地球科学进展 ›› 2023, Vol. 38 ›› Issue (12): 1243 -1258. doi: 10.11867/j.issn.1001-8166.2023.078

研究论文 上一篇    下一篇

沿黄九省(区)水—耕地—粮食协同关系情景分析
马维兢 1( ), 王耀辰 1, 寇敬雯 1, 杨海江 1, 薛冰 2, 勾晓华 1   
  1. 1.兰州大学 资源环境学院,甘肃 兰州 730000
    2.中国科学院沈阳应用生态研究所,辽宁 沈阳 110016
  • 收稿日期:2023-08-02 修回日期:2023-10-05 出版日期:2023-12-10
  • 基金资助:
    国家自然科学基金青年基金项目(42201302);兰州大学“双一流”建设人才引进项目(561120213)

Scenario Analysis of Water-Land-Food Synergy in Nine Provinces Along the Yellow River

Weijing MA 1( ), Yaochen WANG 1, Jingwen KOU 1, Haijiang YANG 1, Bing XUE 2, Xiaohua GOU 1   

  1. 1.College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
    2.Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
  • Received:2023-08-02 Revised:2023-10-05 Online:2023-12-10 Published:2023-12-26
  • About author:MA Weijing, Professor, research area includes agro-ecosystem sustainability. E-mail: maweijing@lzu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(42201302);The “Double First-Class” Construction Project of Lanzhou University(561120213)

水土资源匹配往往直接影响着各个地区的粮食生产状况,是经济社会高质量发展和农业生产现代化的基础。以黄河流经的9个省区[以下简称“沿黄九省(区)”]为例,基于自然本底和用水总量控制状况的可利用水资源、耕地资源总量以及灌溉耕地资源量4个要素耦合构建了水—耕地—粮食三元协同关系模型,探析了2010—2020年沿黄九省(区)“省—市”尺度水土资源匹配的时空演变特征及各影响要素的贡献度。结果表明: 沿黄九省(区)基于自然本底的二元水土资源匹配程度在不断提高,水土资源匹配格局相对稳定但区域差异明显,表现为“西高东低”; 从自然本底状况的耕地总量和灌溉耕地量来看,沿黄九省(区)水—耕地—粮食三元协同匹配格局大致呈现3种情况:西部和东北部为重度缺水地区,北部和中北部地区也存在不同程度的缺水,中部和中东部地区呈现多元化分布格局;从用水总量控制状况来看,耕地总量与灌溉耕地下的三元协同匹配格局存在较大差异。 不同情景下,水资源贡献率平均超过50%,灌溉水有效利用系数和灌溉定额贡献率总和超过30%,表明提高水资源有效利用率、设定合理的灌溉定额对水土资源匹配程度有举足轻重的影响。研究结果有助于增加对水资源开发利用、耕地生产能力和开垦程度以及粮食产量的相互依存、相互制约等纽带关系的认知。

The matching of water and land resources often directly affects food production in various regions and is the basis for high-quality economic and social development and modernization of agricultural production. Using nine provinces along the Yellow River as examples, based on the cross-coupling of four elements, such as the natural background of water resources and water resources for total water consumption control, this study constructed a ternary synergistic model of water-cultivated land-grain by cross-coupling. The matching coefficients of water and soil resources from 2010 to 2020 under each scenario were calculated, and the temporal and spatial evolution characteristics of water and soil resources matching along the “province-city” scale of the nine provinces along the Yellow River and the contribution degree of each element were analyzed. The results showed that: The matching degree of binary water and soil resources based on the natural background of water resources in the nine provinces was improved as a whole, and the matching pattern of water and soil resources was relatively stable; however, the regional differences are notable and manifested as “high in the west and low in the east.” Along the three-way coordinated matching pattern of water-arable land and grain in the nine provinces, from the perspective of the total amount of cultivated land and the amount of irrigated arable land in the natural background of water resources, roughly three distribution patterns were presented: the western and northeastern regions were severely water-deficient areas, the northern and north-central regions typically had varying degrees of water shortage, and the central and eastern regions exhibited a diversified distribution pattern; from the perspective of total water consumption control, a remarkable difference is observed between the total amount of cultivated land and the three-way cooperative matching pattern of irrigated cultivated ground. Under the four scenarios, the average contribution rate of water resources were >50%, and the sum of the effective utilization coefficient of irrigation water and the contribution rate of the irrigation quota were >30%, indicating that increasing the effective utilization coefficient and setting a reasonable irrigation quota had a decisive impact on the change in water and soil resource matching. These results improve our understanding of the relationship between water resources and exploitation, cultivated land production capacity, and reclamation, as well as the interdependence and constraints of the grain planting structure.

中图分类号: 

图1 基于粮食生产的沿黄九省(区)水土资源匹配研究框架
Fig. 1 Research framework based on water and land resources matching based on grain production in nine province along the Yellow River
表1 水—耕地—粮食协同系数分区及等级
Table 1 Water-Land-Food synergy coefficientWLFzoning and grade
图2 水—耕地—粮食协同关系情景设置
Fig. 2 Scenario setting of Water-Land-FoodWLFsynergy
表2 4种情景水—耕地—粮食协同系数( WLF)的计算方法
Table 2 Calculation methods of Water-Land-Food synergy coefficientWLFfor four scenarios
图3 沿黄九省(区)2010年、2015年和2020年粮食生产可利用水资源量和耕地资源总量
Fig. 3 The amount of available water resources and total land resources for food production in 20102015 and 2020 in nine provinces along the Yellow River
图4 基于自然本底水资源的沿黄九省(区)单位耕地水资源量
L为低;SL为中低;M为中等;SH为中高;H为高
Fig. 4 The amount of land water resources per unit of nine provinces along the Yellow River based on natural background water resources
L represents low; SL represents medium to low; M represents medium; SH represents medium-high; H represents high
图5 基于用水总量控制的沿黄九省(区)单位耕地水资源量
L为低;SL为中低;M为中等;SH为中高;H为高
Fig. 5 The amount of land water resources per unit of nine provinces along the Yellow River based on total water consumption control
L represents low; SL represents medium to low; M represents medium; SH represents medium-high; H represents high
图6 情景一的水—耕地—粮食协同系数( WAILFFA )时空变化
Fig. 6 Temporal and spatial variation of the Water-Land-Food synergy coefficientWAILFFAin scenario 1
图7 情景二下水—耕地—粮食协同系数( WUILFFA )的时空变化
Fig. 7 Temporal and spatial variation of the Water-Land-Food synergy coefficientWUILFFAin scenario 2
图8 情景三的水—耕地—粮食协同系数( WAILIFI )的时空变化
Fig. 8 Temporal and spatial variation of the Water-Land-Food synergy coefficientWAILIFIin scenario 3
图9 情景四下水—耕地—粮食协同系数( WUILIFI )的时空变化
Fig. 9 Temporal and spatial variation of the Water-Land-Food synergy coefficientWUILIFIin scenario 4
图10 4种情景下沿黄九省(区)水—耕地—粮食协同系数变化影响因素贡献率比较
Fig. 10 Comparison of the contribution rate of influencing factors along the change of water land-grain synergy coefficient in nine provinces along the Yellow River under four scenarios
图11 4种情景下沿黄九省(区)省会(首府)水—耕地—粮食协同系数(WLF)变化影响因素贡献率比较
Fig. 11 Comparison of the contribution rate of influencing factors along the change of Water-Land-Food synergy coefficientWLFin the capital of nine provinces along the Yellow River under four scenarios
1 KONG Xiangbin, CHEN Wenguang, WEN Liangyou. Building foundation of China’s grain security with three security of cultivated land resources[J]. Agricultural Economics and Management, 2022(3): 1-12.
孔祥斌, 陈文广, 温良友. 以耕地资源三个安全构筑大国粮食安全根基[J]. 农业经济与管理, 2022(3): 1-12.
2 ZHANG Yongxun, LI Xiande. Analyses of supply-demand balance of agricultural products in China and its policy implication[J]. Journal of Natural Resources, 2021, 36(6): 1 573-1 587.
张永勋, 李先德. 水土资源匹配视角下中国省域农产品供需平衡分析及其政策启示[J]. 自然资源学报, 2021, 36(6): 1 573-1 587.
3 LI Yi, FANG Bin, LI Yurui, et al. Trade-off and synergy evolution of farmland functions and its dynamic mechanism in the process of urbanization[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(8): 244-254.
李怡, 方斌, 李裕瑞, 等. 城镇化进程中耕地多功能权衡/协同关系演变及其驱动机制[J]. 农业工程学报, 2022, 38(8): 244-254.
4 ZHU Lijuan, LU Qiuyu. The use efficiency of cultivated land and irrigation water and the spatial correlation analysis of its coupling coordination in China[J]. Journal of China Agricultural University, 2022, 27(3): 297-308.
朱丽娟, 陆秋雨. 中国省域耕地与灌溉水资源利用效率及其耦合协调度的空间相关性分析[J]. 中国农业大学学报, 2022, 27(3): 297-308.
5 PENG Junjie. “Water-energy-food” interaction relationship and its optimization path in the Yellow River Basin[J]. Academic Journal of Zhongzhou, 2021(8): 48-54.
彭俊杰. 黄河流域 “水—能源—粮食”相互作用关系及其优化路径[J]. 中州学刊, 2021(8): 48-54.
6 LI Changsong, ZHOU Yuxi. Research on the spatio-temporal coupling relationship between agricultural water resources vulnerability and food security in China’s main grain producing areas[J]. Journal of Ecology and Rural Environment, 2022, 38(6): 722-732.
李长松, 周玉玺. 中国粮食主产区农业水资源脆弱性与粮食安全时空耦合关系研究[J]. 生态与农村环境学报, 2022, 38(6): 722-732.
7 LU Dadao, SUN Dongqi. Development and management tasks of the Yellow River Basin: a preliminary understanding and suggestion[J]. Acta Geographica Sinica, 2019, 74(12): 2 431-2 436.
陆大道, 孙东琪. 黄河流域的综合治理与可持续发展[J]. 地理学报, 2019, 74(12): 2 431-2 436.
8 LI Changsong, ZHOU Xia, ZHOU Yuxi. The characteristics and influencing factors of coupling coordination between water-soil matching coefficient and grain production in the lower reaches of the Yellow River[J]. Economic Geography, 2022, 42(10): 177-185.
李长松, 周霞, 周玉玺. 黄河下游水土匹配系数与粮食生产协调发展测度及影响因素[J]. 经济地理, 2022, 42(10): 177-185.
9 YANG Dan, CHANG Ge, ZHAO Jianji. Problems and ways to promote high-quality economic development in the Yellow River Basin[J]. Academic Journal of Zhongzhou, 2020(7): 28-33.
杨丹, 常歌, 赵建吉. 黄河流域经济高质量发展面临难题与推进路径[J]. 中州学刊, 2020(7): 28-33.
10 ZIMMERMAN E K, TYNDALL J C, SCHULTE L A, et al. Farmer and farmland owner views on spatial targeting for soil conservation and water quality[J]. Water Resources Research, 2019, 55(5): 3 796-3 814.
11 da SILVA A M, de SOUZA NASCIMENTO L R, da ALDEA M, et al. Assessing the relations among the features of the land cover and of the soil on the soil-water interactions through a functional eco-hydrological indicator[J]. Ecological Indicators, 2019, 104: 59-66.
12 KHARE D, JAT M K, SUNDER J D. Assessment of water resources allocation options: conjunctive use planning in a link canal command[J]. Resources, Conservation and Recycling, 2007, 51(2): 487-506.
13 LI Xiaoyan, HAO Jinmin, CHEN Aiqi. Time-space matching pattern and evaluation of agricultural water and soil resources in Shandong Province[J]. Journal of China Agricultural University, 2020, 25(11): 1-11.
李晓燕, 郝晋珉, 陈爱琪. 山东省农业水土资源时空匹配格局及评价研究[J]. 中国农业大学学报, 2020, 25(11): 1-11.
14 WANG Yadi, ZUO Qiting, LIU Huan, et al. Equilibrium analysis of the matching characteristics of water and soil resources in Henan Province[J]. Yellow River, 2018, 40(4):55-59, 64.
王亚迪, 左其亭, 刘欢, 等. 河南省水土资源匹配特征及均衡性分析[J]. 人民黄河, 2018, 40(4):55-59, 64.
15 HE Li, YIN Fangping, ZHAO Wenyi, et al. Multivariate spatiotemporal matching pattern of water-land-population resources in China and its impact on food production and security[J]. Water Resources and Hydropower Engineering, 2022(3): 11-27.
何理, 尹方平, 赵文仪, 等. 中国水—土—人口资源多元时空匹配格局及其对粮食生产与安全的影响研究[J]. 水利水电技术,2022(3): 11-27.
16 MASAKI Y, HANASAKI N, TAKAHASHI K, et al. Global-scale analysis on future changes in flow regimes using Gini and Lorenz asymmetry coefficients[J]. Water Resources Research, 2014, 50(5): 4 054-4 078.
17 XU Na, ZHANG Jun, ZHANG Renzhi, et al. Study on matching characteristics of agricultural water and soil resources based on dea—take Gansu Province 5 watershed as an example[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(6): 277-285.
徐娜, 张军, 张仁陟, 等. 基于DEA的农业水土资源匹配特征研究: 以甘肃省5流域为例[J]. 中国农业资源与区划, 2020, 41(6): 277-285.
18 HUANG Kewei, YUAN Peng, LIU Gang. Research on water and soil resources matching in Sichuan Province based on DEA[J]. China Rural Water and Hydropower, 2015(10): 58-61, 65.
黄克威, 袁鹏, 刘刚. 基于DEA的四川省水土资源匹配研究[J]. 中国农村水利水电, 2015(10): 58-61, 65.
19 ZHENG J, ZHAO X, CAO X, et al. Study on spatiotemporal matching pattern of agricultural water and land resources in Hetao irrigation district [J]. Research of Soil and Water Conservation, 2015, 22(3): 132-136.
20 Jiqin NAN, WANG Jinglei, TAO Guotong, et al. Matching patterns of agricultural soil and water resources in northwest arid area[J]. Journal of Irrigation and Drainage, 2015, 34(5): 41-45.
南纪琴, 王景雷, 陶国通, 等. 西北旱区农业水土资源匹配格局研究[J]. 灌溉排水学报, 2015, 34(5): 41-45.
21 SUN Zhen, JIA Shaofeng, YAN Jiabao, et al. Study on the matching pattern of water and potential arable land resources in China[J]. Journal of Natural Resources, 2018, 33(12): 2 057-2 066.
孙侦, 贾绍凤, 严家宝, 等. 中国水土资源本底匹配状况研究[J]. 自然资源学报, 2018, 33(12): 2 057-2 066.
22 WANG Ting, WANG Zhixiao, MAO Dehua. Spatial and temporal match pattern of virtual water versus virtual cultivated land of main grain crops in China [J]. World Agriculture, 2019(10): 71-79, 110, 130-131.
王婷, 王芝潇, 毛德华. 中国主要粮食作物虚拟水—虚拟耕地资源时空匹配格局 [J]. 世界农业, 2019(10): 71-79, 110, 130-131.
23 SUN Caizhi, ZHANG Lei. Changes in spatial and temporal differences of agricultural product virtual water versus cultivated land in China[J]. Resources Science, 2009, 31(1): 84-93.
孙才志, 张蕾. 中国农产品虚拟水—耕地资源区域时空差异演变[J]. 资源科学, 2009, 31(1): 84-93.
24 LIU Yansui, GAN Hong, ZHANG Fugang. Analysis of the matching patterns of land and water resources in northeast China[J]. Acta Geographica Sinica, 2006, 61(8): 847-854.
刘彦随, 甘红, 张富刚. 中国东北地区农业水土资源匹配格局[J]. 地理学报, 2006, 61(8): 847-854.
25 FAN Huili, FU Wenge. Analysis of water and soil resources matching and agricultural economic growth in china from the percepective of water footprint—taking the Yangtze River economic belt as an example [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(10): 193-203.
樊慧丽, 付文阁. 水足迹视角下我国农业水土资源匹配及农业经济增长——以长江经济带为例 [J]. 中国农业资源与区划, 2020, 41(10): 193-203.
26 WANG Jiayue, XIN Liangjie, DAI Erfu. Spatio-temporal variations of the matching patterns of agricultural land and water resources in typical mountainous areas of China[J]. Geographical Research, 2020, 39(8): 1 879-1 891.
王佳月, 辛良杰, 戴尔阜. 中国典型山区农业水土资源匹配格局变化: 以太行山区、横断山区、黔桂喀斯特山区为例[J]. 地理研究, 2020, 39(8): 1 879-1 891.
27 PETERS M K, HEMP A, APPELHANS T, et al. Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions[J]. Nature, 2019, 568(7 750): 88-92.
28 WANG Yijia, LIU Yanxu, SONG Shuang,et al. Research progress of the Water-Food-Energy-Ecosystem nexus [J]. Advances in Earth Science, 2021, 36(7):684-693.
王奕佳, 刘焱序, 宋爽, 等. 水—粮食—能源—生态系统关联研究进展 [J]. 地球科学进展, 2021, 36(7): 684-693.
29 RODRIGUEZ R D G, SCANLON B R, KING C W, et al. Biofuel-water-land nexus in the last agricultural frontier region of the Brazilian Cerrado[J]. Applied Energy, 2018, 231: 1 330-1 345.
30 DE STRASSER L, LIPPONEN A, HOWELLS M, et al. A methodology to assess the water energy food ecosystems nexus in transboundary river basins[J]. Water, 2016, 8(2). DOI:10.3390/w8020059 .
31 DAHER B T, MOHTAR R H. Water-Energy-Food (WEF) nexus tool 2.0: guiding integrative resource planning and decision-making[J]. Water International, 2015, 40(5/6): 748-771.
32 XIANG Yan, CHEN Yinjun, HOU Yanlin. Conservation of land resource from the perspective of increase and decrease of cultivated land in Northeast China [J]. Science & Technology Review, 2019, 37(12): 60-66.
向雁, 陈印军, 侯艳林. 基于东北地区耕地增减变化的资源环境保护策略 [J]. 科技导报, 2019, 37(12): 60-66.
33 XIANG Yan. Study on Water-Land-Food (WLF) nexus in Northeast China [D]. Beijing: Chinese Academy of Agricultural Sciences, 2020.
向雁. 东北地区水—耕地—粮食关联研究[D]. 北京: 中国农业科学院, 2020.
34 LI Yue, KONG Xiangbin, ZHANG Anlu, et al. Analsis of influence factors on crop production change in China at provincial level based on LMDI model [J]. Journal of China Agricultural University, 2016, 21(1): 129-140.
李月, 孔祥斌, 张安录, 等. 基于LMDI模型的我国省域粮食生产变化影响因素分析 [J]. 中国农业大学学报, 2016, 21(1): 129-140.
35 LIU Yu, Gao Bingbo, Pan Yuchun, et al. Investigating contribution factors to China’s grain output increase based on LMDI model during the period 1980 to 2010 [J]. Journal of Natural Resources, 2014, 29(10): 1 709-1 720.
刘玉, 高秉博, 潘瑜春, 等. 基于LMDI模型的中国粮食产量变化及作物构成分解研究 [J]. 自然资源学报, 2014, 29(10): 1 709-1 720.
36 ANG B W. The LMDI approach to decomposition analysis: a practical guide[J]. Energy Policy, 2005, 33(7): 867-871.
37 HUA Jian, SHENG Xiaohan. Measurement and spatiotemporal analysis of water and soil resources’ damping effect on grain production in nine provinces along the Yellow River[J]. China Population Resources and Environment, 2021, 31(8): 148-156.
华坚, 盛晓涵. 沿黄九省水土资源对粮食生产的阻尼效应测度及时空分异特征[J]. 中国人口·资源与环境, 2021, 31(8): 148-156.
38 HOU Shutao, YUAN Weihao, CHEN Jianlong, et al. Matching pattern and regional regulation of agricultural water and land resources in Heilongjiang Province [J]. Bulletin of Soil and Water Conservation, 2022, 42(1): 150-157, 165.
侯淑涛, 袁伟豪, 陈建龙, 等. 黑龙江省农业水土资源匹配格局与区域调控 [J]. 水土保持通报, 2022, 42(1): 150-157, 165.
39 GAO Yun, QI Xuebin, LI Ping, et al. Analysis on spatial-temporal matching characteristics of agricultural water and soil resources in the Yellow River Basin [J]. Journal of Irrigation and Drainage, 2021, 40(6): 113-118.
高芸, 齐学斌, 李平, 等. 黄河流域农业水土资源时空匹配特征分析 [J]. 灌溉排水学报, 2021, 40(6): 113-118.
40 CHEN Zixuan, CHEN Yunhao, LEI Tianjie. Study on variation of cultivated land and matching of cultivated land with water resources [J]. Water Resources and Hydropower Engineering, 2019, 50(2): 69-78.
陈紫璇, 陈云浩, 雷添杰. 中国耕地变化及耕地与水资源的匹配研究[J]. 水利水电技术, 2019, 50(2): 69-78.
41 LIU Qiang, YUAN Yanfei, LIU Yifan, et al. Research progress: the application of biochar in the remediation of salt-affected soils[J]. Advances in Earth Science, 2022, 37(10): 1 005-1 024.
刘强, 袁延飞, 刘一帆, 等. 生物炭对盐渍化土壤改良的研究进展[J]. 地球科学进展, 2022, 37(10): 1 005-1 024.
42 DUAN Xun, LI Zhe, LIU Miao, et al. Progress of the iron-mediated soil organic carbon preservation and mineralization[J]. Advances in Earth Science, 2022, 37(2): 202-211.
段勋, 李哲, 刘淼, 等. 铁介导的土壤有机碳固持和矿化研究进展[J]. 地球科学进展, 2022, 37(2): 202-211.
43 ZHAO Yingyan, YU Fawen. Sustainable use of water resource of the Yellow River: core, path and solution[J]. Studies on Socialism with Chinese Characteristics, 2020, 11(1): 52-62.
赵莺燕, 于法稳. 黄河流域水资源可持续利用: 核心、路径及对策[J]. 中国特色社会主义研究, 2020, 11(1): 52-62.
44 YANG Zonghui, CAI Hongyi, QIN Cheng, et al. Analysis on the spatial and temporal pattern of China’s grain production and its influencing factors [J]. Journal of Agricultural Science and Technology, 2018, 20(9): 1-11.
杨宗辉, 蔡鸿毅, 覃诚, 等. 我国粮食生产的时空格局及其影响因素分析 [J]. 中国农业科技导报, 2018, 20(9): 1-11.
[1] 郑明贵, 于明, 范秋蓉, 林玉华. 中国 20252035年碳酸锂需求预测[J]. 地球科学进展, 2023, 38(4): 377-387.
阅读次数
全文


摘要