地球科学进展 ›› 2023, Vol. 38 ›› Issue (12): 1297 -1310. doi: 10.11867/j.issn.1001-8166.2023.084

新学科?新技术?新发现 上一篇    下一篇

海洋负排放技术及“人工灰尘”耦合技术概念
潘晨 1 , 2( ), 周哲 3 , 4( ), 杨黎彬 1 , 2, 褚华强 1 , 2, 周雪飞 1 , 2, 杨守业 3 , 4, 张亚雷 1 , 2   
  1. 1.同济大学 环境科学与工程学院,上海 200092
    2.同济大学 污染控制与资源化研究国家重点实验室,上海 200092
    3.同济大学 海洋地质国家重点实验室,上海 200092
    4.同济大学 海洋与地球科学学院,上海 200092
  • 收稿日期:2023-09-01 修回日期:2023-11-07 出版日期:2023-12-10
  • 通讯作者: 周哲 E-mail:2396425483@qq.com;zhezhou_research@tongji.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFF0800504);同济大学交叉学科项目(2023-1-YB-04);中央高校基本科研业务费专项资助

Ocean Negative Carbon Technology and the Concept of “Artificial Dust”

Chen PAN 1 , 2( ), Zhe ZHOU 3 , 4( ), Libin YANG 1 , 2, Huaqiang CHU 1 , 2, Xuefei ZHOU 1 , 2, Shouye YANG 3 , 4, Yalei ZHANG 1 , 2   

  1. 1.Environmental Science and Engineering, Tongji University, Shanghai 200092, China
    2.State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
    3.State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
    4.School of Ocean and Earth Science, Tongji University, Shanghai 200092, China
  • Received:2023-09-01 Revised:2023-11-07 Online:2023-12-10 Published:2023-12-26
  • Contact: Zhe ZHOU E-mail:2396425483@qq.com;zhezhou_research@tongji.edu.cn
  • About author:PAN Chen, Master student, research area includes marine carbon negative technology research.
  • Supported by:
    the National Key Research and Development Program of China(2022YFF0800504);The Interdisciplinary Project of Tongji University(2023-1-YB-04);Special Funds for Basic Scientific Research Business Expenses of Central Universities

随着全球气候危机的加剧,实现碳中和的任务变得更为紧迫。中国政府承诺在2060年实现碳中和,除了加快能源转型、减少化石燃料消耗外,还需大力发展负排放技术以抵消社会生产生活中难以避免的碳排放。海洋作为地球上最大的活跃碳库,具有巨大的储碳潜力。围绕海洋负排放的研发方兴未艾,其主要技术路径包括渔业碳汇、陆海统筹、地质封存、人工上升流、增强风化以及铁施肥等。其中,增强风化和铁施肥等技术都涉及人为投加外源物质到海洋,理论上可通过对投加组分和方式的复合优化,实现多技术路径的耦合,进一步提升海洋固碳和储碳的效率。基于此提出了“人工灰尘”这一潜在的耦合技术路径。“人工灰尘”以提高海洋储碳量(而非初级生产力)为技术目标。拟通过改良铁施肥所用材料及投加方式提高其作用时效,并实现对藻类种群结构的调整,促进更难降解的、更易下沉的藻类生长。此外,在藻类死亡和降解高峰时段,再次投加硅酸盐岩/矿物粉末为主体的二级“人工灰尘”,基于增强风化原理提升海水碱度,同时利用矿物溶解释放的钙和镁等离子促进有机碳团聚沉降,促进其在沉积物中的埋藏。“人工灰尘”这一耦合技术概念的提出可为今后海洋负排放的理论研究提供更广阔的思路。

The intensification of the global climate crisis has heightened the urgency of achieving carbon neutrality. The Chinese government aims to achieve carbon neutrality by the year 2060. To achieve this goal, in addition to accelerating energy transformation and reducing fossil fuel consumption, we also need to develop “negative carbon technologies” to offset the unavoidable carbon emissions in social production and life. The ocean has immense potential for carbon storage, as it is the largest active carbon sink on Earth. The research and development of “negative carbon technology” in the ocean is on the rise. Its primary technical paths include blue carbon management, geological storage, artificial upwelling, enhanced weathering, and iron fertilization. Theoretically, the coupling of multiple technical paths can be realized through the compound optimization of the components and methods of addition, as enhanced weathering and fertilization of iron involve the artificial addition of exogenous substances to the ocean; thus, the efficiency of ocean carbon sequestration and carbon storage can be further improved. In this paper, we refer to this potentially composite technique as “artificial dust”. The ultimate purpose of “artificial dust” is to increase the production of recalcitrant organic carbon (rather than primary productivity), accelerate the deposition and burial of organic carbon, and increase seawater alkalinity. It is intended to adjust the algal population structure and promote the growth of algae that are more difficult to degrade by improving iron fertilization materials and dosing methods. Further, in the peak season of algae death and degradation, the second-level “artificial dust” primarily composed of silicate rock/mineral powder is added. This promotes the aggregation and deposition of organic carbon, accelerates the fixation of inorganic dust produced by algal mineralization based on enhanced weathering theory, and reduces the re-release of CO2 from seawater. The technical concept of “artificial dust” provides a broader insight for future theoretical research on marine “negative carbon technology.”

中图分类号: 

图1 海洋固碳与储碳的主要过程(据参考文献[ 20 ]修改)
虚线框内为食物链;实线框内为物理过程
Fig. 1 The main processes of carbon sequestration and storage in the oceanmodified after reference 20 ])
The portion within the dashed box represents the food chain; The solid box represents physical processes
图2 海洋负排放技术路径(据参考文献[ 34 ]修改)
(a) 渔业碳汇;(b)陆海统筹;(c)地质封存;(d)人工上升流;(e)基于人为物质投加的碱度提升以及铁施肥等
Fig. 2 Marine negative carbon technology pathmodified after reference 34 ])
(a) Fishery carbon sink; (b) Land-sea coordination; (c) Geological sealing; (d) Artificial upwelling; (e) Alkalinity enhancement and iron fertilization based on artificial material addition
表110 Gt岩石 /a的海洋碱度提升实验中关键组分的预估增加量 68
Table 1 Estimated additions of key components in an OAE scenario with 10 Gt rock/a 68
表2 1993200413次海洋人工铁施肥实验结果 6 - 7
Table 2 Summary of 13 marine artificial iron fertilization experiments from 1993 to 2004 6 - 7
实验 地点 时间 季节

温度

/℃

实验范围/km2 投加铁的质量/kg 初始铁浓度/(nmol/L) 最终铁浓度/(nmol/L) ΔpCO2/μatm ΔDIC/(μmol/L) ΔChla/(mg/m3 ΔPP/[mgC/(m2d)]) ΔExport flux/[mgC/(m2d)]
IronEx-1 赤道太平洋 1999年1月 23 64 450 0.06 3.6 -13 -6 0.41 505~880 未检测出
IronEx-2 赤道太平洋 1995年5月 25 72 450 0.02 2 -73 -27 3.8~3.85 约1 800 516(25 m)
SOIREE 南大洋 1999年2月 2 50 1 750 0.08 3.8 -38~-32 -18~-15 1.75 约1 180 未检测出
EisenEx 南大洋 2000年11月 3~4 50 2 350 0.06 2 -20~-18 -15~-12 2 570~660 未检测出
SoFeX-N 南大洋 2002年1月至2002年2月 5 225 1 700 未检测出 1.2 -26 -14 约2.45 约1 356 未检测出
SoFeX-S 南大洋 2002年1月至2002年2月 -1 225 1 300 未检测出 0.7 -36 -21 约3.5 约756

76(50 m)

123(100 m)

EIFEX 南大洋 2004年2月至2004年3月 4~5 167 2 820 0.08~0.20 1.5 -30 -13 2.46 约750

约1 352

(100 m)

SAGE 南大洋 2004年3月至2004年4月 11.8 36 1 100 0.09 3.03 8 25 0.7 360 未检测出
LOHAFEX 南大洋 2009年1月至2009年3月 300 未检测出 2 -15~-7

未检

测出

0.75 >600 约32(100 m)
SEEDS-1 亚北极北太平洋 2001年7月至2001年8月 11 80 350 0.05 2.9 -130 -58 20.9~21 1 250

323(50 m)

17(100 m)

SERIES 亚北极北太平洋 2002年7月至2002年8月 13 77 490 <0.10 >1 -85 -37 ~4.65 >1 700 约342(50m)约144(100 m)
SEEDS-2 亚北极北太平洋 2004年7月至2002年8月 9~12 64 480 0.17 1.38 约-6

未检

测出

2.2 610

290(50 m)

21(100 m)

FeeP 副热带北大西洋 2004年4月至2004年5月 21 25 1 840 0.20~0.40 3 未检 测出 约-1 0.01 未检测出 未检测出
图3 基于分步投加的“人工灰尘”耦合技术路径
(a)一级“人工灰尘”实现惰性有机碳产量提升;(b)二级“人工灰尘”促进有机碳沉降速率与埋藏,并提升海水碱度
Fig. 3 The coupling technology path of “artificial dust” based on step-by-step dosing
(a) First level “artificial dust” achieves an increase in recalcitrant dissolved organic carbon production; (b) The secondary “artificial dust” promotes the sedimentation rate and burial of organic carbon, and enhances the alkalinity of seawater
图4 利用不同铁基耦合物调节浮游植物种群结构示意图
Fig. 4 Schematic diagram of adjusting phytoplankton population structure by using different iron based coupling substances
1 Project Synthesis Report Preparation Team, HE Jiankun, XIE Zhenhua, et al. Comprehensive report of <Research on China’s long term low carbon development strategy and transformation path>[J]. China Population, Resources and Environment, 2020, 30(11): 1-25.
项目综合报告编写组, 何建坤, 解振华, 等. 《中国长期低碳发展战略与转型路径研究》综合报告[J]. 中国人口·资源与环境, 2020, 30(11): 1-25.
2 FANG Qi, QIAN Lihua, LU Zhengwei. Measure carbon emission amount of China in the context of carbon peak and carbon neutrality[J]. Environmental Protection, 2021, 49(16): 51-56.
方琦, 钱立华, 鲁政委. 我国实现碳达峰与碳中和的碳排放量测算[J]. 环境保护, 2021, 49(16): 51-56.
3 BOYD P W, CLAUSTRE H, LEVY M, et al. Multi-faceted particle pumps drive carbon sequestration in the ocean[J]. Nature, 2019, 568(7 752): 327-335.
4 JIAO N Z, HERNDL G J, HANSELL D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean [J]. Nature Reviews Microbiology, 2010, 8(8): 593-599.
5 STONE R. The invisible hand behind A vast carbon reservoir [J]. Science, 2010, 328(5 985): 1 476-1 477.
6 SUN Hansheng, SUN Xumei, WANG Xinwei, et al. Uncertainties of ocean iron fertilization in improving the growth of marine phytoplankton and the efficiency of biological carbon pump [J]. Acta Microbiologica Sinica, 2022, 62(12): 4 592-4 605.
孙涵晟, 孙旭梅, 王鑫威, 等. 铁施肥促进海洋浮游植物和生物碳泵的不确定性 [J]. 微生物学报, 2022, 62(12): 4 592-4 605.
7 YOON J E, YOO K C, MACDONALD A M, et al. Reviews and syntheses: ocean iron fertilization experiments-past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project [J]. Biogeosciences, 2018, 15(19): 5 847-5 889.
8 PFAFFEN S, BRADLEY J M, ABDULQADIR R, et al. A diatom ferritin optimized for iron oxidation but not iron storage[J]. Journal of Biological Chemistry, 2015, 290(47): 28 416-28 427.
9 LAL R. Carbon sequestration[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363(1 492): 815-830.
10 FALKOWSKI P, SCHOLES R J, BOYLE E, et al. The global carbon cycle: a test of our knowledge of earth as a system[J]. Science, 2000, 290(5 490): 291-296.
11 DAI Minhan, ZHAI Weidong, LU Zhongming. Regional studies of carbon cycles in China:progress and perspectives [J]. Advances in Earth Science, 2004, 19(1): 120-130.
戴民汉, 翟惟东, 鲁中明, 等. 中国区域碳循环研究进展与展望 [J]. 地球科学进展, 2004, 19(1): 120-130.
12 JOHNSON K S, BIF M B. Constraint on net primary productivity of the global ocean by Argo oxygen measurements[J]. Nature Geoscience, 2021, 14(10): 769-774.
13 RIEBESELL U, SCHULZ K G, BELLERBY R G J, et al. Enhanced biological carbon consumption in a high CO2 ocean[J]. Nature, 2007, 450(7 169): 545-548.
14 DENMAN K L, BRASSEUR G, CHIDTHAISONG A, et al. Couplings between changes in the climate system and biogeochemistry [M]// SOLOMON S D, QIN M, MANNING Z, et al. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2007.
15 PAN Delu, LI Teng, BAI Yan. Oceans: Earth’s largest carbon sink [J]. Oceanographic Research, 2012, 30(3): 1-4.
潘德炉, 李腾, 白雁. 海洋:地球最巨大的碳库[J]. 海洋学研究, 2012, 30(3): 1-4.
16 HOLLIGAN P M, ROBERTSON J E. Significance of ocean carbonate budgets for the global carbon cycle[J]. Global Change Biology, 1996, 2(2): 85-95.
17 GURNEY K R, LAW R M, DENNING A S, et al. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models[J]. Nature, 2002, 415(6 872): 626-630.
18 BAUER J E, CAI W J, RAYMOND P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7 478): 61-70.
19 DAI M H, LUO Y W, ACHTERBERG E P, et al. Upper Ocean biogeochemistry of the oligotrophic North Pacific subtropical gyre: from nutrient sources to carbon export[J]. Reviews of Geophysics, 2023, 61(3). DOI:10.1029/2022RG000800 .
20 JIAO Nianzhi. Carbon sequestration and storage in the ocean-and the important role of microbiota in it [J]. Chinese Science: Earth Science, 2012, 42(10): 1 473-1 486.
焦念志. 海洋固碳与储碳——并论微型生物在其中的重要作用 [J]. 中国科学:地球科学, 2012, 42(10): 1 473-1 486.
21 JIAO Nianzhi, ZHANG Chuanlun, LI Chao, et al. Carbon storage mechanism and climate effects of marine microbiota carbon pumps [J]. Chinese Science: Earth Sciences, 2013, 43(1): 1-18.
焦念志, 张传伦, 李超, 等. 海洋微型生物碳泵储碳机制及气候效应 [J]. 中国科学:地球科学, 2013, 43(1): 1-18.
22 DITTMAR T, LENNARTZ S T, BUCK-WIESE H, et al. Enigmatic persistence of dissolved organic matter in the ocean[J]. Nature Reviews Earth & Environment, 2021, 2(8): 570-583.
23 ZHANG C L, DANG H Y, AZAM F, et al. Evolving paradigms in biological carbon cycling in the ocean[J]. National Science Review, 2018, 5(4): 481-499.
24 JIAO Nianzhi, DAI Minhan, JIAN Zhimin, et al. Research strategies for ocean carbon storage mechanisms and effects[J]. Chinese Science Bulletin, 2022, 67(15): 1 600-1 606.
焦念志, 戴民汉, 翦知湣, 等. 海洋储碳机制及相关生物地球化学过程研究策略[J]. 科学通报, 2022, 67(15): 1 600-1 606.
25 LAROWE D E, ARNDT S, BRADLEY J A, et al. The fate of organic carbon in marine sediments-new insights from recent data and analysis[J]. Earth-Science Reviews, 2020, 204. DOI: 10.1016/j.earscirev.2020.103146 .
26 ARÍSTEGUI J, GASOL J M, DUARTE C M, et al. Microbial oceanography of the dark ocean’s pelagic realm[J]. Limnology and Oceanography, 2009, 54(5): 1 501-1 529.
27 BURDIGE D J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets?[J]. ChemInform, 2007, 38(20). DOI:10.1002/chin.200720266 .
28 HEDGES J I, KEIL R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3): 81-115.
29 ZONNEVELD K A F, VERSTEEGH G J M, KASTEN S, et al. Selective preservation of organic matter in marine environments: processes and impact on the sedimentary record[J]. Biogeosciences, 2010, 7(2): 483-511.
30 XU Sinan, WU Zijun, ZHANG Xilin, et al. Progress and perspectives of numerical modeling in marine sediment geochemistry [J/OL]. Earth Science, 2023. [2023-07-20]. .
徐思南, 吴自军, 张喜林, 等. 海洋沉积物碳循环过程数值模型的研究进展[J/OL]. 地球科学, 2023. [2023-07-20]. .
31 ZHANG Yonghua, WU Zijun. Sedimentary organic carbon mineralization and its contribution to the marine carbon cycle in the marginal seas[J]. Advances in Earth Science, 2019, 34(2): 202-209.
张咏华, 吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
32 LALONDE K, MUCCI A, OUELLET A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7 388): 198-200.
33 GUO Yao, ZHOU Qiaohong, WANG Pei, et al. Exploring the mechanism of carbon storage in inland water [J]. Journal of Water Ecology, 2023, 44(4): 141-150.
郭瑶, 周巧红, 王培, 等. 内陆水体储碳作用机制研究进展 [J]. 水生态学杂志, 2023, 44(4): 141-150.
34 BOETTCHER M, BRENT K, BUCK H J, et al. Navigating potential hype and opportunity in governing marine carbon removal[J]. Frontiers in Climate, 2021, 3. DOI: 10.3389/fclim.2021.664456 .
35 NELLEMANN C. Blue carbon: a UNEP rapid response assessment [R]. Spain:Institut Mediter ráni d’Estudis Avançats, 2009.
36 TANG Jianwu, YE Shufeng, CHEN Xuechu, et al. Coastal blue carbon: concept, study method, and the application to ecological restoration[J]. Science China: Earth Sciences, 2018, 48(6): 661-670.
唐剑武, 叶属峰, 陈雪初, 等. 海岸带蓝碳的科学概念、研究方法以及在生态恢复中的应用[J]. 中国科学: 地球科学, 2018, 48(6): 661-670.
37 TANG Qisheng, LIU Hui. Strategy for carbon sink and its amplification in marine fisheries[J]. Engineering Science, 2016, 18(3): 68-73.
唐启升, 刘慧. 海洋渔业碳汇及其扩增战略[J]. 中国工程科学, 2016, 18(3): 68-73.
38 ZHANG Jihong, FANG Jianguang, TANG Qisheng. The contribution of shellfish and seaweed mariculture in China to the carbon cycle of coastal ecosystem[J]. Advances in Earth Science, 2005, 20(3): 359-365.
张继红, 方建光, 唐启升. 中国浅海贝藻养殖对海洋碳循环的贡献[J]. 地球科学进展, 2005, 20(3): 359-365.
39 ZHANG Jihong, LIU Jihua, ZHANG Yongyu, et al. Strategic approach for mariculture to practice “ocean negative carbon emission”[J]. Bulletin of the Chinese Academy of Sciences, 2021, 36(3): 252-258.
张继红, 刘纪化, 张永雨, 等. 海水养殖践行“海洋负排放” 的途径[J]. 中国科学院院刊, 2021, 36(3): 252-258.
40 ZHANG J H, FANG J G, WANG W, et al. Growth and loss of mariculture kelp Saccharina japonica in Sungo Bay, China[J]. Journal of Applied Phycology, 2012, 24(5): 1 209-1 216.
41 SUI J J, ZHANG J H, REN J S, et al. Organic carbon in the surface sediments from the intensive mariculture zone of sanggou bay: distribution, seasonal variations and sources[J]. Journal of Ocean University of China, 2019, 18(4): 985-996.
42 KRAUSE-JENSEN D, DUARTE C M. Substantial role of macroalgae in marine carbon sequestration[J]. Nature Geoscience, 2016, 9(10): 737-742.
43 ZHANG Yongyu, ZHANG Jihong, LIANG Yantao, et al. Formation process and mechanism of carbon sink in offshore aquaculture environment of China[J]. Science China: Earth Sciences, 2017, 47(12): 1 414-1 424.
张永雨, 张继红, 梁彦韬, 等. 中国近海养殖环境碳汇形成过程与机制[J]. 中国科学: 地球科学, 2017, 47(12): 1 414-1 424.
44 CHEN J, LI H M, ZHANG Z H, et al. DOC dynamics and bacterial community succession during long-term degradation of Ulva prolifera and their implications for the legacy effect of green tides on refractory DOC pool in seawater[J]. Water Research, 2020, 185. DOI:10.1016/j.watres.2020.116268 .
45 CRAWFORD C M, MACLEOD C K A, MITCHELL I M. Effects of shellfish farming on the benthic environment[J]. Aquaculture, 2003, 224(1/2/3/4): 117-140.
46 LI Zhongyi, LIN Qun, LI Jiao, et al. Present situation and future development of marine ranching construction in China[J]. Journal of Fisheries of China, 2019, 43(9): 1 870-1 880.
李忠义, 林群, 李娇, 等. 中国海洋牧场研究现状与发展[J]. 水产学报, 2019, 43(9): 1 870-1 880.
47 YUAN X, YIN K, HARRISON P J, et al. Bacterial production and respiration in subtropical Hong Kong waters: influence of the Pearl River discharge and sewage effluent[J]. Aquatic Microbial Ecology, 2010, 58: 167-179.
48 ZWEIFEL U L, NORRMAN B, HAGSTROM A. Consumption of dissolved organic carbon by marine bacteria and demand for inorganic nutrients[J]. Marine Ecology Progress Series, 1993, 101: 23-32.
49 CHEN C T A, BORGES A V. Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2 [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8/9/10): 578-590.
50 CARLSON C A, GIOVANNONI S J, HANSELL D A, et al. Effect of nutrient amendments on bacterioplankton production, community structure, and DOC utilization in the northwestern Sargasso Sea[J]. Aquatic Microbial Ecology, 2002, 30: 19-36.
51 JIAO N Z, TANG K, CAI H Y, et al. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land[J]. Nature Reviews Microbiology, 2011, 9(1). DOI:10.1038/nrmicro2386-c2 .
52 WU Linqiang, ZHANG Tao, WEI Yuzhang, et al. International experience and enlightenment on the development of marine carbon dioxide geological storage [J]. Natural Resource Economics of China, 2023(4). DOI:10.19676/j.cnki.1672-6995.000807 .
吴林强,张涛,睢雨璋, 等. 海域二氧化碳地质封存发展的国际经验与启示 [J]. 中国国土资源经济,2023(4). DOI:10.19676/j.cnki.1672-6995.000807 .
53 GUO Jianqiang, WEN Dongguang, ZHANG Senqi, et al. Potential evaluation and demonstration project of CO2 geological storage in China [J]. China Geological Survey, 2015, 2 (4): 36-46.
郭建强, 文冬光, 张森琦, 等. 中国二氧化碳地质储存潜力评价与示范工程[J]. 中国地质调查, 2015, 2 (4): 36-46.
54 张立, 刘瑶. 二氧化碳减排 地质工作大有可为[N/OL]. 中国矿业报, 2015-07-15[2023-07-20]. .
55 冯丽妃. 中国海域二氧化碳地质封存潜力达 2.58万亿吨 [N/OL]. 中国科学报, 2023-01-13[2023-07-20]. .
56 LEI Yingjie. China’s Carbon dioxide Capture, Utilization, and Storage (CCUS) Annual Report (2021) issued recommendations for large-scale CCUS demonstration and industrial cluster construction [J]. Environmental Economy, 2021, 16: 40-42.
雷英杰. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)发布 建议开展大规模CCUS示范与产业化集群建设[J]. 环境经济, 2021, 16: 40-42.
57 KIRKE B. Enhancing fish stocks with wave-powered artificial upwelling[J]. Ocean & Coastal Management, 2003, 46(9/10): 901-915.
58 LOVELOCK J E, RAPLEY C G. Ocean pipes could help the Earth to cure itself [J]. Nature, 2007, 449(7 161). DOI:10.1038/449403a .
59 CHEN Ying, FAN Wei, PAN Yiwen, et al. Artificial upwelling technology and its application [Z]. Hangzhou:Zhejiang University, 2022.
陈鹰, 樊炜, 潘依雯, 等. 人工上升流技术及其应用 [Z]. 杭州:浙江大学, 2022.
60 QIANG Yongfa. Research on the air-lift artificial upwelling technology and its sea trials [D]. Hangzhou:Zhejiang University, 2019.
强永发. 气力提升式人工上升流技术及海域试验研究 [D]. 杭州:浙江大学, 2019.
61 ZHANG Yao, ZHAO Meixun, CUI Qiu, et al. Processes of coastal ecosystem carbon sequestration and approaches for increasing carbon sink [J]. Science China: Earth Sciences, 2017, 47(4): 438-449.
张瑶, 赵美训, 崔球, 等. 近海生态系统碳汇过程、调控机制及增汇模式 [J]. 中国科学:地球科学, 2017, 47(4): 438-449.
62 ZHENG Qiang, WU Lilin, WANG Yimeng, et al. Artificial addition of olivine promotes the process of marine carbon sequestration [J]. Strait Science, 2022(7): 64-67.
郑强, 吴俐琳, 王艺蒙, 等. 人工添加橄榄石促进海洋碳增汇过程 [J]. 海峡科学,2022(7): 64-67.
63 YANG Yibo, ALBERT G, FANG Xiaomin, et al. The strengthening of the East Asian monsoon intensifies the chemical weathering of the Mg rich upper crust in southern China and its global significance [J]. Science China: Earth Sciences, 2021, 51(8): 1 289-1 305.
杨一博, Albert GALY, 方小敏, 等. 东亚季风增强加剧中国南部富Mg上地壳化学风化及其全球意义[J]. 中国科学: 地球科学, 2021, 51(8): 1 289-1 305.
64 SCHUILING R D, KRIJGSMAN P. Enhanced weathering: an effective and cheap tool to sequester CO2 [J]. Climatic Change, 2006, 74(1): 349-354.
65 LENTON T M, BRITTON C. Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations[J]. Global Biogeochemical Cycles, 2006, 20(3). DOI:10.1029/2005GB002678 .
66 GAO Weibin, CHEN Yang, WANG Haoxian. Enhanced silicate rock weathering—a new path of “carbon neutrality”[J]. Advances in Earth Science, 2023, 38(2): 137-150.
高伟斌, 陈旸, 王浩贤. 增强硅酸盐岩风化——“碳中和”之新路径 [J]. 地球科学进展,2023,38(2): 137-150.
67 KÖHLER P, ABRAMS J F, VÖLKER C, et al. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology[J]. Environmental Research Letters, 2013, 8(1). DOI:10.1088/1748-9326/8/1/014009 .
68 BACH L T, GILL S J, RICKABY R E M, et al. CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and Co-benefits for marine pelagic ecosystems[J]. Frontiers in Climate, 2019, 1. DOI:10.3389/fclim.2019.00007 .
69 ANDERSON M A, MOREL F M M. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii [J]. Limnology and Oceanography, 1982, 27(5): 789-813.
70 BRAND L E, SUNDA W G, GUILLARD R R L. Limitation of marine phytoplankton reproductive rates by zinc, Manganese, and iron1[J]. Limnology and Oceanography, 1983, 28(6): 1 182-1 198.
71 MARTIN J H, FITZWATER S E, GORDON R M. Iron deficiency limits phytoplankton growth in Antarctic waters[J]. Global Biogeochemical Cycles, 1990, 4(1): 5-12.
72 MARTIN J H, COALE K H, JOHNSON K S, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature, 1994, 371(6 493): 123-129.
73 BOWIE A R, MALDONADO M T, FREW R D, et al. The fate of added iron during a mesoscale fertilisation experiment in the Southern Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 48(11/12): 2 703-2 743.
74 COALE K H, JOHNSON K S, FITZWATER S E, et al. IronEx-I, an in situ iron-enrichment experiment: experimental design, implementation and results[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1998, 45(6): 919-945.
75 EMERSON D. Biogenic iron dust: a novel approach to ocean iron fertilization as a means of large scale removal of carbon dioxide from the atmosphere[J]. Frontiers in Marine Science, 2019, 6. DOI:10.3389/fmars.2019.00022 .
76 JICKELLS T D, AN Z S, ANDERSEN K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate[J]. Science, 2005, 308(5 718): 67-71.
77 MOORE J K, BRAUCHER O. Sedimentary and mineral dust sources of dissolved iron to the world ocean[J]. Biogeosciences, 2008, 5(3): 631-656.
78 YOON J E, KIM K, MACDONALD A M, et al. Spatial and temporal variabilities of spring Asian dust events and their impacts on chlorophyll-a concentrations in the western North Pacific Ocean[J]. Geophysical Research Letters, 2017, 44(3): 1 474-1 482.
79 ZAN J B, MAHER B, YAMAZAKI T, et al. Mid-Pleistocene links between Asian dust, Tibetan glaciers, and Pacific iron fertilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(24). DOI:0.1073/pnas.2304773120 .
80 MESKHIDZE N, CHAMEIDES W L, NENES A. Dust and pollution: a recipe for enhanced ocean fertilization?[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D3). DOI: 10.1029/2004JD005082 .
81 SCHULZ M, PROSPERO J M, BAKER A R, et al. Atmospheric transport and deposition of mineral dust to the ocean: implications for research needs[J]. Environmental Science & Technology, 2012, 46(19): 10 390-10 404.
82 FAN S M, MOXIM W J, LEVY H II. Aeolian input of bioavailable iron to the ocean[J]. Geophysical Research Letters, 2006, 33(7). DOI:10.1029/2005GL024852 .
83 BEERLING D J, LEAKE J R, LONG S P, et al. Farming with crops and rocks to address global climate, food and soil security[J]. Nature Plants, 2018, 4(3): 138-147.
84 RADZISZEWSKI P. Energy recovery potential in comminution processes[J]. Minerals Engineering, 2013, 46: 83-88.
85 RIGOPOULOS I, HARRISON A L, DELIMITIS A, et al. Carbon sequestration via enhanced weathering of peridotites and basalts in seawater[J]. Applied Geochemistry, 2018, 91: 197-207.
86 RENFORTH P. The potential of enhanced weathering in the UK[J]. International Journal of Greenhouse Gas Control, 2012, 10: 229-243.
87 BEERLING D J, KANTZAS E P, LOMAS M R, et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands[J]. Nature, 2020, 583(7 815): 242-248.
88 HUNTER K A, BOYD P W. Iron-binding ligands and their role in the ocean biogeochemistry of iron[J]. Environmental Chemistry, 2007, 4(4): 221. DOI:10.1071/EN07012 .
89 STRONG A, CHISHOLM S, MILLER C, et al. Ocean fertilization: time to move on[J]. Nature, 2009, 461(7 262): 347-348.
90 GÜSSOW K, OSCHLIES A, BICKEL A, et al. Ocean iron fertilization: time to lift the research taboo [M]// BURNSWC G, STRAUSS A L. Climate change geoengineering: philosophical perspectives, Legal issues, and governance frameworks, Cambridge: Cambridge University Press, 2010: 242-262.
91 National Academies of Sciences, Engineering, and Medicine. A research strategy for ocean-based carbon dioxide removal and sequestration [M]. Washington, D. C.: The National Academies Press, 2022.
92 MOORE J K, DONEY S C, GLOVER D M, et al. Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 49(1/2/3): 463-507.
93 BABAKHANI P, PHENRAT T, BAALOUSHA M, et al. Potential use of engineered nanoparticles in ocean fertilization for large-scale atmospheric carbon dioxide removal[J]. Nature Nanotechnology, 2022, 17(12): 1 342-1 351.
94 SEQUESTRATION C, BOARD O, STUDIES D. A research strategy for ocean-based carbon dioxide removal and sequestration [M]. Washington, D. C.: National Academies Press, 2022.
95 BABAKHANI P, HOCHELLA M. Using engineered nanoparticles to increase carbon dioxide storage in the ocean[J]. Nature Nanotechnology, 2022, 17(12): 1 245-1 246.
96 ZHOU L B, LIU F J, LIU Q X, et al. Aluminum increases net carbon fixation by marine diatoms and decreases their decomposition: evidence for the iron-aluminum hypothesis[J]. Limnology and Oceanography, 2021, 66(7): 2 712-2 727.
97 QIU Y T, WANG Z H, LIU F, et al. Effect of different kinds of complex iron on the growth of Anabaena flos-aquae [J]. Environmental Technology, 2019, 40(22): 2 889-2 896.
98 MCGILLICUDDY D J, ROBINSON A R, SIEGEL D A, et al. Influence of mesoscale eddies on new production in the Sargasso Sea[J]. Nature, 1998, 394(6 690): 263-266.
99 TWINING B S, NUÑEZ-MILLAND D, VOGT S, et al. Variations in Synechococcus cell quotas of phosphorus, sulfur, Manganese, iron, nickel, and zinc within mesoscale eddies in the Sargasso Sea[J]. Limnology and Oceanography, 2010, 55(2): 492-506.
100 FREITAS F S, ARNDT S, HENDRY K R, et al. Benthic organic matter transformation drives pH and carbonate chemistry in Arctic marine sediments[J]. Global Biogeochemical Cycles, 2022, 36(7). DOI:10.1029/2021GB007187 .
101 deLa ROCHA C L, NOWALD N, PASSOW U. Interactions between diatom aggregates, minerals, particulate organic carbon, and dissolved organic matter: further implications for the ballast hypothesis[J]. Global Biogeochemical Cycles, 2008, 22(4). DOI:10.1029/2021GB007187 .
102 KWON E Y, PRIMEAU F, SARMIENTO J L. The impact of remineralization depth on the air-sea carbon balance[J]. Nature Geoscience, 2009, 2(9): 630-635.
103 DONG H L, ZENG Q, SHENG Y Z, et al. Coupled iron cycling and organic matter transformation across redox interfaces[J]. Nature Reviews Earth & Environment, 2023, 4(9): 659-673.
104 ZHAO Bin, YAO Peng, YU Zhigang. The effect of organic carbon-iron oxide association on the preservation of sedimentary organic carbon in marine environments [J]. Advances in Earth Science, 2016, 31(11): 1 151-1 158.
赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响 [J]. 地球科学进展, 2016, 31(11): 1 151-1 158.
105 LU Longfei, CAI Jingong, BAO Yujin, et al. Summary of processes and significance of clay minerals in marine sedimentary organic matter preservation and in global carbon cycle[J]. Advances in Earth Science, 2006, 21(9): 931-937.
卢龙飞, 蔡进功, 包于进, 等. 粘土矿物保存海洋沉积有机质研究进展及其碳循环意义 [J]. 地球科学进展, 2006, 21(9): 931-937.
106 CHIU M H, KHAN Z A, GARCIA S G, et al. Effect of engineered nanoparticles on exopolymeric substances release from marine phytoplankton[J]. Nanoscale Research Letters, 2017, 12(1). DOI: 10.1186/s11671-017-2397-x .
107 DING Z S, ZHANG X, CHENG T L, et al. Unlocking high carbonation efficiency: direct CO2 mineralization with fly ash and seawater[J]. Chemical Engineering Science, 2023, 282. DOI: 10.1016/j.ces.2023.119349 .
108 YAO Z T, JI X S, SARKER P K, et al. A comprehensive review on the applications of coal fly ash[J]. Earth-Science Reviews, 2015, 141: 105-121.
[1] 王建事, 王成新, 任婉侠, 赵彦志, 薛冰. 地理学视角下“双碳”研究:主题、成效及展望[J]. 地球科学进展, 2023, 38(7): 757-768.
[2] 高伟斌, 陈旸, 王浩贤. 增强硅酸盐岩风化——“碳中和”之新路径[J]. 地球科学进展, 2023, 38(2): 137-150.
[3] 陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9): 881-898.
阅读次数
全文


摘要