1 |
FRIEDLI H, LÖTSCHER H, OESCHGER H, et al. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries[J]. Nature, 1986, 324(6 094): 237-238.
|
2 |
FAN S, GLOOR M, MAHLMAN J, et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models [J]. Science, 1998, 282(5 388): 442-446.
|
3 |
KAISER J. Panel estimates possible carbon ‘sinks’[J]. Science, 2000, 288(5 468): 942-943.
|
4 |
MONNIN E, INDERMÜHLE A, DÄLLENBACH A, et al. Atmospheric CO2 concentrations over the Last Glacial Termination[J]. Science, 2001, 291(5 501): 112-114.
|
5 |
SCHNEIDER S H. The greenhouse effect: science and policy [J]. Science, 1989, 243(4 892): 771-781.
|
6 |
LASHOF D A, AHUJA D R. Relative contributions of greenhouse gas emissions to global warming [J]. Nature, 1990, 344(6 266): 529-531.
|
7 |
LU Xiankai, MO Jiangming, ZHANG Wei, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: an overview [J]. Journal of Tropical and Subtropical Botany, 2019, 27(5): 500-522.
|
|
鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展 [J]. 热带亚热带植物学报, 2019, 27(5): 500-522.
|
8 |
GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions [J]. Science, 2008, 320(5 878): 889-892.
|
9 |
ACKERMAN D, MILLET D B, CHEN X. Global estimates of inorganic nitrogen deposition across four decades[J]. Global Biogeochemical Cycles, 2019, 33(1): 100-107.
|
10 |
YU G R, JIA Y L, HE N P, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 2019, 12(6): 424-429.
|
11 |
WANG C M, YANG X T, XU K. Effect of chronic nitrogen fertilization on soil CO2 flux in a temperate forest in North China: a 5-year nitrogen addition experiment[J]. Journal of Soils and Sediments, 2018, 18(2): 506-516.
|
12 |
WANG Q K, ZHANG W D, SUN T, et al. N and P fertilization reduced soil autotrophic and heterotrophic respiration in a young Cunninghamia lanceolata forest[J]. Agricultural and Forest Meteorology, 2017, 232: 66-73.
|
13 |
LIU X J, ZHANG Y, HAN W X, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7 438): 459-462.
|
14 |
CUI S H, SHI Y L, GROFFMAN P M, et al. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910-2010)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(6): 2 052-2 057.
|
15 |
FORNARA D A, TILMAN D. Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition [J]. Ecology, 2012, 93(9): 2 030-2 036.
|
16 |
LIU L L, GREAVER T L. A global perspective on belowground carbon dynamics under nitrogen enrichment[J]. Ecology Letters, 2010, 13(7): 819-828.
|
17 |
LU X K, VITOUSEK P M, MAO Q G, et al. Nitrogen deposition accelerates soil carbon sequestration in tropical forests[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(16). DOI:10.1073/pnas.202079011 .
|
18 |
SCHIMEL J P, SCHAEFFER S M. Microbial control over carbon cycling in soil [J]. Frontiers in Microbiology, 2012, 3. DOI:10.3389/fmicb.2012.00348 .
|
19 |
GEORGIOU K, ABRAMOFF R Z, HARTE J, et al. Microbial community-level regulation explains soil carbon responses to long-term litter manipulations[J]. Nature Communications, 2017, 8(1). DOI:10.1038/s41467-017-01116-z .
|
20 |
MALIK A A, PUISSANT J, BUCKERIDGE K M, et al. Land use driven change in soil pH affects microbial carbon cycling processes [J]. Nature Communications, 2018, 9. DOI:10.1038/s41467-018-05980-1 .
|
21 |
LIANG Chao, ZHU Xuefeng. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration [J]. Science China: Earth Sciences, 2021, 51(5): 680-695.
|
|
梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论 [J]. 中国科学:地球科学, 2021, 51(5): 680-695.
|
22 |
LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2(8). DOI: 10.1038/nmicrobiol.2017.105 .
|
23 |
GLEIXNER G. Soil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studies [J]. Ecological Research, 2013, 28(5): 683-695.
|
24 |
MANZONI S, TAYLOR P, RICHTER A, et al. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils [J]. New Phytologist, 2012, 196(1): 79-91.
|
25 |
SINSABAUGH R L, MANZONI S, MOORHEAD D L, et al. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling [J]. Ecology Letters, 2013, 16(7): 930-939.
|
26 |
TAO F, HUANG Y Y, HUNGATE B A, et al. Microbial carbon use efficiency promotes global soil carbon storage[J]. Nature, 2023, 618(7 967): 981-985.
|
27 |
KALLENBACH C M, FREY S D, GRANDY A S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls [J]. Nature Communications, 2016, 7. DOI: 10.1038/ncomms13630 .
|
28 |
PROMMER J, WALKER T W N, WANEK W, et al. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity [J]. Global Change Biology, 2020, 26(2): 669-681.
|
29 |
del GIORGIO P A, COLE J J. Bacterial growth efficiency in natural aquatic systems[J]. Annual Review of Ecology and Systematics, 1998, 29: 503-541.
|
30 |
CHEN Zhi, YU Guirui. Advances in the soil microbial carbon use efficiency[J]. Acta Ecologica Sinica, 2020, 40(3): 756-767.
|
|
陈智, 于贵瑞. 土壤微生物碳素利用效率研究进展 [J]. 生态学报, 2020, 40(3): 756-767.
|
31 |
PAYNE W J, WIEBE W J. Growth yield and efficiency in chemosynthetic microorganisms [J]. Annual Review of Microbiology, 1978, 32: 155-183.
|
32 |
ROELS J A. Application of macroscopic principles to microbial metabolism[J]. Biotechnology and Bioengineering, 1980, 22(12): 2 457-2 514.
|
33 |
GOMMERS P J F, van SCHIE B J, van DIJKEN J P, et al. Biochemical limits to microbial growth yields: an analysis of mixed substrate utilization[J]. Biotechnology and Bioengineering, 1988, 32(1): 86-94.
|
34 |
CRAWFORD C C, HOBBIE J E, WEBB K L. The utilization of dissolved free amino acids by estuarine microorganisms[J]. Ecology, 1974, 55(3): 551-563.
|
35 |
RUSSELL J B, COOK G M. Energetics of bacterial growth: balance of anabolic and catabolic reactions [J]. Microbiological Reviews, 1995, 59(1): 48-62.
|
36 |
PARSONS T R, STRICKLAND J D H. On the production of particulate organic carbon by heterotrophic processes in sea water[J]. Deep Sea Research (1953), 1961, 8(3/4): 211-222.
|
37 |
HOBBIE J E, WRIGHT R T. Competition between planktonic bacteria and algae for organic solutes[M]// Primary productivity in aquatic environments. California: University of California Press, 1966: 175-186.
|
38 |
HOBBIE J E, CRAWFORD C C. Respiration corrections for bacterial uptake of dissolved organic compounds in natural waters [J]. Limnology and Oceanography, 1969, 14(4): 528-532.
|
39 |
PAYNE W J. Energy yields and growth of heterotrophs [J]. Annual Review of Microbiology, 1970, 24: 17-52.
|
40 |
BRANT J B, SULZMAN E W, MYROLD D D. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation [J]. Soil Biology and Biochemistry, 2006, 38(8): 2 219-2 232.
|
41 |
SINSABAUGH R L, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry and ecological theory[J]. Annual Review of Ecology, Evolution, and Systematics, 2012, 43: 313-343.
|
42 |
CANARINI A, WANEK W, WATZKA M, et al. Quantifying microbial growth and carbon use efficiency in dry soil environments via 18O water vapor equilibration [J]. Global Change Biology, 2020, 26(9): 5 333-5 341.
|
43 |
QU L R, WANG C, BAI E. Evaluation of the 18O-H2O incubation method for measurement of soil microbial carbon use efficiency[J]. Soil Biology and Biochemistry, 2020, 145. DOI: 10.1016/j.soilbio.2020.107802 .
|
44 |
SPOHN M, KLAUS K, WANEK W, et al. Microbial carbon use efficiency and biomass turnover times depending on soil depth—implications for carbon cycling [J]. Soil Biology and Biochemistry, 2016, 96: 74-81.
|
45 |
SPOHN M, PÖTSCH E M, EICHORST S A, et al. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland[J]. Soil Biology and Biochemistry, 2016, 97: 168-175.
|
46 |
GEYER K M, DIJKSTRA P, SINSABAUGH R, et al. Clarifying the interpretation of carbon use efficiency in soil through methods comparison[J]. Soil Biology and Biochemistry, 2019, 128: 79-88.
|
47 |
ZIEGLER S E, WHITE P M, WOLF D C, et al. Tracking the fate and recycling of 13C-labeled glucose in soil[J]. Soil Science, 2005, 170(10): 767-778.
|
48 |
CREAMER C A, JONES D L, BALDOCK J A, et al. Is the fate of glucose-derived carbon more strongly driven by nutrient availability, soil texture, or microbial biomass size?[J]. Soil Biology and Biochemistry, 2016, 103: 201-212.
|
49 |
FREY S D, GUPTA V V S R, ELLIOTT E T, et al. Protozoan grazing affects estimates of carbon utilization efficiency of the soil microbial community[J]. Soil Biology and Biochemistry, 2001, 33(12/13): 1 759-1 768.
|
50 |
CAI P, HUANG Q, ZHANG X, et al. Adsorption of DNA on clay minerals and various colloidal particles from an Alfisol[J]. Soil Biology and Biochemistry, 2006, 38(3): 471-476.
|
51 |
LAROWE D E, van CAPPELLEN P. Degradation of natural organic matter: a thermodynamic analysis[J]. Geochimica et Cosmochimica Acta, 2011, 75(8): 2 030-2 042.
|
52 |
BÖLSCHER T, PATERSON E, FREITAG T, et al. Temperature sensitivity of substrate-use efficiency can result from altered microbial physiology without change to community composition[J]. Soil Biology and Biochemistry, 2017, 109: 59-69.
|
53 |
von STOCKAR U, LIU J S. Does microbial life always feed on negative entropy?Thermodynamic analysis of microbial growth[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1999, 1 412(3): 191-211.
|
54 |
HANSEN L D, MACFARLANE C, MCKINNON N, et al. Use of calorespirometric ratios, heat per CO2 and heat per O2, to quantify metabolic paths and energetics of growing cells[J]. Thermochimica Acta, 2004, 422(1/2): 55-61.
|
55 |
DIJKSTRA P, SALPAS E, FAIRBANKS D, et al. High carbon use efficiency in soil microbial communities is related to balanced growth, not storage compound synthesis[J]. Soil Biology and Biochemistry, 2015, 89: 35-43.
|
56 |
DIJKSTRA P, THOMAS S C, HEINRICH P L, et al. Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency[J]. Soil Biology and Biochemistry, 2011, 43(10): 2 023-2 031.
|
57 |
MANZONI S, ČAPEK P, MOOSHAMMER M, et al. Optimal metabolic regulation along resource stoichiometry gradients[J]. Ecology Letters, 2017, 20(9): 1 182-1 191.
|
58 |
SINSABAUGH R L, TURNER B L, TALBOT J M, et al. Stoichiometry of microbial carbon use efficiency in soils [J]. Ecological Monographs, 2016, 86(2): 172-189.
|
59 |
HERRON P M, STARK J M, HOLT C, et al. Microbial growth efficiencies across a soil moisture gradient assessed using 13C-acetic acid vapor and 15N-ammonia gas[J]. Soil Biology and Biochemistry, 2009, 41(6): 1 262-1 269.
|
60 |
SANTRUCKOVA H, PICEK T, TYKVA R, et al. Short-term partitioning of 14C-[U]-glucose in the soil microbial pool under varied aeration status [J]. Biology and Fertility of Soils, 2004, 40(6): 386-392.
|
61 |
SAIFUDDIN M, BHATNAGAR J M, SEGRÈ D, et al. Microbial carbon use efficiency predicted from genome-scale metabolic models[J]. Nature Communications, 2019, 10(1). DOI:10.1038/s41467-019-11488-z .
|
62 |
FONTAINE S, MARIOTTI A, ABBADIE L. The priming effect of organic matter: a question of microbial competition?[J]. Soil Biology and Biochemistry, 2003, 35(6): 837-843.
|
63 |
SCHWARTZ E. Characterization of growing microorganisms in soil by stable isotope probing with H2 18O [J]. Applied and Environmental Microbiology, 2007, 73(8): 2 541-2 546.
|
64 |
BLAZEWICZ S J, SCHWARTZ E. Dynamics of 18O Incorporation from H2 18O into soil microbial DNA [J]. Microbial Ecology, 2011, 61(4): 911-916.
|
65 |
POLD G, DOMEIGNOZ-HORTA L A, DEANGELIS K M. Heavy and wet: the consequences of violating assumptions of measuring soil microbial growth efficiency using the 18O water method [J]. Elementa-Science of the Anthropocene, 2020, 8(20): 2-13.
|
66 |
ZHANG Q F, QIN W K, FENG J G, et al. Responses of soil microbial carbon use efficiency to warming: review and prospects[J]. Soil Ecology Letters, 2022, 4(4): 307-318.
|
67 |
BIRCH H F. The effect of soil drying on humus decomposition and nitrogen availability [J]. Plant and Soil, 1958, 10(1): 9-31.
|
68 |
WANG C, QU L R, YANG L M, et al. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon[J]. Global Change Biology, 2021, 27(10): 2 039-2 048.
|
69 |
ZHRAN M, GE T D, TONG Y Y, et al. Assessment of depth-dependent microbial carbon-use efficiency in long-term fertilized paddy soil using an 18O-H2O approach[J]. Land Degradation & Development, 2021, 32(1): 199-207.
|
70 |
XIE W J, ZHANG Y P, LI J Y, et al. Straw application coupled with N and P supply enhanced microbial biomass, enzymatic activity, and carbon use efficiency in saline soil[J]. Applied Soil Ecology, 2021, 168. DOI:10.1016/j.apsoil.2021.104128 .
|
71 |
XIAO Q, HUANG Y P, WU L, et al. Long-term manuring increases microbial carbon use efficiency and mitigates priming effect via alleviated soil acidification and resource limitation[J]. Biology and Fertility of Soils, 2021, 57(7): 925-934.
|
72 |
LIAO C, TIAN Q X, LIU F. Nitrogen availability regulates deep soil priming effect by changing microbial metabolic efficiency in a subtropical forest[J]. Journal of Forestry Research, 2021, 32(2): 713-723.
|
73 |
CHEN L Y, LIU L, MAO C, et al. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency[J]. Nature Communications, 2018, 9(1): 1-11.
|
74 |
CHEN Y, ZHANG Y J, BAI E, et al. The stimulatory effect of elevated CO2 on soil respiration is unaffected by N addition[J]. Science of the Total Environment, 2022, 813. DOI:10.1016/j.scitotenv.2021.151907 .
|
75 |
KUSKE C R, SINSABAUGH R L, GALLEGOS-GRAVES L V, et al. Simple measurements in a complex system: soil community responses to nitrogen amendment in a Pinus taeda forest [J]. Ecosphere, 2019, 10(4). DOI:10.1002/ecs2.2687 .
|
76 |
GUO X W, LUO Z K, SUN O J. Long-term litter type treatments alter soil carbon composition but not microbial carbon utilization in a mixed pine-oak forest[J].Biogeochemistry, 2021, 152(2/3): 327-343.
|
77 |
LI J, SANG C P, YANG J Y, et al. Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition[J]. Soil Biology and Biochemistry, 2021, 156. DOI:10.1016/j.soilbio.2021.108207 .
|
78 |
SILVA-SÁNCHEZ A, SOARES M, ROUSK J. Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality[J]. Soil Biology and Biochemistry, 2019, 134: 25-35.
|
79 |
ZIEGLER S E, BILLINGS S A. Soil nitrogen status as a regulator of carbon substrate flows through microbial communities with elevated CO2 [J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G1). DOI:10.1029/2010JG001434 .
|
80 |
RIGGS C E, HOBBIE S E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils[J]. Soil Biology and Biochemistry, 2016, 99: 54-65.
|
81 |
WIDDIG M, SCHLEUSS P M, BIEDERMAN L A, et al. Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions[J]. Soil Biology and Biochemistry, 2020, 146. DOI:10.1016/j.soilbio.2020.107815 .
|
82 |
GUNDERSEN P, EMMETT B A, KJØNAAS O J, et al. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data[J]. Forest Ecology and Management, 1998, 101(1/2/3): 37-55.
|
83 |
ABER J, MCDOWELL W, NADELHOFFER K, et al. Nitrogen saturation in temperate forest ecosystems:hypotheses revisited [J]. Bioscience, 1998, 48(11): 921-934.
|
84 |
ABER J D, NADELHOFFER K J, STEUDLER P, et al. Nitrogen saturation in northern forest ecosystems[J]. BioScience, 1989, 39(6): 378-386.
|
85 |
LEBAUER D S, TRESEDER K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed [J]. Ecology, 2008, 89(2): 371-379.
|
86 |
HICKS L C, YUAN M Y, BRANGARÍ A, et al. Increased above- and belowground plant input can both trigger microbial nitrogen mining in subarctic tundra soils[J]. Ecosystems, 2022, 25(1): 105-121.
|
87 |
LI J H, ZHANG R, CHENG B H, et al. Effects of nitrogen and phosphorus additions on decomposition and accumulation of soil organic carbon in alpine meadows on the Tibetan Plateau[J]. Land Degradation & Development, 2021, 32(3): 1 467-1 477.
|
88 |
LUO R Y, KUZYAKOV Y, LIU D Y, et al. Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: disentangling microbial and physical controls[J]. Soil Biology and Biochemistry, 2020, 144. DOI:10.1016/j.soilbio.2020.107764 .
|
89 |
TANG H M, LI C, WEN L, et al. Microbial carbon source utilization in rice rhizosphere and non-rhizosphere soils in a 34-year fertilized paddy field[J]. Journal of Basic Microbiology, 2020, 60(11/12): 1 004-1 013.
|
90 |
ZHAO X, LU X Y, YANG J Y, et al. Effects of nitrogen addition on microbial carbon use efficiency of soil aggregates in abandoned grassland on the loess plateau of China[J]. Forests, 2022, 13(2). DOI:10.3390/f13020276 .
|
91 |
CLEVELAND C C, LIPTZIN D. C∶N∶P stoichiometry in soil: is there a “redfield ratio” for the microbial biomass? [J]. Biogeochemistry, 2007, 85(3): 235-252.
|
92 |
KEELER B L, HOBBIE S E, KELLOGG L E. Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition [J]. Ecosystems, 2009, 12(1): 1-15.
|
93 |
KEUSKAMP J A, FELLER I C, LAANBROEK H J, et al. Short- and long-term effects of nutrient enrichment on microbial exoenzyme activity in mangrove peat [J]. Soil Biology and Biochemistry, 2015, 81: 38-47.
|
94 |
KHALILI B, OGUNSEITAN O A, GOULDEN M L, et al. Interactive effects of precipitation manipulation and nitrogen addition on soil properties in California grassland and shrubland [J]. Applied Soil Ecology, 2016, 107: 144-153.
|
95 |
LAGOMARSINO A, MOSCATELLI M C, ANGELIS P D, et al. Labile substrates quality as the main driving force of microbial mineralization activity in a poplar plantation soil under elevated CO2 and nitrogen fertilization[J]. Science of the Total Environment, 2006, 372(1): 256-265.
|
96 |
JEYASINGH P D, WEIDER L J, STERNER R W. Genetically-based trade-offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore [J]. Ecology Letters, 2009, 12(11): 1 229-1 237.
|
97 |
PERSSON J, FINK P, GOTO A, et al. To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs [J]. Oikos, 2010, 119(5): 741-751.
|
98 |
XU X F, THORNTON P E, POST W M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems[J]. Global Ecology and Biogeography, 2013, 22(6): 737-749.
|
99 |
CHEN Y L, CHEN L Y, PENG Y F, et al. Linking microbial C∶N∶P stoichiometry to microbial community and abiotic factors along a 3500-km grassland transect on the Tibetan Plateau[J]. Global Ecology and Biogeography, 2016, 25(12): 1 416-1 427.
|
100 |
CHEN R R, SENBAYRAM M, BLAGODATSKY S, et al. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology, 2014, 20(7): 2 356-2 367.
|
101 |
CRAINE J M, MORROW C, FIERER N. Microbial nitrogen limitation increases decomposition [J]. Ecology, 2007, 88(8): 2 105-2 113.
|
102 |
RAZANAMALALA K, FANOMEZANA R A, RAZAFIMBELO T, et al. The priming effect generated by stoichiometric decomposition and nutrient mining in cultivated tropical soils: actors and drivers [J]. Applied Soil Ecology, 2018, 126: 21-33.
|
103 |
SPOHN M. Element cycling as driven by stoichiometric homeostasis of soil microorganisms [J]. Basic and Applied Ecology, 2016, 17(6): 471-478.
|
104 |
SOONG J L, FUCHSLUEGER L, MARAÑON-JIMENEZ S, et al. Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling[J]. Global Change Biology, 2020, 26(4): 1 953-1 961.
|
105 |
CUI Y X, ZHANG Y L, DUAN C J, et al. Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems[J]. Soil and Tillage Research, 2020, 197. DOI:10.1016/j.still.2019.104463 .
|
106 |
GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese Croplands [J]. Science, 2010, 327(5 968): 1 008-1 010.
|
107 |
PHOENIX G K, EMMETT B A, BRITTON A J, et al. Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments [J]. Global Change Biology, 2012, 18(4): 1 197-1 215.
|
108 |
LUCAS R W, KLAMINDER J, FUTTER M N, et al. A meta-analysis of the effects of nitrogen additions on base cations: implications for plants, soils, and streams [J]. Forest Ecology and Management, 2011, 262(2): 95-104.
|
109 |
JONES D L, COOLEDGE E C, HOYLE F C, et al. pH and exchangeable aluminum are major regulators of microbial energy flow and carbon use efficiency in soil microbial communities[J]. Soil Biology and Biochemistry, 2019, 138. DOI:10.1016/j.soilbio.2019.107584 .
|
110 |
MALIK A A, MARTINY J B H, BRODIE E L, et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change[J]. The ISME Journal, 2020, 14(1): 1-9.
|
111 |
SÖDERSTRÖM B, BÅÅTH E, LUNDGREN B. Decrease in soil microbial activity and biomasses owing to nitrogen amendments[J]. Canadian Journal of Microbiology, 1983, 29(11): 1 500-1 506.
|
112 |
NOHRSTEDT H Ö, ARNEBRANT K, BÅÅTH E, et al. Changes in carbon content, respiration rate, ATP content, and microbial biomass in nitrogen-fertilized pine forest soils in Sweden[J]. Canadian Journal of Forest Research, 1989, 19(3): 323-328.
|
113 |
BROADBENT F E. Effect of fertilizer nitrogen on the release of soil nitrogen [J]. Soil Science Society of America Journal, 1965, 29(6): 692-696.
|
114 |
BÄÄTH E, LUNDGREN B, SÖDERSTRÖM B. Effects of nitrogen fertilization on the activity and biomass of fungi and bacteria in a podzolic soil[J]. Zentralblatt Für Bakteriologie Mikrobiologie Und Hygiene: I Abt Originale C: Allgemeine, Angewandte Und Ökologische Mikrobiologie, 1981, 2(1): 90-98.
|
115 |
MAGILL A H, ABER J D, HENDRICKS J J, et al. Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition [J]. Ecological Applications, 1997, 7(2): 402-415.
|
116 |
ZHANG Yan, QIANG Wei, LUO Ruyi, et al. Effects of nitrogen and phosphorus addition on soil microbial growth, turnover, and carbon use efficiency: a review [J]. Chinese Journal Applied and Environmental Biology, 2022, 28(2): 526-534.
|
|
张燕, 强薇, 罗如熠, 等. 氮磷添加对土壤微生物生长、周转及碳利用效率的影响研究进展 [J]. 应用与环境生物学报, 2022, 28(2): 526-534.
|
117 |
BAO Hanyang, LI Yang, DENG Xianzhi, et al. Effects of different root exudates and plant litter input on soil microbial enzyme activities and residues in alpine desertified grassland [J]. Chinese Journal Applied and Environmental Biology, 2022, 29(3): 546-553.
|
|
包寒阳, 李杨, 邓先智, 等. 根系分泌物和凋落物对高寒沙化草地土壤微生物的影响 [J]. 应用与环境生物学报, 2022, 29(3): 546-553.
|
118 |
WANG C, WANG X, PEI G T, et al. Stabilization of microbial residues in soil organic matter after two years of decomposition[J]. Soil Biology and Biochemistry, 2020, 141. DOI:10.1016/j.soilbio.2019.107687 .
|
119 |
WANG X, WANG C, COTRUFO M F, et al. Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover[J]. Global Change Biology, 2020, 26(9): 5 277-5 289.
|
120 |
DOMEIGNOZ-HORTA L A, POLD G, LIU XJ A, et al. Microbial diversity drives carbon use efficiency in a model soil [J]. Nature Communications, 2020, 11(1). DOI:10.1038/s41467-020-17502-z .
|
121 |
ZHAO H, SUN J, XU X L, et al. Stoichiometry of soil microbial biomass carbon and microbial biomass nitrogen in China’s temperate and alpine grasslands[J]. European Journal of Soil Biology, 2017, 83: 1-8.
|
122 |
BONNER M T L, SHOO L P, BRACKIN R, et al. Relationship between microbial composition and substrate use efficiency in a tropical soil[J]. Geoderma, 2018, 315: 96-103.
|
123 |
KEIBLINGER K M, HALL E K, WANEK W, et al. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency[J]. FEMS Microbiology Ecology, 2010, 73(3): 430-440.
|
124 |
KAISER C, FRANKLIN O, DIECKMANN U, et al. Microbial community dynamics alleviate stoichiometric constraints during litter decay [J]. Ecology Letters, 2014, 17(6): 680-690.
|
125 |
LIPSON D A. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes [J]. Frontiers in Microbiology, 2015, 6. DOI:10.3389/fmicb.2015.00615 .
|
126 |
LI Jingjing. Effects of nitrogen addition on soil carbon and nitrogen mineralization and microbial regulation mechanism in a Pinus tabulaeformis forest [D]. Yangling: Northwest A & F University, 2020.
|
|
李晶晶. 氮添加对人工油松林土壤碳氮矿化过程及其微生物调控机制的影响 [D]. 杨凌: 西北农林科技大学, 2020.
|
127 |
FREY S D, KNORR M, PARRENT J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests [J]. Forest Ecology and Management, 2004, 196(1): 159-171.
|
128 |
LIU L, ZHANG T, GILLIAM F S, et al. Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest[J]. PLoS ONE, 2013, 8(4). DOI:10.1371/journal.pone.0061188 .
|
129 |
TRESEDER K K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies [J]. Ecology Letters, 2008, 11(10): 1 111-1 120.
|
130 |
ZHAO J, WAN S Z, FU S L, et al. Effects of understory removal and nitrogen fertilization on soil microbial communities in Eucalyptus plantations[J]. Forest Ecology and Management, 2013, 310: 80-86.
|
131 |
SIX J, FREY S D, THIET R K, et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems [J]. Soil Science Society of America Journal, 2006, 70(2): 555-569.
|
132 |
ALLISON S D, WALLENSTEIN M D, BRADFORD M A. Soil-carbon response to warming dependent on microbial physiology [J]. Nature Geoscience, 2010, 3(5): 336-340.
|
133 |
HU J X, HUANG C D, ZHOU S X, et al. Nitrogen addition to soil affects microbial carbon use efficiency: Meta-analysis of similarities and differences in 13C and 18O approaches[J]. Global Change Biology, 2022, 28(16): 4 977-4 988.
|
134 |
LU X K, MAO Q G, WANG Z H, et al. Long-term nitrogen addition decreases soil carbon mineralization in an N-rich primary tropical forest[J]. Forests, 2021, 12(6). DOI:10.3390/f12060734 .
|
135 |
LU X K, MO J M, GILLIAM F S, et al. Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest[J]. Global Change Biology, 2010, 16(10): 2 688-2 700.
|
136 |
CHEN W B, SU F L, NIE Y X, et al. Divergent responses of soil microbial functional groups to long-term high nitrogen presence in the tropical forests[J]. Science of the Total Environment, 2022, 821. DOI:10.1016/j.scitotenv.2022.153251 .
|
137 |
RILLIG M C, RYO M, LEHMANN A, et al. The role of multiple global change factors in driving soil functions and microbial biodiversity[J]. Science, 2019, 366(6 467): 886-890.
|
138 |
CRUZ-PAREDES C, TÁJMEL D, ROUSK J. Can moisture affect temperature dependences of microbial growth and respiration?[J]. Soil Biology and Biochemistry, 2021, 156. DOI:10.1016/j.soilbio.2021.108223 .
|