地球科学进展 ›› 2022, Vol. 37 ›› Issue (8): 822 -840. doi: 10.11867/j.issn.1001-8166.2022.044

综述与评述 上一篇    下一篇

全球格点化海洋环境数据集研究进展
汪浩笛( ), 陈诗尧, 鲍森亮, 任开军( )   
  1. 国防科技大学气象海洋学院,湖南 长沙 410073
  • 收稿日期:2022-05-05 修回日期:2022-07-15 出版日期:2022-08-10
  • 通讯作者: 任开军 E-mail:wanghaodi@nudt.edu.cn;renkaijun@nudt.edu.cn
  • 基金资助:
    国家重点研发计划项目“多域环境高性能计算服务化体系结构”(2018YFB0203801);国家自然科学基金项目“IaaS云环境下大规模科学工作流优化执行方法研究”(61572510)

Research Progress of Global Gridded Ocean Environment Datasets

Haodi WANG( ), Shiyao CHEN, Senliang BAO, Kaijun REN( )   

  1. College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China
  • Received:2022-05-05 Revised:2022-07-15 Online:2022-08-10 Published:2022-09-13
  • Contact: Kaijun REN E-mail:wanghaodi@nudt.edu.cn;renkaijun@nudt.edu.cn
  • About author:WANG Haodi (1998-), male, Yantai City, Shandong Province, Master student. Research area includes numerical simulation of ocean circulation. E-mail: wanghaodi@nudt.edu.cn
  • Supported by:
    the National Key Research and Development Program of China “High-performance computing servitizing architecture in multi-domain environment”(2018YFB0203801);The National Natural Science Foundation of China “Research on optimization execution method of large-scale scientific workflow in IaaS cloud environment”(61572510)

海洋科学是在观测数据积累的基础上不断发展的一门学科,其发展史上的任何一次重大突破都离不开观测技术及相应数据集的更新换代。格点化数据集的时间延拓已成为海洋数据产品更新的主要形式,总结了当前格点化海洋环境数据集的发展现状。首先,将海洋观测的发展历史总结为3个阶段:稀疏观测主导的初始积累期,大型观测计划主导的快速增长期,以及资料同化和再分析为主导的高质量发展期。其次,从温度、盐度和流场3个关键要素出发,重点介绍近几十年来国际上公开发布和更新的全球格点化海洋环境数据集,包括HYCOM、OFES、OSCAR、Drifter、ECCO和PHY等6种流场数据集,Argo、IAP、EN4和ISAS 4种三维温盐数据集,OISST、ERSST和HadISST 3种海表面温度数据集以及SMOS、Aquarius和SMAP 3种海表面盐度数据集。在已有的研究基础上,对这些数据集的来源、特征信息及优缺点作了简要回顾,为海洋科技工作者提供参考。最后,建议未来从完善和发展海洋立体观测系统,增加数据质量评估质量和改进以及优化数值模式3个方面进行研究。

Marine science is a discipline developed on the basis of continuous observation data accumulation, and major breakthroughs in marine science development history are inseparable from the updating of ocean datasets. The time extension of existing gridded datasets has become the main form of updating ocean data products. This review summarizes the current development of gridded marine environment datasets. First, the historical development of ocean observations is divided into three stages: an initial accumulation period dominated by sparse observations, a rapid growth period guided by international observation programs, and a high-quality development period driven by data assimilation and ocean reanalysis. Starting from the three key elements of temperature, salinity, and ocean current, we focus on the global gridded ocean environment datasets published and updated internationally in recent decades, including six flow field datasets, such as HYCOM and OFES, and ten thermohaline datasets, such as Argo and IAP. Based on previous studies, the sources, characteristic information, advantages, and disadvantages of these datasets are briefly reviewed to provide a reference for marine scientists. Finally, the future development direction and research focus of ocean gridded datasets are discussed.

中图分类号: 

1 WU Jia, GAO Xuejie. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56(4): 1 102-1 111.
吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56(4): 1 102-1 111.
2 von SCHUCKMANN K, le TRAON P Y, SMITH N, et al. Copernicus marine service ocean state report, issue 4[J]. Journal of Operational Oceanography, 2020, 13(): S1-S172.
3 YOSHIMORI M, RAIBLE C C, STOCKER T F, et al. Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state[J]. Climate Dynamics, 2010, 34(1): 101-121.
4 NIE Sicheng. Global sea ice simulation uncertainty, parameter optimization and application[D]. Nanjing: Nanjing University, 2018.
聂思程. 全球海冰模拟不确定性及参数优化与应用[D]. 南京: 南京大学, 2018.
5 ZOU Tao. A new risk assessment method for jacket platform and nuclear power plant based on global sensitivity analysis and global uncertainty analysis[D]. Qingdao: Ocean University of China, 2012.
邹涛. 基于整体敏感性分析与整体不确定性分析的海洋及海岸结构风险评估新方法[D]. 青岛: 中国海洋大学, 2012.
6 DOBLAS-REYES F J, WEISHEIMER A, DÉQUÉ M, et al. Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts[J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135(643): 1 538-1 559.
7 FORGET G, CAMPIN J M, HEIMBACH P, et al. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation[J]. Geoscientific Model Development, 2015, 8(10): 3 071-3 104.
[1] 段晚锁, 秦晓昊. 非线性最优扰动方法在热带气旋目标观测研究和外场试验中的应用[J]. 地球科学进展, 2022, 37(2): 165-176.
[2] 范峥,李宏,刘向文,徐芳华. 基于局地集合变换卡尔曼滤波的全球海洋资料同化系统设计及算法加速[J]. 地球科学进展, 2019, 34(5): 531-539.
[3] 窦芳丽,陆其峰,郭杨. 全天候卫星微波观测资料变分同化研究进展[J]. 地球科学进展, 2019, 34(11): 1120-1130.
[4] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[5] 马乐天, 冯旭文, 李家彪. 海洋技术国际标准化在中国的起步及其实践意义[J]. 地球科学进展, 2017, 32(6): 660-667.
[6] 王辉, 万莉颖, 秦英豪, 王毅, 杨学联, 刘洋, 邢建勇, 陈莉, 王彰贵, 仉天宇, 刘桂梅, 杨清华, 吴湘玉, 刘钦燕, 王东晓. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10): 1090-1104.
[7] 韩成鸣, 李耀东, 史小康. 云分析预报方法研究进展[J]. 地球科学进展, 2015, 30(4): 505-516.
[8] 张燕武. 自适应海洋观测[J]. 地球科学进展, 2013, 28(5): 537-541.
[9] 同济大学海洋科技中心海底观测组. 美国的两大海洋观测系统:OOI与IOOS[J]. 地球科学进展, 2011, 26(6): 650-655.
[10] 李颖虹,王凡,任小波. 海洋观测能力建设的现状、趋势与对策思考[J]. 地球科学进展, 2010, 25(7): 715-722.
[11] 赵天保,符淙斌,柯宗建,郭维栋. 全球大气再分析资料的研究现状与进展[J]. 地球科学进展, 2010, 25(3): 241-254.
[12] 潘小多,李新,钞振华. 区域尺度近地表气候要素驱动数据研制的研究综述[J]. 地球科学进展, 2010, 25(12): 1314-1324.
[13] 陈大可,许建平,马继瑞,陈显尧,王桂华,王伟,韩桂军,张启龙,袁耀初,周伟东. 全球实时海洋观测网(Argo)与上层海洋结构、变异及预测研究[J]. 地球科学进展, 2008, 23(1): 1-7.
[14] 白晓平,李红,方栋,胡非,FrancescaCostabile,王芬娟. 资料同化在空气质量预报中的应用[J]. 地球科学进展, 2007, 22(1): 66-73.
阅读次数
全文


摘要