地球科学进展 ›› 2023, Vol. 38 ›› Issue (10): 999 -1014. doi: 10.11867/j.issn.1001-8166.2023.061

青促会专栏 上一篇    下一篇

森林生态系统土壤微生物碳利用效率对氮沉降增加的响应及其机制
张雪冰 1 , 2( ), 张泽和 1 , 2, 鲁显楷 1 , 2( )   
  1. 1.中国科学院华南植物园,中国科学院退化生态系统植被恢复与管理重点实验室,广东 广州 510650
    2.中国科学院大学,北京 100049
  • 收稿日期:2022-12-12 修回日期:2023-08-25 出版日期:2023-10-10
  • 通讯作者: 鲁显楷 E-mail:zhangxb@scbg.ac.cn;luxiankai@scbg.ac.cn
  • 基金资助:
    国家自然科学基金项目(32271687);中国科学院青年创新促进会优秀会员项目(Y201965)

Responses of Soil Microbial Carbon Use Efficiency to Elevated Nitrogen Deposition in Forest Ecosystems

Xuebing ZHANG 1 , 2( ), Zehe ZHANG 1 , 2, Xiankai LU 1 , 2( )   

  1. 1.Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-12-12 Revised:2023-08-25 Online:2023-10-10 Published:2023-10-24
  • Contact: Xiankai LU E-mail:zhangxb@scbg.ac.cn;luxiankai@scbg.ac.cn
  • About author:ZHANG Xuebing, Ph.D student, research area includes biogeochemistry. E-mail: zhangxb@scbg.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(32271687);Youth Innovation Promotion Association CAS(Y201965)

大气氮沉降增加及其全球化影响了陆地生态系统碳循环模式。微生物碳利用效率是驱动土壤碳循环的重要因素,同时也是土壤碳循环模型的重要参数。然而,氮沉降对土壤微生物碳利用效率影响的结论不一致,其背后的作用机理也不清晰,这严重限制了对在大气氮沉降下土壤碳循环动态和碳储存潜力的预测。对森林生态系统土壤微生物碳利用效率的历程和方法进行了综述,并从生物因子和非生物因子两个方面归纳总结了氮沉降增加对微生物碳利用效率影响的机理。在生物因子方面,氮沉降可通过改变微生物量和群落结构以及调节微生物酶活影响微生物碳利用效率;在非生物因子方面,氮沉降可通过改变土壤氮状态、土壤化学计量学和土壤pH,以及地上植被动态(如根系分泌物、凋落物输入等)影响微生物碳利用效率。总体来看,适量氮沉降可以缓解生态系统的氮限制,提高微生物的活性,进而促进微生物碳利用效率;但过量氮沉降则会抑制微生物生长,降低微生物碳利用效率。最后,对未来研究进行了展望,强调要优化微生物碳利用效率的测定方法、从不同时间尺度和空间尺度研究多因素交互的影响等, 以期为深入研究森林生态系统碳循环过程与机制提供理论支持,同时为准确评估和预测森林生态系统土壤碳库的固碳潜力提供科学依据。

Globalization and elevated atmospheric Nitrogen (N) deposition have significantly altered the terrestrial carbon cycle. Soil microbial Carbon Use Efficiency (CUE) plays a key role in adjusting soil cycling rates and processes and is also an important parameter in soil C cycle models. However, the effects of elevated N deposition on soil microbial CUE are often inconsistent, which limits the reliability of predictions of both soil C cycle dynamics and C storage capacity under global changes. Here, we review advances in research on soil microbial CUE and measurement methods. We further explore the mechanisms underlying the effects of increased nitrogen deposition on CUE from both biological and abiotic perspectives in forest ecosystems. In terms of biological mechanisms, N deposition can affect CUE by changing microbial biomass and community structure and by regulating microbial enzyme activities. In terms of abiotic mechanisms, N deposition can affect CUE by changing the N addition-induced changes in the soil nitrogen state, soil stoichiometry, soil pH, and aboveground vegetation dynamics (such as root exudates and litter input), which can independently or jointly affect soil microbial CUE. In general, moderate nitrogen deposition can alleviate ecosystem nitrogen limitation and stimulate microbial activity, thus increasing soil microbial CUE. In contrast, excessive N deposition decreases microbial CUE by inhibiting microbial growth. Lastly, the potential research activities and recommendations for future research are presented. Therefore, it is imperative to optimize the determination of microbial CUE for comparative research among different ecosystems. At temporal and spatial scales, more attention should be paid to the interaction effects of multiple factors under global changes, so that there is a strong theoretical basis for evaluating and predicting the soil carbon sequestration capacity in forest ecosystems.

中图分类号: 

图1 土壤微生物介导的陆地生态系统碳循环示意图(据参考文献[ 21 - 22 ]修改)
Fig. 1 Schematic diagram of carbon cycling in terrestrial ecosystems mediated by soil microorganismsmodified after references21-22])
图2 微生物碳利用效率的重要研究历程
Fig. 2 Important research history of microbial carbon use efficiency
表1 土壤微生物碳利用效率( CUE)测定方法的对比
Table 1 Comparison of different soil microbial Carbon Use EfficiencyCUEmeasurements
方法 公式 特点、假设与CUE结果评估
13C

C U E = 13 M B C ( M 13 B C + R 13 )

式中:13MBC为标记13C的微生物量;13R为培养时间内13CO2的累积排放量

需要有机示踪剂,可能会降低微生物生长(低估原位CUE) 46

示踪剂会很快被吸收(<6 h),并随时间逐渐被矿化(初始CUE高,随着时间降低;CUE对培养时间很敏感 46 - 47 );

示踪剂会从生物量中迅速流失(<6 h),并形成矿物稳定的微生物产物(低估微生物吸收速率;高估CUE 46 48 );

受微生物分泌物和周转影响(可能会降低CUE) 49

假设葡萄糖代谢等于土壤有机质代谢(如果土壤有机质代谢效率低于葡萄糖,会高估CUE);

土壤环境可能会对微生物生物量和DNA提取产生干扰(在高可溶性有机碳浓度、高黏土含量等条件下,微生物生长无法确定) 46 50

18O

C U E = 18 M B C ( M 18 B C + R )

式中:18MBC为标记18O的微生物量; R 为呼吸速率

不需要有机示踪剂(测定原位CUE);

示踪剂被吸收的速率是平缓的,并随着呼吸改变而改变(在培养过程中,CUE相对稳定) 46

受微生物分泌物和周转影响(可能会降低CUE) 49

微生物生长的氧97%来自于水(较精确估计CUE) 43

假设新形成细胞的DNA含量与成熟细胞相同(高估或低估CUE);

土壤环境可能会对微生物生物量和DNA提取产生干扰(在高可溶性有机碳浓度、高黏土含量等条件下,微生物生长无法确定) 46 50

测定精度高,不受底物类型的影响

热呼吸

R q R C O 2 = 469 1 - γ S 4 - 115 ( γ S - γ M B ) [ C U E ( 1 - C U E ) ]

式中:469相当于葡萄糖水溶液的氧热量;γSMB 为底物与微生物量碳氧化态的差值;115为底物向微生物生物量转化过程中碳氧化态的平均能量损失

需要了解底物碳的氧化态(需要对底物进行修正来验证公式中的γS 或使用量热法估算土壤有机质的燃烧焓) 51 - 52

需要了解微生物量碳的氧化态(活性微生物群落必须符合式中γMB 的估计) 53

该公式只限于氧化条件(在厌氧或发酵条件下,不能使用该式计算CUE) 54

不受土壤提取的限制(可以在不同的土壤环境中测定CUE)

代谢通量分析

C U E = 6 × v 1 - C O 2 6 × v 1

以葡萄糖和丙酮酸为例,式中: v 1 表示葡萄糖-C的吸收率;ΣCO2表示由丙酮酸脱氢酶、葡萄糖酸脱氢酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶控制的反应中所有以CO2形式损失的碳总和

适合短期测定,结果相对恒定(CUE相对较高) 46 55

整合代谢过程的影响大于环境条件(在不同土壤类型和环境条件下,CUE是一致的) 46 56

假设葡萄糖代谢等于土壤有机质代谢(如果土壤有机质代谢效率低于葡萄糖,会高估CUE);

不受土壤提取的限制(可以在不同的土壤环境中测定CUE);

结果受底物类型的影响

化学计量学模型

S C X = B C X L C X × 1 E E A C X

C U E C X = C U E m a x × S C X ( S C X + K X )

式中: B C X 为微生物生物量碳与氮或磷的比值; L C X 是有效碳与氮或磷的比值; E E A C X 表示与碳氮或磷相关的酶活性之比;基于热力学约束, C U E m a x 为0.6; K X 是半饱和参数,为0.5

CUE是通过土壤中全库的化学计量计算的(计量学可能不能反映活跃循环的库,如总微生物量和活跃的生物量) 57

使用常规的土壤测定方法,参数容易获取(可以用早期存在的数据计算CUE);

由于热力学限制,假设CUE最大值为0.6(相较于其他方法,该法计算出的CUE范围较小) 58

模型假设和公式中的经验系数包含较大的不确定性;

CUE易随时间改变

图3 微生物量碳(MBC)总增长率的 18O-H2O测定方法(据参考文献[ 65 ]修改)
氯仿熏蒸法提取土壤微生物量碳(1);用 18O-H 2O培养土壤,确定产生的新DNA(2);提取土壤DNA (3);量化总微生物量碳(4)和DNA总量(5)来计算总微生物量碳与DNA总量的比值;用DNA总量和 18O富集量(6)来确定产生的新DNA(8);用总微生物量碳与DNA总量的比值(7)来计算培养期间产生的新微生物量碳(9)
Fig. 3 The 18O-H2O method of evaluating gross Microbial Biomass CarbonMBCgrowthmodified after reference 65 ])
Soil collected from the environment is subject to chloroform fumigation extraction (1) and incubation with 18O-H 2O to determine new DNA production (2). The DNA is extracted from the soil (3). The total MBC (4) and DNA (5) are quantified to calculate the ratio of MBC: total DNA. The total quantity of DNA and its 18O enrichment (6) are used to determine the new DNA produced (8), and the ratio of MBC: total DNA (7) is then multiplied with this value to calculate the new MBC produced during the incubation (9)
图4 不同 18O方法测定的示意图以及加入液体水产生的“脉冲效应”(据参考文献[ 42 ]修改)
Fig. 4 Schematic representation of the different 18O methods tested and the start of the Birch effect through the addition of a liquid tracermodified after reference 42 ])
表2 氮沉降森林对土壤微生物碳利用效率的影响
Table 2 Effects of nitrogen deposition on microbial carbon use efficiency of forests
图5 森林生态系统对长期氮添加响应的阶段过程(据参考文献[ 84 ]修改)
横坐标中0表示氮限制初期阶段;1表示氮限制中期阶段;2表示氮饱和阶段;3表示氮过饱和阶段
Fig. 5 The stage of forest ecosystem responses to long-term nitrogen additionsmodified after reference 84 ])
Abscissa: 0 means pretreatment with strong nitrogen limitations on growth; 1 means the middle stage of nitrogen limitation where a fertilier effect continues; 2 means ecosystems are N-saturated, where a fertilizer effect stops; 3 means ecosystems are excess in nitrogen
图6 氮沉降对土壤微生物碳利用效率的影响机制
Fig. 6 Mechanism of nitrogen deposition on soil microbial carbon use efficiency
图7 氮沉降下土壤微生物碳利用效率对土壤有机碳固存的可能影响(据参考文献[ 24 ]修改)
蓝色表示正向影响,红色表示负向影响
Fig. 7 Possible effects of changes in soil microbial CUE on SOC stocks under N depositionmodified after reference 24 ])
Blue arrows indicate a positive effect and red arrows indicate a negative effect of the variable at the base of the arrow on the variable at its head
1 FRIEDLI H, LÖTSCHER H, OESCHGER H, et al. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries[J]. Nature, 1986, 324(6 094): 237-238.
2 FAN S, GLOOR M, MAHLMAN J, et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models [J]. Science, 1998, 282(5 388): 442-446.
3 KAISER J. Panel estimates possible carbon ‘sinks’[J]. Science, 2000, 288(5 468): 942-943.
4 MONNIN E, INDERMÜHLE A, DÄLLENBACH A, et al. Atmospheric CO2 concentrations over the Last Glacial Termination[J]. Science, 2001, 291(5 501): 112-114.
5 SCHNEIDER S H. The greenhouse effect: science and policy [J]. Science, 1989, 243(4 892): 771-781.
6 LASHOF D A, AHUJA D R. Relative contributions of greenhouse gas emissions to global warming [J]. Nature, 1990, 344(6 266): 529-531.
7 LU Xiankai, MO Jiangming, ZHANG Wei, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: an overview [J]. Journal of Tropical and Subtropical Botany, 2019, 27(5): 500-522.
鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展 [J]. 热带亚热带植物学报, 2019, 27(5): 500-522.
8 GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions [J]. Science, 2008, 320(5 878): 889-892.
9 ACKERMAN D, MILLET D B, CHEN X. Global estimates of inorganic nitrogen deposition across four decades[J]. Global Biogeochemical Cycles, 2019, 33(1): 100-107.
10 YU G R, JIA Y L, HE N P, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 2019, 12(6): 424-429.
11 WANG C M, YANG X T, XU K. Effect of chronic nitrogen fertilization on soil CO2 flux in a temperate forest in North China: a 5-year nitrogen addition experiment[J]. Journal of Soils and Sediments, 2018, 18(2): 506-516.
12 WANG Q K, ZHANG W D, SUN T, et al. N and P fertilization reduced soil autotrophic and heterotrophic respiration in a young Cunninghamia lanceolata forest[J]. Agricultural and Forest Meteorology, 2017, 232: 66-73.
13 LIU X J, ZHANG Y, HAN W X, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7 438): 459-462.
14 CUI S H, SHI Y L, GROFFMAN P M, et al. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910-2010)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(6): 2 052-2 057.
15 FORNARA D A, TILMAN D. Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition [J]. Ecology, 2012, 93(9): 2 030-2 036.
16 LIU L L, GREAVER T L. A global perspective on belowground carbon dynamics under nitrogen enrichment[J]. Ecology Letters, 2010, 13(7): 819-828.
17 LU X K, VITOUSEK P M, MAO Q G, et al. Nitrogen deposition accelerates soil carbon sequestration in tropical forests[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(16). DOI:10.1073/pnas.202079011 .
18 SCHIMEL J P, SCHAEFFER S M. Microbial control over carbon cycling in soil [J]. Frontiers in Microbiology, 2012, 3. DOI:10.3389/fmicb.2012.00348 .
19 GEORGIOU K, ABRAMOFF R Z, HARTE J, et al. Microbial community-level regulation explains soil carbon responses to long-term litter manipulations[J]. Nature Communications, 2017, 8(1). DOI:10.1038/s41467-017-01116-z .
20 MALIK A A, PUISSANT J, BUCKERIDGE K M, et al. Land use driven change in soil pH affects microbial carbon cycling processes [J]. Nature Communications, 2018, 9. DOI:10.1038/s41467-018-05980-1 .
21 LIANG Chao, ZHU Xuefeng. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration [J]. Science China: Earth Sciences, 2021, 51(5): 680-695.
梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论 [J]. 中国科学:地球科学, 2021, 51(5): 680-695.
22 LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2(8). DOI: 10.1038/nmicrobiol.2017.105 .
23 GLEIXNER G. Soil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studies [J]. Ecological Research, 2013, 28(5): 683-695.
24 MANZONI S, TAYLOR P, RICHTER A, et al. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils [J]. New Phytologist, 2012, 196(1): 79-91.
25 SINSABAUGH R L, MANZONI S, MOORHEAD D L, et al. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling [J]. Ecology Letters, 2013, 16(7): 930-939.
26 TAO F, HUANG Y Y, HUNGATE B A, et al. Microbial carbon use efficiency promotes global soil carbon storage[J]. Nature, 2023, 618(7 967): 981-985.
27 KALLENBACH C M, FREY S D, GRANDY A S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls [J]. Nature Communications, 2016, 7. DOI: 10.1038/ncomms13630 .
28 PROMMER J, WALKER T W N, WANEK W, et al. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity [J]. Global Change Biology, 2020, 26(2): 669-681.
29 del GIORGIO P A, COLE J J. Bacterial growth efficiency in natural aquatic systems[J]. Annual Review of Ecology and Systematics, 1998, 29: 503-541.
30 CHEN Zhi, YU Guirui. Advances in the soil microbial carbon use efficiency[J]. Acta Ecologica Sinica, 2020, 40(3): 756-767.
陈智, 于贵瑞. 土壤微生物碳素利用效率研究进展 [J]. 生态学报, 2020, 40(3): 756-767.
31 PAYNE W J, WIEBE W J. Growth yield and efficiency in chemosynthetic microorganisms [J]. Annual Review of Microbiology, 1978, 32: 155-183.
32 ROELS J A. Application of macroscopic principles to microbial metabolism[J]. Biotechnology and Bioengineering, 1980, 22(12): 2 457-2 514.
33 GOMMERS P J F, van SCHIE B J, van DIJKEN J P, et al. Biochemical limits to microbial growth yields: an analysis of mixed substrate utilization[J]. Biotechnology and Bioengineering, 1988, 32(1): 86-94.
34 CRAWFORD C C, HOBBIE J E, WEBB K L. The utilization of dissolved free amino acids by estuarine microorganisms[J]. Ecology, 1974, 55(3): 551-563.
35 RUSSELL J B, COOK G M. Energetics of bacterial growth: balance of anabolic and catabolic reactions [J]. Microbiological Reviews, 1995, 59(1): 48-62.
36 PARSONS T R, STRICKLAND J D H. On the production of particulate organic carbon by heterotrophic processes in sea water[J]. Deep Sea Research (1953), 1961, 8(3/4): 211-222.
37 HOBBIE J E, WRIGHT R T. Competition between planktonic bacteria and algae for organic solutes[M]// Primary productivity in aquatic environments. California: University of California Press, 1966: 175-186.
38 HOBBIE J E, CRAWFORD C C. Respiration corrections for bacterial uptake of dissolved organic compounds in natural waters [J]. Limnology and Oceanography, 1969, 14(4): 528-532.
39 PAYNE W J. Energy yields and growth of heterotrophs [J]. Annual Review of Microbiology, 1970, 24: 17-52.
40 BRANT J B, SULZMAN E W, MYROLD D D. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation [J]. Soil Biology and Biochemistry, 2006, 38(8): 2 219-2 232.
41 SINSABAUGH R L, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry and ecological theory[J]. Annual Review of Ecology, Evolution, and Systematics, 2012, 43: 313-343.
42 CANARINI A, WANEK W, WATZKA M, et al. Quantifying microbial growth and carbon use efficiency in dry soil environments via 18O water vapor equilibration [J]. Global Change Biology, 2020, 26(9): 5 333-5 341.
43 QU L R, WANG C, BAI E. Evaluation of the 18O-H2O incubation method for measurement of soil microbial carbon use efficiency[J]. Soil Biology and Biochemistry, 2020, 145. DOI: 10.1016/j.soilbio.2020.107802 .
44 SPOHN M, KLAUS K, WANEK W, et al. Microbial carbon use efficiency and biomass turnover times depending on soil depth—implications for carbon cycling [J]. Soil Biology and Biochemistry, 2016, 96: 74-81.
45 SPOHN M, PÖTSCH E M, EICHORST S A, et al. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland[J]. Soil Biology and Biochemistry, 2016, 97: 168-175.
46 GEYER K M, DIJKSTRA P, SINSABAUGH R, et al. Clarifying the interpretation of carbon use efficiency in soil through methods comparison[J]. Soil Biology and Biochemistry, 2019, 128: 79-88.
47 ZIEGLER S E, WHITE P M, WOLF D C, et al. Tracking the fate and recycling of 13C-labeled glucose in soil[J]. Soil Science, 2005, 170(10): 767-778.
48 CREAMER C A, JONES D L, BALDOCK J A, et al. Is the fate of glucose-derived carbon more strongly driven by nutrient availability, soil texture, or microbial biomass size?[J]. Soil Biology and Biochemistry, 2016, 103: 201-212.
49 FREY S D, GUPTA V V S R, ELLIOTT E T, et al. Protozoan grazing affects estimates of carbon utilization efficiency of the soil microbial community[J]. Soil Biology and Biochemistry, 2001, 33(12/13): 1 759-1 768.
50 CAI P, HUANG Q, ZHANG X, et al. Adsorption of DNA on clay minerals and various colloidal particles from an Alfisol[J]. Soil Biology and Biochemistry, 2006, 38(3): 471-476.
51 LAROWE D E, van CAPPELLEN P. Degradation of natural organic matter: a thermodynamic analysis[J]. Geochimica et Cosmochimica Acta, 2011, 75(8): 2 030-2 042.
52 BÖLSCHER T, PATERSON E, FREITAG T, et al. Temperature sensitivity of substrate-use efficiency can result from altered microbial physiology without change to community composition[J]. Soil Biology and Biochemistry, 2017, 109: 59-69.
53 von STOCKAR U, LIU J S. Does microbial life always feed on negative entropy?Thermodynamic analysis of microbial growth[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1999, 1 412(3): 191-211.
54 HANSEN L D, MACFARLANE C, MCKINNON N, et al. Use of calorespirometric ratios, heat per CO2 and heat per O2, to quantify metabolic paths and energetics of growing cells[J]. Thermochimica Acta, 2004, 422(1/2): 55-61.
55 DIJKSTRA P, SALPAS E, FAIRBANKS D, et al. High carbon use efficiency in soil microbial communities is related to balanced growth, not storage compound synthesis[J]. Soil Biology and Biochemistry, 2015, 89: 35-43.
56 DIJKSTRA P, THOMAS S C, HEINRICH P L, et al. Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency[J]. Soil Biology and Biochemistry, 2011, 43(10): 2 023-2 031.
57 MANZONI S, ČAPEK P, MOOSHAMMER M, et al. Optimal metabolic regulation along resource stoichiometry gradients[J]. Ecology Letters, 2017, 20(9): 1 182-1 191.
58 SINSABAUGH R L, TURNER B L, TALBOT J M, et al. Stoichiometry of microbial carbon use efficiency in soils [J]. Ecological Monographs, 2016, 86(2): 172-189.
59 HERRON P M, STARK J M, HOLT C, et al. Microbial growth efficiencies across a soil moisture gradient assessed using 13C-acetic acid vapor and 15N-ammonia gas[J]. Soil Biology and Biochemistry, 2009, 41(6): 1 262-1 269.
60 SANTRUCKOVA H, PICEK T, TYKVA R, et al. Short-term partitioning of 14C-[U]-glucose in the soil microbial pool under varied aeration status [J]. Biology and Fertility of Soils, 2004, 40(6): 386-392.
61 SAIFUDDIN M, BHATNAGAR J M, SEGRÈ D, et al. Microbial carbon use efficiency predicted from genome-scale metabolic models[J]. Nature Communications, 2019, 10(1). DOI:10.1038/s41467-019-11488-z .
62 FONTAINE S, MARIOTTI A, ABBADIE L. The priming effect of organic matter: a question of microbial competition?[J]. Soil Biology and Biochemistry, 2003, 35(6): 837-843.
63 SCHWARTZ E. Characterization of growing microorganisms in soil by stable isotope probing with H2 18O [J]. Applied and Environmental Microbiology, 2007, 73(8): 2 541-2 546.
64 BLAZEWICZ S J, SCHWARTZ E. Dynamics of 18O Incorporation from H2 18O into soil microbial DNA [J]. Microbial Ecology, 2011, 61(4): 911-916.
65 POLD G, DOMEIGNOZ-HORTA L A, DEANGELIS K M. Heavy and wet: the consequences of violating assumptions of measuring soil microbial growth efficiency using the 18O water method [J]. Elementa-Science of the Anthropocene, 2020, 8(20): 2-13.
66 ZHANG Q F, QIN W K, FENG J G, et al. Responses of soil microbial carbon use efficiency to warming: review and prospects[J]. Soil Ecology Letters, 2022, 4(4): 307-318.
67 BIRCH H F. The effect of soil drying on humus decomposition and nitrogen availability [J]. Plant and Soil, 1958, 10(1): 9-31.
68 WANG C, QU L R, YANG L M, et al. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon[J]. Global Change Biology, 2021, 27(10): 2 039-2 048.
69 ZHRAN M, GE T D, TONG Y Y, et al. Assessment of depth-dependent microbial carbon-use efficiency in long-term fertilized paddy soil using an 18O-H2O approach[J]. Land Degradation & Development, 2021, 32(1): 199-207.
70 XIE W J, ZHANG Y P, LI J Y, et al. Straw application coupled with N and P supply enhanced microbial biomass, enzymatic activity, and carbon use efficiency in saline soil[J]. Applied Soil Ecology, 2021, 168. DOI:10.1016/j.apsoil.2021.104128 .
71 XIAO Q, HUANG Y P, WU L, et al. Long-term manuring increases microbial carbon use efficiency and mitigates priming effect via alleviated soil acidification and resource limitation[J]. Biology and Fertility of Soils, 2021, 57(7): 925-934.
72 LIAO C, TIAN Q X, LIU F. Nitrogen availability regulates deep soil priming effect by changing microbial metabolic efficiency in a subtropical forest[J]. Journal of Forestry Research, 2021, 32(2): 713-723.
73 CHEN L Y, LIU L, MAO C, et al. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency[J]. Nature Communications, 2018, 9(1): 1-11.
74 CHEN Y, ZHANG Y J, BAI E, et al. The stimulatory effect of elevated CO2 on soil respiration is unaffected by N addition[J]. Science of the Total Environment, 2022, 813. DOI:10.1016/j.scitotenv.2021.151907 .
75 KUSKE C R, SINSABAUGH R L, GALLEGOS-GRAVES L V, et al. Simple measurements in a complex system: soil community responses to nitrogen amendment in a Pinus taeda forest [J]. Ecosphere, 2019, 10(4). DOI:10.1002/ecs2.2687 .
76 GUO X W, LUO Z K, SUN O J. Long-term litter type treatments alter soil carbon composition but not microbial carbon utilization in a mixed pine-oak forest[J].Biogeochemistry, 2021, 152(2/3): 327-343.
77 LI J, SANG C P, YANG J Y, et al. Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition[J]. Soil Biology and Biochemistry, 2021, 156. DOI:10.1016/j.soilbio.2021.108207 .
78 SILVA-SÁNCHEZ A, SOARES M, ROUSK J. Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality[J]. Soil Biology and Biochemistry, 2019, 134: 25-35.
79 ZIEGLER S E, BILLINGS S A. Soil nitrogen status as a regulator of carbon substrate flows through microbial communities with elevated CO2 [J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G1). DOI:10.1029/2010JG001434 .
80 RIGGS C E, HOBBIE S E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils[J]. Soil Biology and Biochemistry, 2016, 99: 54-65.
81 WIDDIG M, SCHLEUSS P M, BIEDERMAN L A, et al. Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions[J]. Soil Biology and Biochemistry, 2020, 146. DOI:10.1016/j.soilbio.2020.107815 .
82 GUNDERSEN P, EMMETT B A, KJØNAAS O J, et al. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data[J]. Forest Ecology and Management, 1998, 101(1/2/3): 37-55.
83 ABER J, MCDOWELL W, NADELHOFFER K, et al. Nitrogen saturation in temperate forest ecosystems:hypotheses revisited [J]. Bioscience, 1998, 48(11): 921-934.
84 ABER J D, NADELHOFFER K J, STEUDLER P, et al. Nitrogen saturation in northern forest ecosystems[J]. BioScience, 1989, 39(6): 378-386.
85 LEBAUER D S, TRESEDER K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed [J]. Ecology, 2008, 89(2): 371-379.
86 HICKS L C, YUAN M Y, BRANGARÍ A, et al. Increased above- and belowground plant input can both trigger microbial nitrogen mining in subarctic tundra soils[J]. Ecosystems, 2022, 25(1): 105-121.
87 LI J H, ZHANG R, CHENG B H, et al. Effects of nitrogen and phosphorus additions on decomposition and accumulation of soil organic carbon in alpine meadows on the Tibetan Plateau[J]. Land Degradation & Development, 2021, 32(3): 1 467-1 477.
88 LUO R Y, KUZYAKOV Y, LIU D Y, et al. Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: disentangling microbial and physical controls[J]. Soil Biology and Biochemistry, 2020, 144. DOI:10.1016/j.soilbio.2020.107764 .
89 TANG H M, LI C, WEN L, et al. Microbial carbon source utilization in rice rhizosphere and non-rhizosphere soils in a 34-year fertilized paddy field[J]. Journal of Basic Microbiology, 2020, 60(11/12): 1 004-1 013.
90 ZHAO X, LU X Y, YANG J Y, et al. Effects of nitrogen addition on microbial carbon use efficiency of soil aggregates in abandoned grassland on the loess plateau of China[J]. Forests, 2022, 13(2). DOI:10.3390/f13020276 .
91 CLEVELAND C C, LIPTZIN D. C∶N∶P stoichiometry in soil: is there a “redfield ratio” for the microbial biomass? [J]. Biogeochemistry, 2007, 85(3): 235-252.
92 KEELER B L, HOBBIE S E, KELLOGG L E. Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition [J]. Ecosystems, 2009, 12(1): 1-15.
93 KEUSKAMP J A, FELLER I C, LAANBROEK H J, et al. Short- and long-term effects of nutrient enrichment on microbial exoenzyme activity in mangrove peat [J]. Soil Biology and Biochemistry, 2015, 81: 38-47.
94 KHALILI B, OGUNSEITAN O A, GOULDEN M L, et al. Interactive effects of precipitation manipulation and nitrogen addition on soil properties in California grassland and shrubland [J]. Applied Soil Ecology, 2016, 107: 144-153.
95 LAGOMARSINO A, MOSCATELLI M C, ANGELIS P D, et al. Labile substrates quality as the main driving force of microbial mineralization activity in a poplar plantation soil under elevated CO2 and nitrogen fertilization[J]. Science of the Total Environment, 2006, 372(1): 256-265.
96 JEYASINGH P D, WEIDER L J, STERNER R W. Genetically-based trade-offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore [J]. Ecology Letters, 2009, 12(11): 1 229-1 237.
97 PERSSON J, FINK P, GOTO A, et al. To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs [J]. Oikos, 2010, 119(5): 741-751.
98 XU X F, THORNTON P E, POST W M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems[J]. Global Ecology and Biogeography, 2013, 22(6): 737-749.
99 CHEN Y L, CHEN L Y, PENG Y F, et al. Linking microbial C∶N∶P stoichiometry to microbial community and abiotic factors along a 3500-km grassland transect on the Tibetan Plateau[J]. Global Ecology and Biogeography, 2016, 25(12): 1 416-1 427.
100 CHEN R R, SENBAYRAM M, BLAGODATSKY S, et al. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology, 2014, 20(7): 2 356-2 367.
101 CRAINE J M, MORROW C, FIERER N. Microbial nitrogen limitation increases decomposition [J]. Ecology, 2007, 88(8): 2 105-2 113.
102 RAZANAMALALA K, FANOMEZANA R A, RAZAFIMBELO T, et al. The priming effect generated by stoichiometric decomposition and nutrient mining in cultivated tropical soils: actors and drivers [J]. Applied Soil Ecology, 2018, 126: 21-33.
103 SPOHN M. Element cycling as driven by stoichiometric homeostasis of soil microorganisms [J]. Basic and Applied Ecology, 2016, 17(6): 471-478.
104 SOONG J L, FUCHSLUEGER L, MARAÑON-JIMENEZ S, et al. Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling[J]. Global Change Biology, 2020, 26(4): 1 953-1 961.
105 CUI Y X, ZHANG Y L, DUAN C J, et al. Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems[J]. Soil and Tillage Research, 2020, 197. DOI:10.1016/j.still.2019.104463 .
106 GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese Croplands [J]. Science, 2010, 327(5 968): 1 008-1 010.
107 PHOENIX G K, EMMETT B A, BRITTON A J, et al. Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments [J]. Global Change Biology, 2012, 18(4): 1 197-1 215.
108 LUCAS R W, KLAMINDER J, FUTTER M N, et al. A meta-analysis of the effects of nitrogen additions on base cations: implications for plants, soils, and streams [J]. Forest Ecology and Management, 2011, 262(2): 95-104.
109 JONES D L, COOLEDGE E C, HOYLE F C, et al. pH and exchangeable aluminum are major regulators of microbial energy flow and carbon use efficiency in soil microbial communities[J]. Soil Biology and Biochemistry, 2019, 138. DOI:10.1016/j.soilbio.2019.107584 .
110 MALIK A A, MARTINY J B H, BRODIE E L, et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change[J]. The ISME Journal, 2020, 14(1): 1-9.
111 SÖDERSTRÖM B, BÅÅTH E, LUNDGREN B. Decrease in soil microbial activity and biomasses owing to nitrogen amendments[J]. Canadian Journal of Microbiology, 1983, 29(11): 1 500-1 506.
112 NOHRSTEDT H Ö, ARNEBRANT K, BÅÅTH E, et al. Changes in carbon content, respiration rate, ATP content, and microbial biomass in nitrogen-fertilized pine forest soils in Sweden[J]. Canadian Journal of Forest Research, 1989, 19(3): 323-328.
113 BROADBENT F E. Effect of fertilizer nitrogen on the release of soil nitrogen [J]. Soil Science Society of America Journal, 1965, 29(6): 692-696.
114 BÄÄTH E, LUNDGREN B, SÖDERSTRÖM B. Effects of nitrogen fertilization on the activity and biomass of fungi and bacteria in a podzolic soil[J]. Zentralblatt Für Bakteriologie Mikrobiologie Und Hygiene: I Abt Originale C: Allgemeine, Angewandte Und Ökologische Mikrobiologie, 1981, 2(1): 90-98.
115 MAGILL A H, ABER J D, HENDRICKS J J, et al. Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition [J]. Ecological Applications, 1997, 7(2): 402-415.
116 ZHANG Yan, QIANG Wei, LUO Ruyi, et al. Effects of nitrogen and phosphorus addition on soil microbial growth, turnover, and carbon use efficiency: a review [J]. Chinese Journal Applied and Environmental Biology, 2022, 28(2): 526-534.
张燕, 强薇, 罗如熠, 等. 氮磷添加对土壤微生物生长、周转及碳利用效率的影响研究进展 [J]. 应用与环境生物学报, 2022, 28(2): 526-534.
117 BAO Hanyang, LI Yang, DENG Xianzhi, et al. Effects of different root exudates and plant litter input on soil microbial enzyme activities and residues in alpine desertified grassland [J]. Chinese Journal Applied and Environmental Biology, 2022, 29(3): 546-553.
包寒阳, 李杨, 邓先智, 等. 根系分泌物和凋落物对高寒沙化草地土壤微生物的影响 [J]. 应用与环境生物学报, 2022, 29(3): 546-553.
118 WANG C, WANG X, PEI G T, et al. Stabilization of microbial residues in soil organic matter after two years of decomposition[J]. Soil Biology and Biochemistry, 2020, 141. DOI:10.1016/j.soilbio.2019.107687 .
119 WANG X, WANG C, COTRUFO M F, et al. Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover[J]. Global Change Biology, 2020, 26(9): 5 277-5 289.
120 DOMEIGNOZ-HORTA L A, POLD G, LIU XJ A, et al. Microbial diversity drives carbon use efficiency in a model soil [J]. Nature Communications, 2020, 11(1). DOI:10.1038/s41467-020-17502-z .
121 ZHAO H, SUN J, XU X L, et al. Stoichiometry of soil microbial biomass carbon and microbial biomass nitrogen in China’s temperate and alpine grasslands[J]. European Journal of Soil Biology, 2017, 83: 1-8.
122 BONNER M T L, SHOO L P, BRACKIN R, et al. Relationship between microbial composition and substrate use efficiency in a tropical soil[J]. Geoderma, 2018, 315: 96-103.
123 KEIBLINGER K M, HALL E K, WANEK W, et al. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency[J]. FEMS Microbiology Ecology, 2010, 73(3): 430-440.
124 KAISER C, FRANKLIN O, DIECKMANN U, et al. Microbial community dynamics alleviate stoichiometric constraints during litter decay [J]. Ecology Letters, 2014, 17(6): 680-690.
125 LIPSON D A. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes [J]. Frontiers in Microbiology, 2015, 6. DOI:10.3389/fmicb.2015.00615 .
126 LI Jingjing. Effects of nitrogen addition on soil carbon and nitrogen mineralization and microbial regulation mechanism in a Pinus tabulaeformis forest [D]. Yangling: Northwest A & F University, 2020.
李晶晶. 氮添加对人工油松林土壤碳氮矿化过程及其微生物调控机制的影响 [D]. 杨凌: 西北农林科技大学, 2020.
127 FREY S D, KNORR M, PARRENT J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests [J]. Forest Ecology and Management, 2004, 196(1): 159-171.
128 LIU L, ZHANG T, GILLIAM F S, et al. Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest[J]. PLoS ONE, 2013, 8(4). DOI:10.1371/journal.pone.0061188 .
129 TRESEDER K K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies [J]. Ecology Letters, 2008, 11(10): 1 111-1 120.
130 ZHAO J, WAN S Z, FU S L, et al. Effects of understory removal and nitrogen fertilization on soil microbial communities in Eucalyptus plantations[J]. Forest Ecology and Management, 2013, 310: 80-86.
131 SIX J, FREY S D, THIET R K, et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems [J]. Soil Science Society of America Journal, 2006, 70(2): 555-569.
132 ALLISON S D, WALLENSTEIN M D, BRADFORD M A. Soil-carbon response to warming dependent on microbial physiology [J]. Nature Geoscience, 2010, 3(5): 336-340.
133 HU J X, HUANG C D, ZHOU S X, et al. Nitrogen addition to soil affects microbial carbon use efficiency: Meta-analysis of similarities and differences in 13C and 18O approaches[J]. Global Change Biology, 2022, 28(16): 4 977-4 988.
134 LU X K, MAO Q G, WANG Z H, et al. Long-term nitrogen addition decreases soil carbon mineralization in an N-rich primary tropical forest[J]. Forests, 2021, 12(6). DOI:10.3390/f12060734 .
135 LU X K, MO J M, GILLIAM F S, et al. Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest[J]. Global Change Biology, 2010, 16(10): 2 688-2 700.
136 CHEN W B, SU F L, NIE Y X, et al. Divergent responses of soil microbial functional groups to long-term high nitrogen presence in the tropical forests[J]. Science of the Total Environment, 2022, 821. DOI:10.1016/j.scitotenv.2022.153251 .
137 RILLIG M C, RYO M, LEHMANN A, et al. The role of multiple global change factors in driving soil functions and microbial biodiversity[J]. Science, 2019, 366(6 467): 886-890.
138 CRUZ-PAREDES C, TÁJMEL D, ROUSK J. Can moisture affect temperature dependences of microbial growth and respiration?[J]. Soil Biology and Biochemistry, 2021, 156. DOI:10.1016/j.soilbio.2021.108223 .
[1] 牛雪琦, 时巍巍, 吴文欣, 刘树伟, 杨平, 李思亮, 晏智锋. 内陆水体 CH4 冒泡排放研究进展[J]. 地球科学进展, 2023, 38(8): 802-814.
[2] 赵显烨, 王伟, 关成国, 宋晨冉, 庞科, 陈哲, 周传明, 袁训来. 古元古代早中期大氧化事件及碳循环扰动[J]. 地球科学进展, 2023, 38(8): 838-851.
[3] 郑旻, 罗敏, 潘彬彬, 陈多福. 海洋沉积物溶解氧消耗研究进展[J]. 地球科学进展, 2023, 38(3): 236-255.
[4] 何志, 田军. 中中新世气候转型期太平洋深层环流变化与碳循环[J]. 地球科学进展, 2023, 38(1): 17-31.
[5] 陆瑶, 黄良波, 贾珺杰, 高扬. 内陆水体初级生产力评估方法研究进展[J]. 地球科学进展, 2023, 38(1): 57-69.
[6] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[7] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[8] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[9] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[10] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[11] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[12] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[13] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[14] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[15] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
阅读次数
全文


摘要