地球科学进展 ›› 2022, Vol. 37 ›› Issue (8): 841 -850. doi: 10.11867/j.issn.1001-8166.2022.043

综述与评述 上一篇    下一篇

城市大气挥发性有机物研究进展
周惜荫 1 , 2( ), 高晓清 1( ), 常毅 3, 赵素平 1, 李培都 1 , 2   
  1. 1.中国科学院西北生态环境资源研究院/寒旱区陆面过程与气候变化重点实验室, 甘肃 兰州 730000
    2.中国科学院大学, 北京 100049
    3.甘肃省环境监测中心站, 甘肃 兰州 730000
  • 收稿日期:2022-04-15 修回日期:2022-06-25 出版日期:2022-08-10
  • 通讯作者: 高晓清 E-mail:zhouxiyin@nieer.ac.cn;xqgao@lzb.ac.cn
  • 基金资助:
    中国科学院青年创新促进会优秀会员“盆地空气污染气象学“(Y2021111);甘肃省杰出青年基金项目“兰州重污染天气大气环境特征与应急策略研究”(20JR10RA037)

A Review of Research on Urban Atmospheric Volatile Organic Compounds

Xiyin ZHOU 1 , 2( ), Xiaoqing GAO 1( ), Yi CHANG 3, Suping ZHAO 1, Peidu LI 1 , 2   

  1. 1.Northwest Institute of Eco-Environment and Resources/Key Laboratory of Land Surface and Climate Change in Cold and Arid Regions, Chinese Academy of Sciences, Lanzhou 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Gansu Environmental Monitoring Center Station, Lanzhou 730000, China
  • Received:2022-04-15 Revised:2022-06-25 Online:2022-08-10 Published:2022-09-13
  • Contact: Xiaoqing GAO E-mail:zhouxiyin@nieer.ac.cn;xqgao@lzb.ac.cn
  • About author:ZHOU Xiyin (1998-), female, Anqing City, Anhui Province, Master student. Research area includes atmospheric environment. E-mail: zhouxiyin@nieer.ac.cn
  • Supported by:
    the Outstanding Member of the Youth Innovation Promotion Association of the Chinese Academy of Sciences “Air pollution meteorology in basin”(Y2021111);The Outstanding Youth Fund of Gansu Province “Research on atmospheric environment characteristics and emergency strategies of heavy pollution weather in Lanzhou”(20JR10RA037)

近年来,城市臭氧污染严重、灰霾天气增加,对人体健康产生不利影响。挥发性有机物作为光化学过程中的重要前体物,引起了广泛关注。通过文献调研,总结归纳了城市大气挥发性有机物种类、源与汇、产生机制、监测方法、污染特征、环境效应和管控措施以及目前治理中存在的不足和问题,提出城市大气挥发性有机物未来的研究重点,为提升城市空气质量、实现经济发展和生态环境双赢提供科学依据。主要结论如下: 挥发性有机物包含多种化学组分,排放来源和去除途径多样; 挥发性有机物的监测方法分为离线监测和在线监测; 挥发性有机物各组分化学活性差别大,时空变化特征复杂; 挥发性有机物的O3和二次有机气溶胶生成潜势与其化学反应活性强度以及排放源种类有关,可采取不同措施去除。

In recent years, Volatile Organic Compounds (VOCs) have received extensive attention as important precursors in photochemical processes causing serious urban ozone pollution and hazy weather that adversely affect human health. The species, sources, sinks, generation mechanisms, monitoring technology, pollution characteristics, environmental effects, control measures, and problems in the current environmental governance of urban atmospheric VOCs are summarized through literature research. Additionally, we propose potential future research focuses, which will provide a scientific basis for improving urban air quality and achieving balance between economic development and ecological environment. The main conclusions are as follows: VOCs contain a variety of chemical components, and the emission sources and removal routes are diverse; The VOC monitoring methods are divided into offline and online monitoring; The temporal and spatial variations are complex because of different chemical activities and meteorological factors; and the generation potential of O3 and secondary organic aerosols of VOCs is related to their chemical reactivity intensity and the types of emission sources, which can be removed by different measures.

中图分类号: 

表1 天然源主要排放的典型 VOCs种类
Table 1 Typical types of VOCs mainly emitted from natural sources
表2 人为源主要排放的典型 VOCs种类
Table 2 Typical types of VOCs mainly emitted from anthropogenic sources
图1 生物挥发性有机物(BVOCs)合成途径
Fig. 1 Synthetic pathway of Biogenic Volatile Organic Compounds
表3 我国 VOCs监测方法 48
Table 3 Monitoring methods of VOCs in China 48
表4 主要国家、地区及组织的 VOCs监测方法
Table 4 Monitoring methods of VOCs of major countries, regions and organizations
表5 我国典型城市大气中 VOCs污染特征
Table 5 VOCs pollution characteristics of the atmosphere in certain cities typical of China
地区 采样点 VOCs种类数 主要VOCs种类 主要排放源 采样年份 参考文献
北京 综合区 98

烷烃、OVOCs、烯烃

烷烃、OVOCs、烯烃、芳香烃

机动车尾气、燃烧排放、外源传输 2015 52
工业区
背景点 烷烃、OVOCs、烯烃 市区污染源传输
天津 居住区 56 烷烃、芳香烃、烯烃 溶剂使用、机动车尾气、油品挥发 2017—2019 50
石家庄 背景点 61 卤代烷烃、芳香烃、OVOCs 机动车尾气、溶剂使用 2017—2018 49
综合区
工业区
沈阳 77 烷烃、卤代烃、醛酮类 机动车尾气 2018 51
大连 21 烷烃、卤代烃、烯烃 机动车尾气
济南

综合区

背景点

117 烷烃、OVOCs、卤代烃 机动车尾气、燃烧排放 2018—2019 58
南京 学院区 89 烷烃、烯烃、芳香烃 机动车尾气、油品挥发、溶剂使用 2018 54
上海 工业区 48 酯类、卤代烃、苯系物 溶剂挥发、机动车尾气 2009—2015 53
武汉 综合区 102 烷烃、OVOCs 机动车尾气、油品挥发 2019 55
兰州 工业区 58 烷烃、烯烃、芳香烃 机动车尾气、燃烧排放、油品挥发 2017 59
商业区
居民区
成都 综合区 107 烷烃、卤代烃、OVOCs 机动车尾气、油品挥发、溶剂使用 2018—2019 56
重庆 保护区 96 OVOCs、烷烃、卤代烃 天然源 2015 57
综合区 烷烃、OVOCs、烯烃、芳香烃 溶剂使用、机动车尾气、油品挥发
居住区 烷烃、芳香烃、OVOCs、烯烃
广州 学院区 芳香烃、OVOCs、烷烃 机动车尾气、油品挥发 2018 60
佛山 综合区 56 烷烃、芳香烃、烯烃 机动车尾气、溶剂使用、燃烧排放 2019 61
图2 臭氧(O3 )与二次有机气溶胶(SOA)形成机制图
Fig. 2 Mechanism diagram of ozone and Secondary Organic Aerosol
1 TANG Xiaoyan. Atmospheric environmental chemistry [M]. 2nd ed. Beijing: Higher Education Press, 2010.
唐孝炎. 大气环境化学[M]. 2版. 北京: 高等教育出版社, 2010.
2 DREWITT G B, CURREN K, STEYN D G, et al. Measurement of biogenic hydrocarbon emissions from vegetation in the Lower Fraser Valley, British Columbia[J]. Atmospheric Environment, 1998, 32(20): 3 457-3 466.
3 MO Ziwei, SHAO Min, LU Sihua. Review on Volatile Organic Compounds (VOCs) source profiles measured in China[J]. Acta Scientiae Circumstantiae, 2014, 34(9): 2 179-2 189.
莫梓伟, 邵敏, 陆思华. 中国挥发性有机物(VOCs)排放源成分谱研究进展[J]. 环境科学学报, 2014, 34(9): 2 179-2 189.
4 LEWIS C W. Sources of air pollutants indoors: VOC and fine particulate species[J]. Journal of Exposure Analysis and Environmental Epidemiology, 1991, 1(1): 31-44.
5 WALLACE L A, PELLIZZARI E D, HARTWELL T D, et al. The influence of personal activities on exposure to volatile organic compounds[J]. Environmental Research, 1989, 50(1): 37-55.
6 MITRA S, ZHU N H, ZHANG X, et al. Continuous monitoring of volatile organic compounds in air emissions using an on-line membrane extraction-microtrap-gas chromatographic system[J]. Journal of Chromatography A, 1996, 736(1/2): 165-173.
7 MIDDLETON P, STOCKWELL W R, CARTER W P L. Aggregation and analysis of volatile organic compound emissions for regional modeling[J]. Atmospheric Environment Part A General Topics, 1990, 24(5): 1 107-1 133.
8 DODGE M C. A comparison of three photochemical oxidant mechanisms[J]. Journal of Geophysical Research: Atmospheres, 1989, 94(D4): 5 121-5 136.
9 YANG Yamei. The source apportionment of VOCs, and countermeasures and suggestions for emission reduction in an industrial city in western China[D]. Lanzhou: Lanzhou University, 2021.
杨亚美. 中国西部某工业城市VOCs污染成因及减排对策和建议[D]. 兰州: 兰州大学, 2021.
10 YANG H H, DHITAL N B, WANG Y F, et al. Effects of short-duration vehicular traffic control on volatile organic compounds in roadside atmosphere[J]. Atmospheric Pollution Research, 2020, 11(2): 419-428.
11 ZHANG Zhou. Spatiotemporal patterns of ambient non-methane hydrocarbons in China[D]. Beijing: University of Chinese Academy of Sciences, 2016.
张洲. 中国大气非甲烷碳氢化合物时空分布特征初步研究[D]. 北京:中国科学院大学, 2016.
12 HE Zhen. Study on the pollution characteristics and sources of oxygen-containing volatile organic compounds in ambient air in Fujian Province [D]. Guiyang: Guizhou University, 2020.
何振. 福建省环境空气含氧挥发性有机物污染特征及来源研究[D]. 贵阳: 贵州大学, 2020.
13 DENG Xiaojun, CHEN Xiaoya, DU Jiawei. Plant volatiles and their metabolic engineering[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(1): 11-18.
邓晓军, 陈晓亚, 杜家纬. 植物挥发性物质及其代谢工程[J]. 植物生理与分子生物学学报, 2004, 30(1): 11-18.
14 LI Hongyuan, WANG Fang, XIONG Shangao, et al. Research review on the role and the influential factors of the biogenic volatile organic compounds[J]. Journal of Safety and Environment, 2015, 15(2): 292-296.
李洪远, 王芳, 熊善高, 等. 植物挥发性有机物的作用与释放影响因素研究进展[J]. 安全与环境学报, 2015, 15(2): 292-296.
15 ZHU Yimei. Biogenic VOC inventories of subtropical urban-rural areas [D]. Hangzhou: Zhejiang University, 2011.
朱轶梅. 亚热带城乡区域植物源VOC排放的研究[D]. 杭州: 浙江大学, 2011.
16 TIAN Yuqing. Preliminary study on the composition spectrum of Volatile Organic Compounds (BVOCs) from quatic plants [D]. Wuhan: Hubei University, 2019.
田玉清. 水生植物源挥发性有机物(BVOCs)产生成分谱初步研究[D]. 武汉: 湖北大学, 2019.
17 PENG Qiutong. Preliminary study on the types of Biogenic Volatile Organic Compounds (BVOCs) released by common aquatic plants[D]. Wuhan: Hubei University, 2020.
彭秋桐. 常见水生植物释放的挥发性有机物(BVOCs)种类初步研究[D]. 武汉: 湖北大学, 2020.
18 GUENTHER A, HEWITT C N, ERICKSON D, et al. A global model of natural volatile organic compound emissions[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D5): 8 873-8 892.
19 BAN-WEISS G A, MCLAUGHLIN J P, HARLEY R A, et al. Carbonyl and nitrogen dioxide emissions from gasoline- and diesel-powered motor vehicles[J]. Environmental Science & Technology, 2008, 42(11): 3 944-3 950.
20 GROSJEAN D, GROSJEAN E, GERTLER A W. On-road emissions of carbonyls from light-duty and heavy-duty vehicles[J]. Environmental Science & Technology, 2001, 35(1): 45-53.
21 LU Sihua, BAI Yuhua, ZHANG Guangshan, et al. Study on the characteristics of VOCs source profiles of vehicle exhaust and gasoline emission[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 2003, 39(4): 507-511.
陆思华, 白郁华, 张广山, 等. 机动车排放及汽油中VOCs成分谱特征的研究[J]. 北京大学学报(自然科学版), 2003, 39(4): 507-511.
22 LU Sihua, BAI Yuhua, ZHANG Guangshan, et al. Source apportionment of anthropogenic emissions of volatile organic compounds[J]. Acta Scientiae Circumstantiae, 2006, 26(5): 757-763.
陆思华, 白郁华, 张广山, 等. 大气中挥发性有机化合物(VOCs)的人为来源研究[J]. 环境科学学报, 2006, 26(5): 757-763.
23 ZHANG Y L, WANG X M, ZHANG Z, et al. Species profiles and normalized reactivity of volatile organic compounds from gasoline evaporation in China[J]. Atmospheric Environment, 2013, 79: 110-118.
24 LIU Y, SHAO M, FU L L, et al. Source profiles of Volatile Organic Compounds (VOCs) measured in China: part I[J]. Atmospheric Environment, 2008, 42(25): 6 247-6 260.
25 NA K, KIM Y P, MOON I, et al. Chemical composition of major VOC emission sources in the seoul atmosphere[J]. Chemosphere, 2004, 55(4): 585-594.
26 SCHAUER J J, KLEEMAN M J, CASS G R, et al. Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor vehicles[J]. Environmental Science & Technology, 2002, 36(6): 1 169-1 180.
27 ZHENG J Y, YU Y F, MO Z W, et al. Industrial sector-based Volatile Organic Compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China[J]. Science of the Total Environment, 2013, 456/457: 127-136.
28 YUAN B, SHAO M, LU S H, et al. Source profiles of volatile organic compounds associated with solvent use in Beijing, China[J]. Atmospheric Environment, 2010, 44(15): 1 919-1 926.
29 TSAI S M, ZHANG J J, SMITH K R, et al. Characterization of non-methane hydrocarbons emitted from various cookstoves used in China[J]. Environmental Science & Technology, 2003, 37(13): 2 869-2 877.
30 OHARA T, AKIMOTO H, KUROKAWA J, et al. An Asian emission inventory of anthropogenic emission sources for the period 1980-2020[J]. Atmospheric Chemistry and Physics, 2007, 7(16): 4 419-4 444.
31 WEI W, WANG S X, CHATANI S, et al. Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China[J]. Atmospheric Environment, 2008, 42(20): 4 976-4 988.
32 BO Y, CAI H, XIE S D. Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China[J]. Atmospheric Chemistry and Physics, 2008, 8(23): 7 297-7 316.
33 ZHOU Zihang, DENG Ye, WU Keying, et al. Source profiles of VOCs associated with typical industrial processes in Chengdu[J]. Environmental Science, 2019, 40(9): 3 949-3 961.
周子航, 邓也, 吴柯颖, 等. 成都市典型工艺过程源挥发性有机物源成分谱[J]. 环境科学, 2019, 40(9): 3 949-3 961.
34 WANG Hongli, YANG Zhaoxun, JING Shengao. Volatile Organic Compounds (VOCs) source profiles of industrial processing and solvent use emissions: a review[J]. Environmental Science, 2017, 38(6): 2 617-2 628.
王红丽, 杨肇勋, 景盛翱. 工艺过程源和溶剂使用源挥发性有机物排放成分谱研究进展[J]. 环境科学, 2017, 38(6): 2 617-2 628.
35 DAI Lingwen, MENG Jing, LI Qianqian, et al. VOCs emission inventory and variation characteristics of artificial sources in Hubei Province in the Yangtze River economic belt[J]. Environmental Science, 2021, 42(3): 1 039-1 052.
代伶文, 孟晶, 李倩倩, 等. 长江经济带湖北省人为源VOCs排放清单及变化特征[J]. 环境科学, 2021, 42(3): 1 039-1 052.
36 YAN Foyou. Emission inventory of volatile organic compounds and its ozone formation potential in Huai’an City[D]. Nanjing: Nanjing University, 2021.
严佛友. 淮安市挥发性有机物排放清单及其臭氧生成潜势研究[D]. 南京: 南京大学, 2021.
37 DAI Xueping, WANG Yan, XIE Xiaofeng, et al. Research status of volatile organic compounds treatment technology[J]. Journal of Materials Engineering, 2020, 48(11): 1-8.
代雪萍, 王焱, 谢晓峰, 等. 挥发性有机物治理技术研究现状[J]. 材料工程, 2020, 48(11): 1-8.
38 TRAPP S C, CROTEAU R B. Genomic organization of plant terpene synthases and molecular evolutionary implications[J]. Genetics, 2001, 158(2): 811-832.
39 YANG Xiaoying, CAO Fang, ZHANG Yanlin. Measurement methods and research progress of atmospheric low molecular alkyl amines[J]. Advances in Earth Science, 2022, 37(2): 120-134.
杨笑影, 曹芳, 章炎麟. 大气低分子烷基胺的测量方法及研究进展[J]. 地球科学进展, 2022, 37(2): 120-134.
40 PHILLIPS J B, BEENS J. Comprehensive two-dimensional gas chromatography: a hyphenated method with strong coupling between the two dimensions[J]. Journal of Chromatography A, 1999, 856(1/2): 331-347.
41 KALLIO M, HYÖTYLÄINEN T. Quantitative aspects in comprehensive two-dimensional gas chromatography[J]. Journal of Chromatography A, 2007, 1 148(2): 228-235.
42 CAO Xun, CHEN Weizhang, DU Huazhong, et al. Remote multi-channel continuous online monitoring system for fugitive emissions of VOCs[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 737-745.
曹迅, 陈伟章, 杜华忠, 等. 远距离多通道的无组织排放VOCs连续在线监测系统[J]. 环境工程学报, 2021, 15(2): 737-745.
43 MALEKNIA S D, BELL T L, ADAMS M A. PTR-MS analysis of reference and plant-emitted volatile organic compounds[J]. International Journal of Mass Spectrometry, 2007, 262(3): 203-210.
44 TANIMOTO H, AOKI N, INOMATA S, et al. Development of a PTR-TOFMS instrument for real-time measurements of volatile organic compounds in air[J]. International Journal of Mass Spectrometry, 2007, 263(1): 1-11.
45 LACKNER M. Tunable Diode Laser Absorption Spectroscopy (TD-LAS) in the process industries—a review[J]. Reviews in Chemical Engineering, 2007, 23(2): 65-147.
46 CHEN Zeqing, LIU Cheng, HU Qihou, et al. Remote sensing monitoring methods and applications of atmospheric constituents[J]. Advances in Earth Science, 2019, 34(3): 255-264.
陈泽青, 刘诚, 胡启后, 等. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
47 WEI Xiao, ZHANG Yongjie, WANG Peitao, et al. Accurate identification of pollution sources in a chemical enterprise based on a distributed multi-channel VOCs online monitoring mass spectrometry system[J]. Environmental Science, 2022, 43(4): 1 788-1 798.
韦啸, 张永杰, 王沛涛, 等. 基于多通道分布式VOCs在线监测质谱系统精准识别企业污染源[J]. 环境科学, 2022, 43(4): 1 788-1 798.
48 HAN Caiyun, ZHAO Xin, SHAN Yanhong, et al. A review of researches on atmospheric VOCs monitoring technique and pollution characteristics in China[J]. Journal of Ecology and Rural Environment, 2018, 34(2): 114-123.
韩彩云, 赵欣, 单艳红, 等. 我国大气VOCs的监测技术和污染特征研究进展[J]. 生态与农村环境学报, 2018, 34(2): 114-123.
49 WANG Shuai, CUI Jiansheng, FENG Yaping, et al. Characteristics and source apportionment of VOCs and O3 in Shijiazhuang[J]. Environmental Science, 2020, 41(12): 5 325-5 335.
王帅, 崔建升, 冯亚平, 等. 石家庄市挥发性有机物和臭氧的污染特征及源解析[J]. 环境科学, 2020, 41(12): 5 325-5 335.
50 XIAO Zhimei, XU Hong, GAO Jingyun, et al. Characteristics and sources of PM2.5-O3 compound pollution in Tianjin[J]. Environmental Science, 2022, 43(3): 1 140-1 150.
肖致美, 徐虹, 高璟赟, 等. 天津市PM2.5-O3复合污染特征及来源分析[J]. 环境科学, 2022, 43(3): 1 140-1 150.
51 YU Ning. Contribution rate of volatile organic compounds to ozone in ambient air of Liaoning Province[J]. Environmental Engineering, 2019, 37(): 181-182, 257.
于宁. 辽宁省环境空气挥发性有机物对臭氧的贡献率[J]. 环境工程, 2019, 37(): 181-182, 257.
52 ZHANG Botao, AN Xinxin, WANG Qin, et al. Temporal variation, spatial distribution, and reactivity characteristics of air VOCs in Beijing 2015[J]. Environmental Science, 2018, 39(10): 4 400-4 407.
张博韬, 安欣欣, 王琴, 等. 2015年北京大气VOCs时空分布及反应活性特征[J]. 环境科学, 2018, 39(10): 4 400-4 407.
53 ZHENG Jun. Study on VOCs in atmosphere and their sources of a typical industrial park in Shanghai[J]. Journal of Shanghai Normal University (Natural Sciences), 2017, 46(2): 298-303.
郑俊. 上海市典型工业区大气中VOCs及其来源分析[J]. 上海师范大学学报(自然科学版), 2017, 46(2): 298-303.
54 FAN M Y, ZHANG Y L, LIN Y C, et al. Source apportionments of atmospheric volatile organic compounds in Nanjing, China during high ozone pollution season[J]. Chemosphere, 2021, 263: 128025.
55 PENG Jin, CHENG Hairong, WANG Zuwu, et al. Pollution characteristics and sources apportionment of atmospheric volatile organic compounds in Wuhan urban area[J]. Journal of Wuhan University (Natural Science Edition), 2020, 66(4): 369-376.
彭瑾, 成海容, 王祖武, 等. 武汉市城区大气挥发性有机物的污染特征及来源解析[J]. 武汉大学学报(理学版), 2020, 66(4): 369-376.
56 WANG Chenghui, CHEN Junhui, HAN Li, et al. Seasonal pollution characteristics and analysis of the sources of atmospheric VOCs in Chengdu urban area[J]. Environmental Science, 2020, 41(9): 3 951-3 960.
王成辉, 陈军辉, 韩丽, 等. 成都市城区大气VOCs季节污染特征及来源解析[J]. 环境科学, 2020, 41(9): 3 951-3 960.
57 XU Peng. Observation studies on atmospheric pollutantsin the urban area of Beibei district, Chongqing[D]. Chongqing: Southwest University, 2014.
徐鹏. 重庆市北碚城区大气污染物浓度变化特征观测研究[D]. 重庆: 西南大学, 2014.
58 SUN Xiaoyan, LIU Yang, GUO Mengmeng, et al. Pollution characteristics and spatial variation of volatile organic compounds in the atmosphere of Jinan City[C]// Proceedings of the 2021 annual meeting of science and technology of the Chinese society for environmental science ( 1. Tianjin, 2021.
孙晓艳,刘杨,郭萌萌,等. 济南市大气中挥发性有机物的污染特征及时空变化规律[C]//中国环境科学学会2021年科学技术年会论文集(一).天津, 2021.
59 WU Yajun. Pollution characteristics and source apportionment of Volatile Organic Compounds (VOCs) in atmospheric environment in Lanzhou [D]. Beijing: Chinese Reserach Academy of Environmental Sciences, 2019.
吴亚君. 兰州市大气VOCs污染特征及来源解析[D]. 北京: 中国环境科学研究院, 2019.
60 YU Yingxin, WEN Sheng, Huixiong LÜ, et al. Diurnal variations of VOCs and relative contribution to ozone in forest of Guangzhou[J]. Environmental Science & Technology, 2009, 32(3): 94-98.
余应新, 文晟, 吕辉雄, 等. 广州森林大气中VOCs昼夜变化特征及对O3的影响[J]. 环境科学与技术, 2009, 32(3): 94-98.
61 ZHANG Tao, ZHOU Yan, YUE Dingli, et al. Seasonal variation characteristics of concentration and chemical reactivity of VOCs in typical areas of the Pearl River Delta[J]. Environmental Pollution & Control, 2021, 43(1): 1-7, 13.
张涛, 周炎, 岳玎利, 等. 珠三角典型地区挥发性有机化合物浓度水平及化学反应活性季节变化特征[J]. 环境污染与防治, 2021, 43(1): 1-7, 13.
62 LIU Jia, ZHAI Chongzhi, YU Jiayan, et al. Source apportionment of VOCs at city center of Chongqing in summer[J]. Environmental Science & Technology, 2018, 41(2): 71-76.
刘佳, 翟崇治, 余家燕, 等. 重庆市环境空气中VOCs的空间分布及来源解析[J]. 环境科学与技术, 2018, 41(2): 71-76.
63 SINGH H B, SALAS L, VIEZEE W, et al. Measurement of volatile organic chemicals at selected sites in California[J]. Atmospheric Environment Part A General Topics, 1992, 26(16): 2 929-2 946.
64 GREENBERG J P, HELMIG D, ZIMMERMAN P R. Seasonal measurements of nonmethane hydrocarbons and carbon monoxide at the Mauna loa observatory during the Mauna loa observatory photochemistry experiment 2[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D9): 14 581-14 598.
65 ROEMER M, BUILTJES P, ESSER P, et al. C2-C5 hydrocarbon measurements in the Netherlands 1981-1991[J]. Atmospheric Environment, 1999, 33(22): 3 579-3 595.
66 HERBARTH O, MÜLLER A, MASSOLO L, et al. Comparative study of indoor-outdoor exposure against volatile organic compounds in South and Middle America[C]// WIT transactions on ecology and the environment, air pollution XVI. Skiathos, Greece. Southampton, UK: WIT Press, 2008.
67 EL-SHAKOUR A A, EL-EBIARIE A S, IBRAHIM Y H. VOCs levels in indoor and outdoor residential homes in Helwan, Egypt[J]. Chemistry, 2015, 55(2): 155-182.
68 WU Fangkun, WANG Yuesi, AN Junlin, et al. Study on concentration, ozone production potential and sources of VOCs in the atmosphere of Beijing during Olympics period[J]. Environmental Science, 2010, 31(1): 10-16.
吴方堃, 王跃思, 安俊琳, 等. 北京奥运时段VOCs浓度变化、臭氧产生潜势及来源分析研究[J]. 环境科学, 2010, 31(1): 10-16.
69 JI Yuanyuan. Evaluation on the contribution of volatile organic compounds to the formation of secondary organic aerosols during PM2.5 pollution episodes in typical urban area of Beijing[D]. Changchun: Jilin University, 2021.
纪元元. 北京市典型城区PM2.5污染过程中有机物对二次有机气溶胶形成的贡献[D]. 长春:吉林大学, 2021.
70 YANG T, LI D, SHAN X, et al. Pollution characterization, source apportionment and health risk assessment of benzene homologues in the ambient air of a typical urban area in Beijing, China[J]. Asian Journal of Ecotoxicology, 2017, 12(5): 79-97.
71 BOWMAN F M, SEINFELD J H. Fundamental basis of incremental reactivities of organics in ozone formation in VOC/NOx mixtures[J]. Atmospheric Environment, 1994, 28(20): 3 359-3 368.
72 CARTER W P L, PIERCE J A, LUO D M, et al. Environmental chamber study of maximum incremental reactivities of volatile organic compounds[J]. Atmospheric Environment, 1995, 29(18): 2 499-2 511.
73 CAO Fangfang, ZHANG Fengju, YOU Xihua. Study on the characteristics of VOCs pollution and ozone generation potential in typical cities in eastern China in summer[C]// Proceedings of the 2021 annual meeting of science and technology of the Chinese Society for Environmental Science ( 1. Tianjin, 2021.
曹方方,张凤菊,由希华. 中国东部典型城市夏季VOCs污染特征及臭氧生成潜势研究[C]//中国环境科学学会2021年科学技术年会论文集(一).天津, 2021.
74 LUO Wei, WANG Boguang, LIU Shule, et al. VOC ozone formation potential and emission sources in the atmosphere of Guangzhou[J]. Environmental Science & Technology, 2011, 34(5): 80-86.
罗玮, 王伯光, 刘舒乐, 等. 广州大气挥发性有机物的臭氧生成潜势及来源研究[J]. 环境科学与技术, 2011, 34(5): 80-86.
75 LI Xiaoxi. Study on the characteristics and long-term variation of volatuile organic compounds in the atmosphere of Beibei urban district, Chongqing[D]. Chongqing: Southwest University, 2020.
李晓茜. 重庆市北碚城区大气中VOCs的组成特征与长期变化规律研究[D]. 重庆:西南大学, 2020.
76 ZHANG Yuqing. Observation of secondary organic aerosols in different regions of China[D]. Beijing: University of Chinese Academy of Sciences, 2020.
张宇晴. 中国不同区域大气二次有机气溶胶的观测研究[D]. 北京: 中国科学院大学, 2020.
77 ZHANG Yunjiang, LEI Ruoyuan, CUI Shijie, et al. Spatiotetemporal trends and impact factors of PM2.5 and O3 pollution in major cities in China during 2015-2020[J]. Chinese Science Bulletin, 2022,67(18):2 029-2 042.
张运江,雷若媛,崔世杰,等. 2015—2020年我国主要城市PM2.5和O3污染时空变化趋势和影响因素[J]. 科学通报, 2022, 67(18):2 029-2 042.
[1] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[2] 蒋俊霞,杨丽薇,李振朝,高晓清. 风电场对气候环境的影响研究进展[J]. 地球科学进展, 2019, 34(10): 1038-1049.
[3] 龙花楼, 曲艺, 屠爽爽, 李裕瑞, 戈大专, 张英男, 马历, 王文杰, 王婧. 城镇化背景下中国农区土地利用转型及其环境效应研究:进展与展望[J]. 地球科学进展, 2018, 33(5): 455-463.
[4] 王斌, 常宏, 段克勤. 秦岭新生代构造隆升与环境效应:进展与问题[J]. 地球科学进展, 2017, 32(7): 707-715.
[5] 孙学军, 康世昌, 张强弓, 丛志远. 山地冰川消融过程中汞的行为及环境效应综述[J]. 地球科学进展, 2017, 32(6): 589-598.
[6] 黄小平, 张景平, 江志坚. 人类活动引起的营养物质输入对海湾生态环境的影响机理与调控原理[J]. 地球科学进展, 2015, 30(9): 961-969.
[7] 张学珍, 于志博, 郑景云, 郝志新. 植物挥发性有机物的气候与环境效应研究进展[J]. 地球科学进展, 2015, 30(11): 1198-1209.
[8] 戴海伦, 金复鑫, 张科利. 国内外风蚀监测方法回顾与评述[J]. 地球科学进展, 2011, 26(4): 401-408.
[9] 周爱国,李小倩,刘存富,周建伟,蔡鹤生,余婷婷. 氯代挥发性有机物(VOCs)氯同位素测试技术及其在地下水污染中的应用研究进展[J]. 地球科学进展, 2008, 23(4): 342-349.
[10] 吴丰昌,郑建,潘响亮,黎文,邓秋静,莫昌琍,朱静,刘碧君,劭树勋,郭建阳. 锑的环境生物地球化学循环与效应研究展望[J]. 地球科学进展, 2008, 23(4): 350-356.
[11] 杨志峰,崔保山,黄国和,白军红,孙涛,李晓文,刘新会. 黄淮海地区湿地水生态过程、水环境效应及生态安全调控[J]. 地球科学进展, 2006, 21(11): 1119-1126.
[12] 武永峰;何春阳;马瑛;李京;张业利. 基于计算机模拟的植物返青期遥感监测方法比较研究[J]. 地球科学进展, 2005, 20(7): 724-731.
[13] 汪明启;任萍;严光生. 美国矿床环境研究动态及建议[J]. 地球科学进展, 2004, 19(4): 636-641.
[14] 周志芳;朱海生. 城市地质灾害中的地下水环境效应[J]. 地球科学进展, 2004, 19(3): 467-471.
[15] 范一大,史培军,罗敬宁. 沙尘暴卫星遥感研究进展[J]. 地球科学进展, 2003, 18(3): 367-373.
阅读次数
全文


摘要