairui, YIN Xingyao, ZHANG Fuming, et al. Shear wave velocity inversion with routine well logs based on rock physics and multi-mineral analysis[J]. Earth Science, 2009, 34(4): 699-707.
邵才瑞, 印兴耀, 张福明, 等. 利用常规测井资料基于岩石物理和多矿物分析反演横波速度[J]. 地球科学, 2009, 34(4): 699-707.
24 LIN Chunzeng, ZHANG Fang. Logging application of mud invasion characteristics[J]. Well Logging Technology, 2002, 26(4): 341-346, 352.
林纯增, 张舫. 泥浆侵入特性的测井应用[J]. 测井技术, 2002, 26(4): 341-346, 352.
25 WU Tao, ZHANG Shuncun, ZHOU Shanglong, et al. Study on four property relationship of baikouquan formation in Triassic, Mabei oilfield, Junggar Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2012, 34(6): 47-52.
吴涛, 张顺存, 周尚龙, 等. 玛北油田三叠系百口泉组储层四性关系研究[J]. 西南石油大学学报(自然科学版), 2012, 34(6): 47-52.
26 GUAN Chunyan. Research on oil and water layer identification method of Fuyang oil formation in Xingshugang oilfield[J]. Petroleum Geology and Engineering, 2011, 25(5):75-78.
关春燕.杏树岗油田扶杨油层油水层识别方法研究[J].石油地质与工程,2011,25(5):75-78.
27 DING Yujiao, SHAO Weizhi, LI Qinghe, et al. A new method for reservoir liquid character evaluation with HDIL[J]. Well Logging Technology, 2009, 33(3): 238-242.
丁娱娇, 邵维志, 李庆合, 等. 一种利用阵列感应测井技术识别储层流体性质的方法[J]. 测井技术, 2009, 33(3): 238-242.
28 DENG R, GUO H M, XIAO C W. Apply array induction logging to study the low-resistivity belt zone identification method[J]. Arabian Journal of Geosciences, 2014, 7(9): 3 409-3 416.
29 LIU Zunnian, SUN Jianmeng, CHI Xiurong, et al. Analysis of research present situation of mud invasion[J]. Progress in Geophysics, 2012, 27(6): 2 594-2 601.
刘尊年, 孙建孟, 迟秀荣, 等. 泥浆侵入研究现状分析[J]. 地球物理学进展, 2012, 27(6): 2 594-2 601.
30 LI Heng, LIU Diren, NI Xiaowei, et al. Logging responses of electromagnetic wave resistivity while drilling with drilling fluid intrusion[J]. Fault-Block Oil & Gas Field, 2019, 26(5): 675-680.
李亨, 刘迪仁, 倪小威, 等. 钻井液侵入情况下随钻电磁波电阻率测井的响应[J]. 断块油气田, 2019, 26(5): 675-680.
31 ZHANG Chaomo, ZHANG Zhansong, GUO Haimin, et al. Theoretical derivation and numerical simulation of the relationship between resistivity of water flooding oil and water saturation[J]. Scientia Sinica (Terrae), 2008, 38():151-156.
张超谟,张占松,郭海敏,等.水驱油电阻率与含水饱和度关系的理论推导和数值模拟研究[J].中国科学D辑:地球科学,2008,38():151-156.
32 FAN Yiren, WU Zhenguan, WU Fei, et al. Simulation of mud invasion and analysis of resistivity profile in sandstone formation module[J]. Petroleum Exploration and Development, 2017, 44(6): 989-996.
范宜仁, 巫振观, 吴飞, 等. 地层模块尺度钻井液侵入模拟与储集层电阻率剖面特征[J]. 石油勘探与开发, 2017, 44(6): 989-996.
33 SHEN Huilin, FANG Peng. Numerical simulation of formation resistivity variation in water drive process and analysis of influence factors of inflection point[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(3): 58-62.
申辉林, 方鹏. 水驱油地层电阻率变化规律数值模拟及拐点影响因素分析[J]. 中国石油大学学报(自然科学版), 2011, 35(3): 58-62.
34 FU Hongjun, JIANG Hongfu, WANG Yunzeng, et al. Improvement and application of the method for quantifying lateral transport capacity of fault-sandstone configuration[J]. Oil & Gas Geology, 2019, 40(5): 1 048-1 055.
付红军, 姜洪福, 王运增, 等. 断—砂配置侧向输导油气能力研究方法的改进及应用[J]. 石油与天然气地质, 2019, 40(5): 1 048-1 055.
35 ZHANG Jianhua, HU Qi, LIU Zhenhua. A theoketical model for mud-filtrate invasion in reservoir formations drilling [J]. Acta Petrolei Sinica, 1994, 15(4):73-78.
张建华,胡启,刘振华.钻井泥浆滤液侵入储集层的理论计算模型[J].石油学报,1994,15(4):73-78.
36 FAN Xueli, FENG Haihong, YUAN Meng. PCA based on mutual information for feature selection[J]. Control and Decision, 2013, 28(6): 915-919.
范雪莉, 冯海泓, 原猛. 基于互信息的主成分分析特征选择算法[J]. 控制与决策, 2013, 28(6): 915-919.
37 DHEER P, MAJUMDAR K K. A nonparametric algorithm for estimating mutual information between digital signals[J]. Digital Signal Processing, 2021, 116: 103111.
38 DING Jing, WANG Wensheng, ZHAO Yonglong. General correlation coefficient between variables based on mutual information[J]. Journal of Sichuan University (Engineering Science Edition), 2002, 34(3): 1-5.
丁晶, 王文圣, 赵永龙. 以互信息为基础的广义相关系数[J]. 四川大学学报(工程科学版), 2002, 34(3): 1-5.
39 YANG Zhian, WANG Guangrui, CHEN Shigang. Determine of the delay time by calculating mutual information with equally distant space cells [J]. Chinese Journal of Computational Physics, 1995, 12(4):442-448.
杨志安,王光瑞,陈式刚.用等间距分格子法计算互信息函数确定延迟时间[J].计算物理,1995, 12(4):442-448.
[1] 曹峰, 何建华, 王园园, 邓虎成, 徐庆龙. 合川地区须二段低各向异性储层现今地应力方向评价方法[J]. 地球科学进展, 2022, 37(7): 742-755.
[2] 许小勇, 张颖, 鲁银涛, 马宏霞, 闫春, 刘忻蕾, 徐宁, 邵大力, 孙辉, 丁梁波. 孟加拉扇更新统加积型深水水道规模和演化[J]. 地球科学进展, 2022, 37(3): 268-276.
[3] 康逊, 胡瑞璞, 胡文瑄, 谭静强. 准噶尔盆地下三叠统百口泉组烃类热氧化的氧化性物质研究[J]. 地球科学进展, 2021, 36(10): 1004-1014.
[4] 杨丽华, 刘池洋, 代双和, 周义军, 毕明波, 刘永涛. 鄂尔多斯盆地古峰庄地区断裂特征及油气地质意义[J]. 地球科学进展, 2021, 36(10): 1039-1051.
[5] 鲍园, 唐佳阳, 琚宜文, 安超. 鄂尔多斯盆地东南缘黄陵矿区中生代煤系烃源层构造—热演化过程与生物气生成[J]. 地球科学进展, 2021, 36(10): 993-1003.
[6] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[7] 陈愿愿,杨晓,邓小江,王小兰,何奇,程莉莉,陈科贵. 海鸥优化算法在四川盆地渝西区块 H井区页岩气储层最优化测井解释中的应用[J]. 地球科学进展, 2020, 35(7): 761-768.
[8] 秦磊,毛金昕,倪凤玲,徐少华,李小刚,蔡长娥,尚文亮,刘家恺. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6): 632-642.
[9] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[10] 郑明贵,李期. 中国 20202030年石油资源需求情景预测[J]. 地球科学进展, 2020, 35(3): 286-296.
[11] 陈科贵, 刘思序, 王兆峰, 张翼飞. 基于曲线重构的缝洞型碳酸盐岩储层测井识别研究——以南图尔盖盆地Karabulak油田Pz层为例 *[J]. 地球科学进展, 2018, 33(11): 1154-1160.
[12] 陈科贵, 刘思序, 王兆峰, 张翼飞. 基于曲线重构的缝洞型碳酸盐岩储层测井识别研究——以南图尔盖盆地Karabulak油田Pz层为例[J]. 地球科学进展, 0, (): 15-.
[13] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[14] 高兴军, 徐薇薇, 余义常, 李艳然, 李蕾. 智能化学示踪剂技术及其在油藏监测中的应用[J]. 地球科学进展, 2018, 33(5): 532-544.
[15] 冯佳睿, 高志勇, 崔京钢, 周川闽. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J]. 地球科学进展, 2018, 33(3): 305-320.
阅读次数
全文


摘要