地球科学进展 ›› 2023, Vol. 38 ›› Issue (12): 1285 -1296. doi: 10.11867/j.issn.1001-8166.2023.077

非常规储层地质力学 上一篇    下一篇

动静态地质力学方法约束的致密油砂岩地应力综合评估
尹帅 1 , 2( ), 刘翰林 3, 何建华 4, 王瑞飞 5, 李香雪 1, 黄郑 6, 周永强 6, 贺子潇 6   
  1. 1.西安石油大学 地球科学与工程学院,陕西 西安 710065
    2.西安石油大学 陕西省油气成藏地质学重点实验室,陕西 西安 710065
    3.中国石油勘探开发研究院,北京 100083
    4.成都理工大学 能源学院,四川 成都 610059
    5.西安石油大学 石油工程学院,陕西 西安 710065
    6.中国石油化工 股份有限公司河南油田分公司油气开发管理部,河南 南阳 473132
  • 收稿日期:2023-09-04 修回日期:2023-11-03 出版日期:2023-12-10
  • 基金资助:
    国家自然科学基金项目(42302167);陕西省自然科学基础研究计划项目(2023-JC-QN-0355)

Comprehensive Evaluation of Geo-Stress in Tight Oil Sandstone Under Constraints of Dynamic-Static Geomechanical Methods

Shuai YIN 1 , 2( ), Hanlin LIU 3, Jianhua HE 4, Ruifei WANG 5, Xiangxue LI 1, Zheng HUANG 6, Yongqiang ZHOU 6, Zixiao HE 6   

  1. 1.School of Earth Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
    2.Shaanxi Key Laboratory of Petroleum Accumulation Geology, Xi’an Shiyou University, Xi’an 710065, China
    3.Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
    4.College of Energy, Chengdu University of Technology, Chengdu 610059, China
    5.School of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China
    6.Oil and Gas Development Management Department, Henan Oilfield Branch, SINOPEC, Nanyang Henan 473132, China
  • Received:2023-09-04 Revised:2023-11-03 Online:2023-12-10 Published:2023-12-26
  • About author:YIN Shuai, Associate professor, research areas include theory and application technology of energy geology, reservoir geomechanics. E-mail: speedysys@163.com
  • Supported by:
    the National Natural Science Foundation of China(42302167);Shaanxi Province Natural Science Basic Research Program(2023-JC-QN-0355)

地应力是地下岩石重要的地质力学属性,对其大小及方向的准确评估对于致密油储层增产方案设计具有重要意义。以致密油砂岩储层为例,系统开展了岩石力学、差应变、水力压裂及微地震监测约束下的地应力大小和方向的综合评价。结果表明,三方向主应力均为埋深的函数。压裂为张性破裂且受水平最小主应力的直接影响,因此,破裂压力与水平最小主应力之间有良好的正相关性;破裂压力与水平最大主应力之间无直接联系,主要受岩石强度影响,能反映泊松比性质,因此,具有高破裂压力岩石的水平最大主应力可能相对偏低。基于井壁崩落法、钻井诱导缝法、震源机制分析及微地震监测确定了目的层现今地应力方向为NE45°~NE60°。天然裂缝的存在会导致局部人工缝扩展方向发生偏转,压裂缝的扩展主要受天然缝的分布及开启性影响;进而,水力缝缝高与半缝长呈负相关性,即天然裂缝开启性对控制水力缝缝高有一定影响。成果可以为强非均质性致密油储层压裂效果评估提供科学指导。

Geostress is an important geomechanical property of underground rock, and an accurate evaluation of its magnitude and direction is important for the stimulation scheme design of tight oil reservoirs. In this study, taking a tight oil sandstone reservoir as an example, a comprehensive evaluation of the magnitude and direction of geostress under the constraints of rock mechanics, differential strain, hydraulic fracturing, and microseismic monitoring was systematically performed. The results showed that the three principal stresses are functions of the burial depth. Fracturing is a tensile fracture that is directly affected by the horizontal minimum principal stress; thus, a good positive correlation exists between the fracture pressure and the horizontal minimum principal stress. No direct relationship exists between the rupture pressure and the maximum horizontal principal stress, which is primarily affected by the rock strength and reflects Poisson’s ratio. Therefore, the maximum horizontal principal stress of rocks with high rupture pressures may be relatively low. Based on the well-wall caving method, drilling-induced fracture method, focal mechanism analysis, and microseismic monitoring; the present crustal stress direction of the target layer was determined to range NE45°~NE60°. The existence of natural fractures leads to a deflection in the expansion direction of local artificial fractures, and the expansion of pressure fractures is primarily affected by the distribution and opening of natural fractures. Furthermore, the hydraulic fracture height and half-fracture length showed a negative correlation, and the natural fracture opening influenced the hydraulic fracture height. This study provides scientific guidance for evaluating fracturing effects in highly heterogeneous tight oil reservoirs.

中图分类号: 

图1 样品的应力—应变测试曲线
Fig. 1 Stress-strain test curves of samples
表1 目的层岩石力学参数测试结果
Table 1 Test results of rock mechanics parameters of the target layer
图2 样品动、静态岩石力学参数转换关系
(a)动、静态弹性模量转换关系;(b)动、静态泊松比转换关系
Fig. 2 Conversion relationships between the dynamic and the static rock mechanics parameters of samples
(a) Transformation relation of dynamic and static elastic modulus; (b) Transformation relation of dynamic and static Poisson’s ratio
图3 泌阳凹陷东南部X1井偶极子阵列声波测井成果图
Fig. 3 Results of dipole array acoustic logging in Well X1 in the southeast Biyang Depression
图4 X1井目的层纵横波时差转换关系
Fig. 4 Conversion relationship between longitudinal wave and shear wave time difference of Well X1
图5 差应变实验测试及应力—应变加载原理
(a)差应变实验测试仪器;(b)差应变实验测试曲线
Fig. 5 Differential strain tests and stress-strain loading principle
(a) Differential strain test instruments; (b) Differential strain test curve
图6 泌阳凹陷东南部目的层各主应力及工程参数的计算结果耦合关系
(a)3个方向主应力垂向分布;(b)水平最大主应力与最小主应力的关系;(c)破裂压力与地应力的关系
Fig. 6 Relationship between the calculation results of the principal stresses and the engineering parameters of the target layer in the southeast of Biyang Depression
(a) Vertical distribution of principal stress in three directions; (b) Relationship between the horizontal maximum and the minimum principal stresses; (c) Relationship between the rupture pressure and the horizontal stresses
表2 地应力测井评价模型汇总表 17 - 20
Table 2 Summary of evaluation models for in-situ stress logging 17 - 20
模型 计算公式 特征描述
莫尔—库伦破坏模型 σ1-Pp=σc+Nφσ3-Pp 其理论基础是莫尔—库仑破坏准则,即假设地层最大原地剪应力是由地层的抗剪强度决定的
单轴应变模型 金尼克模型 σh=ν/(1-νσv 此模型是根据胡克定律得到的,主要针对均匀的、各向同性且无孔隙的地层,没有考虑地层孔隙压力的影响
Matthews模型 σh=Kiσv-Pp)+Pp 该模型是根据水力压裂原理提出,考虑了孔隙压力,但Ki 值较难确定
Terzaghi模型 σh=ν/(1-ν)×(σv-Pp)+Pp 认为垂向应力梯度随深度而变化,将上述模型中的Ki 具有化为ν/(1-ν
Anderson型 σh=ν/(1-ν)×(σv-αPp)+αPp 引入Biot系数(α),提出有效应力和新孔隙压力,孔隙压力等于总应力与有效应力之差
Newberry模型 σh=ν/(1-ν)×(σv-αPp)+Pp 基于Anderson模型的方法主要应用于含有微裂缝的低孔低渗地层
各向异性地层模型 黄氏模型 σh=[ν/(1-ν)+β1]×(σv-αPp)+αPp 引入构造应力系数(β1β2),考虑水平构造应力与有效应力成正比,利用该模型解释了竖向应力不是最大应力的情况,但没有考虑到刚度的影响
σH=[ν/(1-ν)+β2]×(σv-αPp)+αPp
组合弹簧模型 σh=ν/(1-ν)(σv-αPp)+αPp+h/(1-ν2)+νEεH/(1-ν2 该模型假定岩石为线弹性体,在后期地质改造中保持地层相对位置,水平变形恒定,同时考虑了弹性模量对地应力的影响
σH=ν/(1-ν)(σv-αPp)+αPp+H/(1-ν2)+νEεh/(1-ν2
葛式模型 σh=ν/(1-ν)(σv-αPp)+KhEσv-αPp)/(1+ν)+αTEΔT/(1-ν)+αPp 适用于水力压裂裂缝为垂直裂缝的情况,即最小地应力在水平方向
σH=ν/(1-ν)(σv-αPp)+KHEσv-αPp)/(1+ν)+αTEΔT/(1-ν)+αPp
σh=ν/(1-ν)(σv-αPp)+KhEσv-αPp)/(1+ν)+αTEΔT/(1-ν)+αPpσh 适用于水力压裂裂缝为水平裂缝的情况,即最小地应力在垂直方向
σH=ν/(1-ν)(σv-αPp)+KHEσv-αPp)/(1+ν)+αTEΔT/(1-ν)+αPp+ΔσH
斯伦贝谢模型 σh=ν/(1-νσv-2ηPp+H2/(1-ν2)+EνεH1/(1-ν2 考虑了水平方向应力的非均一性,同时考虑了弹性模量对地应力的影响
σH=ν/(1-νσv-2ηPp+H2/(1-ν2)+EνεH1/(1-ν2
多孔弹性水平应变模型 σh=ν/(1-νσv-ν/(1-ναvPp+αhPp+h/(1-ν2)+EνξH/(1-ν2 以三维弹性理论为基础
σH=ν/(1-νσv-ν/(1-ναvPp+αhPp+H/(1-ν2)+Eνξh/(1-ν2
双轴应变模型 σh=ν/[(1-νKh1][ν/(1-ν)(σv-αvPp+αhPp)]+h/(1-νKh1 双轴应变模型是多孔弹性水平应变模型的一个特例,该特例以构造因子作输入参数,取代最大水平主应力方向的应变(ξH
σH=Kh1σh
图7 X7井地应力测井解释成果图
Fig. 7 Logging interpretation result of geo-stress in Well X7
图8 X2井钻井诱导缝方位分析
Fig. 8 Analysis of the orientation of induced fractures in Well X2
图9 微地震监测水力缝方位统计结果
Fig. 9 Statistical results of hydraulic fracture orientation in microseismic monitoring
图10 A1井压裂缝扩展微地震监测结果
Fig. 10 Fracturing microseismic monitoring results of Well A1
图11 基于微地震监测天然裂缝发育井的压裂缝高与半缝长的关系
Fig. 11 Relationship between fracture height and half-fracture length of hydraulic fractures in natural fracture development wells based on microseismic monitoring
6 QIU Ronghua, FU Daiguo, WAN Li. A case study of hydrocarbon exploration in the southern steep slope zone of Biyang Depression[J]. Oil & Gas Geology, 2007, 28(5): 605-609.
邱荣华,付代国,万力.泌阳凹陷南部陡坡带油气勘探实例分析[J]. 石油与天然气地质,2007, 28(5): 605-609.
7 ZOU Yushi, SHI Shanzhi, ZHANG Shicheng, et al. Hydraulic fracture geometry and proppant distribution in thin interbeded shale oil reservoirs[J]. Petroleum Exploration and Development, 2022, 49(5): 1 025-1 032.
邹雨时,石善志,张士诚,等.薄互层型页岩油储集层水力裂缝形态与支撑剂分布特征[J].石油勘探与开发,2022, 49(5): 1 025-1 032.
8 ZOU Yushi, SHI Shanzhi, ZHANG Shicheng, et al. Experimental modeling of sanding fracturing and conductivity of propped fractures in conglomerate: a case study of tight conglomerate of Mahu Sag in Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(6): 1 202-1 209.
邹雨时,石善志,张士诚,等.致密砾岩加砂压裂与裂缝导流能力实验——以准噶尔盆地玛湖致密砾岩为例[J].石油勘探与开发,2021, 48(6): 1 202-1 209.
9 LI Hong, YU Haiyang, YANG Haifeng, et al. Adaptive stress sensitivity study of fractured heterogeneous tight reservoir [J]. Petroleum Drilling Techniques, 2022, 50(3): 99-105.
李虹, 于海洋, 杨海烽,等. 裂缝性非均质致密储层自适应应力敏感性研究[J].石油钻探技术,2022,50(3): 99-104.
10 LIU Jingshou, DING Wenlong, YANG Haimeng, et al. Natural fractures and rock mechanical stratigraphy evaluation in the Huaqing area, Ordos Basin: a quantitative analysis based on numerical simulation[J]. Earth Science, 2023, 48(7): 1-19.
刘敬寿,丁文龙,杨海盟,等.鄂尔多斯盆地华庆地区天然裂缝与岩石力学层演化——基于数值模拟的定量分析[J]. 地球科学, 2023, 48(7): 1-19.
11 DING Wenlong, WANG Xinghua, HU Qiujia,et al. Progress in tight sandstone reservoir fractures research[J]. Advances in Earth Science, 2015, 30(7): 737-750.
丁文龙,王兴华,胡秋嘉,等.致密砂岩储层裂缝研究进展[J].地球科学进展,2015, 30(7): 737-750.
12 XIAO Guangrui, LI Rao, ZHANG Yuru, et al. Application of diffraction wave imaging for fractured reservoir prediction of buried hill—a case study of BZ-A Oilfield[J]. Geophysical Prospecting Petroleum, 2022, 61(5): 812-819.
肖广锐, 李尧, 张羽茹,等. 裂缝性页岩储层水力压裂多簇裂——以渤中A气田为例[J].石油物探,2022, 61(5): 812-819.
13 YONG Shihe, ZHANG Chaomo. Logging data processing and comprehensive interpretation[M]. Dongying: China University of Petroleum Press, 2007: 34-36.
雍世和,张超谟.测井数据处理与综合解释[M]. 东营:中国石油大学出版社, 2007: 34-36.
14 WANG Ke, DAI Junsheng, ZHANG Hongguo, et al. Numerical simulation of fractured reservoir stress sensitivity: a case from Kuqa depression Keshen gas field[J]. Acta Petrolei Sinica, 2014, 35(1): 123-133.
王珂, 戴俊生, 张宏国, 等. 裂缝性储层应力敏感性数值模拟——以库车坳陷克深气田为例[J]. 石油学报, 2014, 35(1): 123-133.
15 TERZAGHI K. Erdbaumechanik auf bodenphysikalischer Grundlage. Franz Deuticke, Leipzig [M]. Germany, Leipzing: Deuticke, 1925: 399-400.
16 TANG Xiaoming, QIAN Yuping, CHEN Xuelian.Laboratory study of elastic wave theory for a cracked orous medium using ultrasonic velocity data of rock samples[J]. Chinese Journal of Geophysics, 2013, 56(12): 4 226-4 232.
唐晓明,钱玉萍,陈雪莲. 孔隙、裂隙介质弹性波理论的实验研究[J].地球物理学报,2013, 56(12): 4 226-4 232.
17 LIU Zhaoyi. Study on fracture initiation and propagation law of fractured reservoir based on finite-discrete element method[D]. Daqing: Northeast Petroleum University, 2022:1-10.
刘照义.基于有限—离散元方法的裂缝性储层压裂裂缝起裂扩展规律研究[D].大庆:东北石油大学,2022:1-10.
18 FAN Caiwei, JIA Ru, LIU Bo, et al. Caprock evaluation and its reservoir control of different accumulation systems in central depression zone of Yinggehai Basin[J]. Lithological Reservoirs, 2023, 35(1): 36-48.
范彩伟, 贾如, 柳波,等. 莺歌海盆地中央坳陷带成藏体系的盖层评价及控藏作用[J]. 岩性油气藏, 2023, 35(1): 36-48.
19 HE Yu, ZHOU Xing, LI Shaoxuan, et al. Genesis and logging response characteristics of formation overpressure of Paleogene in Bozhong Sag, Bohai Bay Basin[J]. Lithological Reservoirs, 2022, 34(3): 60-69.
何玉, 周星, 李少轩,等. 渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J]. 岩性油气藏, 2022, 34(3): 60-69.
20 DONG Min, GUO Wei, ZHANG Linyan, et al. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi Formation in Luzhou area,southern Sichuan Basin[J]. Lithological Reservoirs, 2022, 34(1): 43-51.
董敏, 郭伟, 张林炎, 等. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51.
21 CAO Feng, HE Jianhua, WANG Yuanyuan, et al. Methods to evaluate present-day in-situ stress direction for low anisotropic reservoirs in the second member of the Xujiahe Formation in Hechuan area[J]. Advances in Earth Science, 2022, 37(7): 742-755.
曹峰,何建华,王园园,等. 合川地区须二段低各向异性储层现今地应力方向评价方法[J].地球科学进展,2022,37(7): 742-755.
22 LIU Shaojun, LIU Yong, ZHAO Shengxian, et al. Distribution characteristics and pattern of deep shale present geostress field in Northern Luzhou[J]. Advances in Earth Science, 2023, 38(12). DOI:10.11867/j.issn.1001-8166.2023.070 .
刘绍军,刘勇,赵圣贤,等. 泸州北区深层页岩现今地应力场分布特征及扰动规律[J].地球科学进展,2023, 38(12). DOI:10.11867/j.issn.1001-8166.2023.070 .
1 WANG Fei, ZHOU Tong, XU Jiaxin, et al. Fracturing pump-stopping pressure drop model considering proppant migration[J]. 石油学报, 2023, 44(4): 647-655.
王飞, 周彤, 许佳鑫,等. 考虑支撑剂运移的压裂停泵压降模型[J]. Acta Petrolei Sinic, 2023, 44(4): 647-655.
2 DU Shuheng, SHEN Wenhao, ZHAO Yabo. Quantitave evaluation of stress sensitivity in shale reservoirs: ideas and applications[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2 235-2 244.
杜书恒, 沈文豪, 赵亚溥. 页岩储层应力敏感性定量评价: 思路及应用[J].力学学报,2022,54(8): 2 235-2 244.
3 WEI Yunsheng, LIN Tiejun, YU Hao, et al. Propagation law of fracture network in shale reservoirs based on the embeded cohesive unit method[J]. Natural Gas Industry, 2022, 42(10): 74-83.
位云生,林铁军,于浩,等. 基于嵌入黏聚单元法的页岩储层压裂缝网扩展规律[J].天然气工业,2022,42(10):74-83.
4 DENG Hucheng, ZHOU Wen, JIANG Haogang, et al. Current terrestrial stress direction of the Shaximiao Formation in the Yanjinggou Structure of the West Sichuan Depression[J]. Oil and Gas Geology, 2009, 30(6): 720-725.
邓虎成, 周文, 姜浩罡, 等. 川西坳陷盐井沟构造沙溪庙组现今地应力方向[J]. 石油与天然气地质, 2009, 30(6): 720-725.
5 DONG Yanlei, ZHU Xiaomin, GENG Xiaojie,et al.Sedimentary characteristics comparison and controlling factors analyses of near-shore subaqueous fan and fan delta in the Hetaoyuan formation of southeastern Biyang Sag[J]. Oil & Gas Geology,2015, 36(2): 271-279.
董艳蕾,朱筱敏,耿晓洁,等.泌阳凹陷东南部核桃园组近岸水下扇与扇三角洲沉积特征比较及控制因素分析[J].石油与天然气地质,2015, 36(2): 271-279.
23 FAN Xiangyu, GONG Ming, ZHANG Qiangui. Prediction of the horizontal stress of the tight sandstone formation in eastern Sulige of China [J]. Journal of Petroleum Science and Engineering, 2014, 113(2): 72-80.
24 YIN Shuai, DING Wenlong, LIN Lifei, et al. Characteristics and the controlling effect on hydrocarbon accumulation of fractures in Yanchang Formation in Zhidan-Wuqi area, western Ordos Basin[J]. Earth Science, 2023, 48(7): 2 614-2 626.
尹帅, 丁文龙,林利飞,等. 鄂尔多斯盆地西部志丹—吴起地区延长组裂缝特征及其控藏作用[J]. 地球科学, 2023, 48(7): 2 614-2 626.
25 YIN Shuai, SUN Xiaoguang, WU Zhonghu, et al. Coupling control of tectonic evolution and fractures on the Upper Paleozoic gas reservoirs in the northeastern margin of the Ordos Basin[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3 724-3 737.
尹帅, 孙晓光, 邬忠虎,等. 鄂尔多斯盆地东北缘上古生界构造演化及裂缝耦合控气作用[J]. 中南大学学报(自然科学版), 2022, 53(9): 3 724-3 737.
26 QIN Yangliang, HE Youbin, CAI Jun, et al. Tectonic evolution and formation mechanism of Davie Fracture Zone in East Africa coast[J]. Lithological Reservoirs, 2021, 33(2): 104-115.
覃阳亮, 何幼斌, 蔡俊, 等. 东非海岸 Davie 构造带的构造演化特征及其成因机制[J]. 岩性油气藏, 2021, 33(2): 104-115.
27 CONG Ping, YAN Jianping, JING Cui, et al. Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir: a case study from Wufeng Formation and Longmaxi Formation in X area,southern Sichuan Basin[J]. Lithological Reservoirs, 2021, 33(3): 177-188.
丛平, 闫建平, 井翠, 等. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
[1] 刘绍军, 刘勇, 赵圣贤, 张鉴, 邓乃尔, 邓虎成, 何建华, 徐浩, 曹埒焰, 何沅翰, 尹美璇. 泸州北区深层页岩现今地应力场分布特征及扰动规律[J]. 地球科学进展, 2023, 38(12): 1271-1284.
[2] 曹峰, 何建华, 王园园, 邓虎成, 徐庆龙. 合川地区须二段低各向异性储层现今地应力方向评价方法[J]. 地球科学进展, 2022, 37(7): 742-755.
[3] 贾凌云, 李琳, 王千遥, 马劲风, 王大兴. 致密砂岩储层岩石物理模型的优化建立[J]. 地球科学进展, 2018, 33(4): 416-424.
[4] 冯建伟, 任启强, 徐珂. 基于地质力学方法的低渗透砂岩储层构造裂缝预测研究[J]. 地球科学进展, 2016, 31(9): 946-967.
[5] 毛克宇. 梨树断陷营城组致密砂岩测井流体识别方法及其适应性分析[J]. 地球科学进展, 2016, 31(10): 1056-1066.
[6] 陈志敏, 严松宏, 赵德安, 余云燕. 青藏地区地应力分布规律研究[J]. 地球科学进展, 2015, 30(9): 915-921.
[7] 陈志敏, 严松宏, 赵德安, 余云燕. 青藏地区地应力分布规律研究[J]. 地球科学进展, 2015, 30(8): 915-921.
[8] 丁文龙, 王兴华, 胡秋嘉, 尹帅, 曹翔宇, 刘建军. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 2015, 30(7): 737-750.
[9] 张志强,郑军卫. 国际低渗透油气资源勘探开发技术进展[J]. 地球科学进展, 2009, 24(8): 854-864.
[10] 赵青,赵其华,彭社琴,陈近中,黄河清. 某水电站坝区高地应力释放现象及成因研究[J]. 地球科学进展, 2009, 24(6): 636-642.
[11] 赵其华,陈近中,彭社琴. 高地应力条件下围岩质量分类方法研究[J]. 地球科学进展, 2008, 23(5): 482-487.
[12] 许忠淮. 地应力研究现状与展望[J]. 地球科学进展, 1990, 5(5): 27-34.
阅读次数
全文


摘要