1 |
WANG L, KASEKE K F, SEELY M K. Effects of non-rainfall water inputs on ecosystem functions[J]. Wiley Interdisciplinary Reviews: Water, 2017, 4(1): e1179.
|
2 |
BEYSENS D. Dew water[M]. Gistrup Denmark: Rivers Publishers, 2018.
|
3 |
KIDRON G J, STARINSKY A. Measurements and ecological implications of nonrainfall water in desert ecosystems—a review[J]. Ecohydrology, 2019, 12(6): e2121.
|
4 |
ZHUANG Y, RATCLIFFE S. Relationship between dew presence and bassia dasyphylla plant growth[J]. Journal of Arid Land, 2012, 4(1): 11-18.
|
5 |
HILL A J, DAWSON T E, SHELEF O, et al. The role of dew in negev desert plants[J]. Oecologia, 2015, 178(2): 317-327.
|
6 |
WANG L, KASEKE K F, RAVI S, et al. Convergent vegetation fog and dew water use in the Namib Desert[J]. Ecohydrology, 2019, 12(7): e2130.
|
7 |
ZHANG J, ZHANG Y M, DOWNING A, et al. The influence of biological soil crusts on dew deposition in Gurbantunggut Desert, Northwestern China[J]. Journal of Hydrology, 2009, 379(3/4): 220-228.
|
8 |
FISCHER T, VESTE M, BENS O, et al. Dew formation on the surface of biological soil crusts in central European sand ecosystems[J]. Biogeosciences, 2012, 9: 4 621-4 628.
|
9 |
KIDRON G J, TEMINA M. The effect of dew and fog on lithic lichens along an altitudinal gradient in the Negev Desert[J]. Geomicrobiology Journal, 2013, 30(4): 281-290.
|
10 |
KIDRON G J, TEMINA M. Non-rainfall water input determines lichen and cyanobacteria zonation on limestone bedrock in the Negev Highlands[J]. Flora, 2017, 229: 71-79.
|
11 |
KIDRON G J, KRONENFELD R. Assessing the likelihood of the soil surface to condense vapour: the Negev experience[J]. Ecohydrology, 2020, 13(3): e2200.
|
12 |
GOTSCH S G, ASBJORNSEN H, HOLWERDA F, et al. Foggy days and dry nights determine crown-level water balance in a seasonal tropical montane cloud forest[J]. Plant, Cell and Environment, 2014, 37(1): 261-272.
|
13 |
ZHANG Q, WANG S, YUE P, et al. Variation characteristics of non-rainfall water and its contribution to crop water requirements in China's summer monsoon transition zone[J]. Journal of Hydrology, 2019, 578: 124039.
|
14 |
GOLDSMITH G R, MATZKE N J, DAWSON T E, et al. The incidence and implications of clouds for cloud forest plant water relations[J]. Ecology Letters, 2013, 16(3): 307-314.
|
15 |
BERRY Z C, EMERY N C, GOTSCH S G, et al. Foliar water uptake: processes, pathways, and integration into plant water budgets[J]. Plant, Cell and Environment, 2019, 42(2): 410-423.
|
16 |
BERRY Z C, GOLDSMITH G R. Diffuse light and wetting differentially affect tropical tree leaf photosynthesis[J]. New Phytologist, 2020, 225(1): 143-153.
|
17 |
GOLDSMITH G R, LEHMANN M M, CERNUSAK L A, et al. Inferring foliar water uptake using stable isotopes of water[J]. Oecologia, 2017, 184(4): 763-766.
|
18 |
LI Xinrong, HUI Rong, ZHAO Yang. Eco-physiology of biological soil crusts in desert regions of China[M]. Beijing: Higher Education Press, 2017.
|
|
李新荣, 回嵘, 赵洋. 中国荒漠生物土壤结皮生理生态学研究[M]. 北京: 高等教育出版社, 2017.
|
19 |
BOWKER M A, MAESTRE F T, ELDRIDGE D, et al. Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology[J]. Biodiversity & Conservation, 2014, 23(7): 1 619-1 637.
|
20 |
JACOBS A F G, HEUSINKVELD B G, BERKOWICZ S M. A simple model for potential dewfall in an arid region[J]. Atmospheric Research, 2002, 64(1/4): 285-295.
|
21 |
LI Huizhuo. The improvement on the determining method of hygroscopic water of the soil[J]. Journal of Agricultural University of Hebei, 1996, 19(3): 77-81.
|
|
李惠卓. 土壤吸湿水测定方法的改进[J]. 河北农业大学学报, 1996, 19(3): 77-81.
|
22 |
GARRATT J R, SEGAL M. On the contribution to dew formation[J]. Boundary-Layer Meteorology, 1988, 45: 209-236.
|
23 |
CHEN Hesheng, KANG Yuehu. Condensed vapor and its role in the ecological environment of Shapotou region[J]. Journal of Arid Land Resources and Environment, 1992, 6(2): 63-72.
|
|
陈荷生, 康跃虎. 沙坡头地区凝结水及其在生态环境中的意义[J]. 干旱区资源与环境, 1992, 6(2): 63-72.
|
24 |
SUBRAMANIAM A R, KESAVARAO A V R. Dew fall in sand dune areas of India[J]. International Journal of Biometeorology, 1983, 27(3): 271-280.
|
25 |
KIDRON G J, YAIR A, DANIN A. Dew variability within a small arid drainage basin in the Negev Highlands, Israel[J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126(562): 63-80.
|
26 |
KIDRON G J, HERRNSTADT I, BARZILAY E. The role of dew as a moisture source for sand microbiotic crusts in the Negev Desert, Israel[J]. Journal of Arid Environments, 2002, 52(4): 517-533.
|
27 |
ZANGVIL A. Six years of dew observmion in the Negev Desert, lsrael[J]. Journal of Arid Environments, 1996, 32: 361-371.
|
28 |
LIU Wenjie, ZENG Juemin, WANG Changming, et al. On the relationship between forests and occult precipitation (dew and fog precipitation)[J]. Journal of Natural Resources, 2001, 16(6): 571-575.
|
|
刘文杰, 曾觉民, 王昌命, 等. 森林与雾露水关系研究进展[J]. 自然资源学报, 2001, 16(6): 571-575.
|
29 |
NINARI N, BERLINER P R. The role of dew in the water and heat balance of bare loess soil in the Negev Desert: quantifying the actual dew deposition on the soil surface[J]. Atmospheric Research, 2002, 64(1/4): 323-334.
|
30 |
JACKSON T J, MOY L. Dew effects on passive microwave observations of land surfaces[J]. Remote Sensing of Environment, 1999, 70(3): 129-137.
|
31 |
WILSON T B, BLANDⅥ, NORMAN J M. Measurement and simulation of dew accumulation and drying in a potato canopy[J]. Agricultural and Forest Meteorology, 1999, 93: 111-119.
|
32 |
LUO W H, GOUDRIAAN J. Measuring dew formation and its threshold value for net radiation loss on top leaves in a paddy rice crop by using the dewball: a new and simple instrument[J]. International Journal of Biometeorology, 2000, 44(4): 167-171.
|
33 |
JACOBS A, BERKOWICZ B. Dew measurements along a longitudinal sand dune transect, Negev Desert, Israel[J]. International Journal of Biometeorology, 2000, 43: 184-190.
|
34 |
MADEIRA A C, KIM K S, TAYLOR S E, et al. A simple cloud-based energy balance model to estimate dew[J]. Agricultural and Forest Meteorology, 2002, 111: 55-63.
|
35 |
BEYSENS D, MUSELLI M, NIKOLAYEV V, et al. Measurement and modelling of dew in island, coastal and alpine areas[J]. Atmospheric Research, 2005, 73(1/2): 1-22.
|
36 |
LIU L C, LI S Z, DUAN Z H, et al. Effects of microbiotic crusts on dew deposition in the restored vegetation area at Shapotou, Northwest China[J]. Journal of Hydrology, 2006, 328: 331-337.
|
37 |
PAN Y X, WANG X P, ZHANG Y F. Dew formation characteristics in a revegetation-stabilized desert ecosystem in Shapotou area, Northern China[J]. Journal of Hydrology, 2010, 387: 265-272.
|
38 |
MALEK E, MCCURDY G, GILES B. Dew contribution to the annual water balances in semi-arid desert valleys[J]. Journal of Arid Environments, 1999, 42(2): 71-80.
|
39 |
KALTHOFF N, FIEBIG-WITTMAACK M, MEISSNER C, et al. The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the Andes[J]. Journal of Arid Environments, 2006, 65(3): 420-443.
|
40 |
ZHUANG Y L, ZHAO W Z. Dew formation and its variation in haloxylon ammodendron plantations at the edge of a desert oasis, northwestern China[J]. Agricultural and Forest Meteorology, 2017, 247: 541-550.
|
41 |
JANNIS G, VERONIKA S, MARKUS H, et al. Determining dew and hoar frost formation for a low mountain range and alpine grassland site by weighable lysimeter[J]. Journal of Hydrology, 2018, 563: 372-381.
|
42 |
HOLWERDA F, BURKARD R, EUGSTER W, et al. Estimating fog deposition at a Puerto Rican elfin cloud forest site[J]. Hydrological Processes, 2006, 20: 2 669-2 692.
|
43 |
MORO M J, WERE A, VILLAGARCÍA L, et al. Dew measurement by Eddy covariance and wetness sensor in a semiarid ecosystem of SE Spain[J]. Journal of Hydrology, 2007, 335(3/4): 295-302.
|
44 |
BARIAC T, RAMBAL S, JUSSERAND C, et al. Evaluating water fluxes of field-grown alfalfa from diurnal observations of natural isotopes concentrations, energy budget and ecophysiological parameters[J]. Agricultural and Forest Meteorology, 1989, l48: 263-283.
|
45 |
WELP L, LEE X, KIM K, et al. δ18O of water vapor, evapotranspiration and the site of leaf water evaporation in a soybean canopy[J]. Plant Cell and Environment, 2008, 31: 1 214-1 228.
|
46 |
KIM K, LEE X. Transition of stable isotope ratios of leaf water under simulated dew formation[J]. Plant Cell and Environment, 2011, 34(10): 1 790-1 801.
|
47 |
WEN X F, LEE X H, SUN X M, et al. Dew water isotopic ratios and their relationships to ecosystem water pools and fluxes in a cropland and a grass land in China[J]. Oecologia, 2012, 168: 549-561.
|
48 |
UCLÉS O, VILLAGARCÍA L, MORO M J, et al. Role of dewfall in the water balance of a semiarid coastal steppe ecosystem[J]. Hydrological Processes, 2014, 28(4): 2 271-2 280.
|
49 |
BUNNENBERG C, KÜHN W. An electrical conductance method for determining condensation and evaporation processes in arid soils with high spatial resolution[J]. Soil Science, 1980, 129(1): 58-66.
|
50 |
YAN B X, XU Y Y. Method exploring on dew condensation monitoring in wetland ecosystem[J]. Procedia Environmental Sciences, 2010, 2: 123-133.
|
51 |
WIGNERON J P, CALVET J C, KERR Y. Monitoring water interception by crop fields from passive microwave observations[J]. Agricultural and Forest Meteorology, 1996, 80(24): 177-194.
|
52 |
RIDLEY J, STRAWBRIDGE F, CARD R, et al. Radar backscatter characteristics of a desert surface[J]. Remote Sensing of Environment, 1996, 57(2): 63-78.
|
53 |
FENG Jinchao, LIU Lichao, XIAO Honglang. Dynamic measurement and theoretical calculation on water absorption and condensation of sandy soil in Shapotou region[J]. Journal of Desert Research, 1998, 18(1): 11-15.
|
|
冯金朝, 刘立超, 肖洪浪. 沙坡头地区土壤水分吸湿凝结的动态观测与理论计算[J]. 中国沙漠, 1998, 18(1): 11-15.
|
54 |
ZHOU Jinlong, AKRAM∙ABODUOLA, DONG Xinguang. An experimental study on the condensation water in the plain area of the northern slope of Tianshan Mountains[J]. Journal of Xinjiang Agricultural University, 2002, 25(1): 49-53.
|
|
周金龙, 艾克日木·阿不都拉, 董新光. 天山北麓平原区凝结水的观测试验分析[J]. 新疆农业大学学报, 2002, 25(1): 49-53.
|
55 |
GUO Zhanrong, LIU Jianhui. An overview on soil condensate in arid and semiarid regions in China[J]. Arid Zone Research, 2005, 22(4): 576-580.
|
|
郭占荣, 刘建辉. 中国干旱半干旱地区土壤凝结水研究综述[J]. 干旱区研究, 2005, 22(4): 576-580.
|
56 |
VESTE M, LITTMANN T, FRIEDRICH H, et al. Microclimatic boundary conditions for activity of soil lichen crusts in sand dunes of the north-western Negev Desert, Israel[J]. Flora, 2001, 196: 465-476.
|
57 |
VESTE M, LITTMANN T. Dewfall and its geo-ecological implication for biological surface crusts in desert sand dunes (northwestern Negev, Israel)[J]. Journal of Arid Land, 2006, 16: 139-147.
|
58 |
JIA R L, LI X R, LIU L C, et al. Effects of sand burial on dew deposition on moss soil crust in a revegetated area of the tennger desert, northern china[J]. Journal of Hydrology, 2014, 519: 2 341-2 349.
|
59 |
LANGE O L, KIDRON G J, BUDEL B, et al. Taxonomic composition and photosynthetic characteristics of the biological crusts covering sand dunes in the western Negev[J]. Functional Ecology, 1992, 6: 519-527.
|
60 |
LANGE O L, MEYER A, ZELLNER H, et al. Eight days in the life of a desert lichen: water relations and photosynthesis of Teloschistes capensis in the coastal fog zone in the Namib Desert[J]. Madoqua, 1990, 17: 17-30.
|
61 |
KIDRON G J, STARINSKY A, YAALON D H. Cyanobacteria are confined to dewless habitats within a dew desert: implications for past and future climate change for lithic microorganisms[J]. Journal of Hydrology, 2014, 519: 3 606-3 614.
|
62 |
KIDRON G J, TEMINA M, STARINSKY A. An investigation of the role of water(rain and dew) in controlling the growth form of lichens on cobbles in the Negev Desert[J]. Geomicrobiology, 2011, 28: 335-346.
|
63 |
KIDRON G J, TEMINA M. Lichen colonization on cobbles in the Negev Desert following 15 years in the field[J]. Geomicrobiology, 2010, 27: 455-463.
|
64 |
WILSKE B, BURGHEIMER J, KARNIELI A, et al. The CO2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev Desert, Israel[J]. Biogeosciences, 2008, 5: 1 411-1 423.
|
65 |
RAO B Q, LIU Y D, WANG W B, et al. Influence of dew on biomass and photosystem II activity of cyanobacterial crusts in the Hopq Desert, northwest China[J]. Soil Biology and Biochemistry, 2009, 41: 2 387-2 393.
|
66 |
TEMINA M, KIDRON G J. Lichens as biomarkers for dew precipitation in the Negev Desert[J]. Flora, 2011, 206: 646-652.
|
67 |
TEMINA M, KIDRON G J. The effect of dew on flint and limestone lichen communities in the Negev Desert[J]. Flora, 2015, 213: 77-84.
|
68 |
CSINTALAN Z, TAKÁCS Z, PROCTOR M C F, et al. Early morning photosynthesis of the moss Tortula ruralis following summer dew fall in a Hungarian temperate dry sandy grassland[J]. Plant Ecology, 2000, 151: 51-54.
|
69 |
PAN Yanxia, WANG Xinping, ZHANG Yafeng, et al. Ecological effect of hygroscopic and condensate water on biological soil crusts in Shapotou region of China[J]. Chinese Journal of Applied Ecology, 2013, 24(3): 653-658.
|
|
潘颜霞, 王新平, 张亚峰, 等. 沙坡头地区吸湿凝结水对生物土壤结皮的生态作用[J]. 应用生态学报, 2013, 24(3): 653-658.
|
70 |
TUBA Z, CSINTALAN Z, PROCTOR M C F. Photosynthetic responses of a moss, Tortula ruralis ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: a baseline study at present-day CO2 concentration[J]. New Phytologist, 1996, 133: 353-361.
|
71 |
KIDRON G J. Angle and aspect dependent dew and fog precipitation in the Negev Desert[J]. Journal of Hydrology, 2005, 301: 66-74.
|
72 |
LALLEY J S, VILES H A. Do vehicle track disturbances affect the productivity of soil-growing lichens in a fog desert?[J]. Functional Ecology, 2006, 20: 548-556.
|
73 |
KAPPEN L, LANGE O L, SCHULZE E D, et al. Ecophysiological investigations on lichens of the Negev Desert. VI. Annual course of the photosynthetic production of Ramalina maciformis (Del.) Bory[J]. Flora, 1979, 168: 85-108.
|
74 |
LUO Y, ZHOU X. Soil respiration and the environment[M]. London: Academic Press, 2006.
|
75 |
RAICH J W, SCHLESINGER W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus, Series B: Chemical and Physical Meteorology, 1992, 44: 81-89.
|
76 |
SCHLESINGER W H, BELNAP J, MARION G. On carbon sequestration in desert ecosystems[J]. Global Change Biology, 2009, 15: 1 488-1 490.
|
77 |
WOHLFAHRT G, FENSTERMAKER L F, ARNONE J A. Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem[J]. Global Change Biology, 2008, 14: 1 475-1 487.
|
78 |
XIE J X, LI Y, ZHAI C X, et al. CO2 absorption by alkaline soils and its implication to the global carbon cycle[J]. Environmental Geology, 2008, 56: 953-961.
|
79 |
FIERER N, SCHIMEL J P. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil[J]. Soil Science Society of America Journal, 2003, 67: 798-805.
|
80 |
LIU X Z, WAN S Q, SU B, et al. Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem[J]. Plant and Soil, 2002, 240: 213-223.
|
81 |
THOMAS A D, HOON S R, LINTON P E. Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari[J]. Applied Soil Ecology, 2008, 39: 254-263.
|
82 |
XU L, BALDOCCHI D D, TANG J. How soil moisture, rain pulses and growth alter the response of ecosystem respiration to temperature[J]. Global Biogeochemcial Cycles, 2004, 18(4). DOI: 10.1029/2004GB002281.
|
83 |
THOMAS A D, HOON S R. Carbon dioxide fluxes from biologically-crusted Kalahari Sands after simulated wetting[J]. Journal of Arid Environments, 2010, 74(1): 131-139.
|
84 |
MÓNICA L D G, LÁZARO R, QUERO J L, et al. Simulated climate change reduced the capacity of lichen-dominated biocrusts to act as carbon sinks in two semi-arid Mediterranean ecosystems[J]. Biodiversity and Conservation, 2014, 23(7): 1 787-1 807.
|
85 |
ZAADY E, KUHN U, WILSKE B, et al. Patterns of CO2 exchange in biological soil crusts of successional age[J]. Soil Biology and Biochemistry, 2000, 32: 959-966.
|
86 |
LANGE O L, MEYER A, ZELLNER H, et al. Photosynthesis and water relations of lichen soil crusts: field measurements in the coastal fog zone of the Namib Desert[J]. Functional Ecology, 1994, 8: 253-264.
|
87 |
CHAMIZO S, RODRÍGUEZ-CABALLERO E, MORO M J, et al. Non-rainfall water inputs: a key water source for biocrust carbon fixation[J]. Science of the Total Environment, 2021, 792: 148299.
|
88 |
SATOH K, HIRAI M, NISHIO J, et al. Recovery of photosynthetic systems during rewetting is quite rapid in a terrestrial cyanobacterium, Nostoc commune[J]. Plant and Cell Physiology, 2002, 43: 170-176.
|
89 |
POTTS M. Desiccation tolerance of prokaryotes[J]. Microbiological Reviews, 1994, 58: 755-805.
|
90 |
HAREL Y, OHAD I, KAPLAN A. Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust[J]. Plant Physiology, 2004, 136: 3 070-3 079.
|
91 |
BILLI D, POTTS M. Life and death of dried prokaryotes[J]. Research in Microbiology, 2002, 153: 7-12.
|
92 |
AGUIRRE-GUTIERREZ C A, HOLWERDA F, GOLDSMIT G R, et al. The importance of dew in the water balance of a continental semiarid grassland[J]. Journal of Arid Environments, 2019, 168: 26-35.
|
93 |
HU C X, LIU Y D, ZHANG D L, et al. Cementing mechanism of algal crusts from desert area[J]. Chinese Science Bulletin, 2002, 47(16): 1 361-1 368.
|
94 |
PAN Z, PITT W G, ZHANG Y M, et al. The upside-down water collection system of Syntrichia caninervis[J]. Nature Plants, 2016, 2(7): 16076.
|
95 |
OUYANG H L, LAN S B, YANG H J, et al. Mechanism of biocrusts boosting and utilizing non-rainfall water in Hobq Desert of China[J]. Applied Soil Ecology, 2017, 120: 70-80.
|
96 |
LI S L, BOWKER M A, XIAO B. Biocrusts enhance non-rainfall water deposition and alter its distribution in dryland soils[J]. Journal of Hydrology, 2021, 595: 126050.
|
97 |
BALDAUF S, PORADA P, RAGGIO J, et al. Relative humidity predominantly determines long-term biocrust-forming lichen cover in drylands under climate change[J]. Journal of Ecology, 2021, 109: 1 370-1 385.
|
98 |
TOMASZKIEWICZ M, NAJM M A, BEYSENS D, et al. Projected climate change impacts upon dew yield in the Mediterranean Basin[J]. Science of the Total Environment, 2016, 566/567:1 339-1 348.
|
99 |
DOU Y J, QUAN J N, JIA X C, et al. Near-surface warming reduces dew frequency in China[J]. Geophysical Research Letters, 2021, 48: e2020GL091923.
|
100 |
FENG T J, ZHANG L X, CHEN Q, et al. Dew formation reduction in global warming experiments and the potential consequences[J]. Journal of Hydrology, 2021, 593: 125819.
|
101 |
LI X R, JIA R L, ZHANG Z S, et al. Hydrological response of biological soil crusts to global warming: a ten-year simulative study[J]. Global Change Biology, 2018, 24: 4 960-4 971.
|
102 |
CYNTHIA G S, KOOHAFKAN M C, MICHAELLA C, et al. Dew deposition suppresses transpiration and carbon uptake in leaves[J]. Agricultural and Forest Meteorology, 2018, 259: 305-316.
|
103 |
OUYANG H L, HU C X. Insight into climate change from the carbon exchange of biocrusts utilizing non-rainfall water[J]. Scientific Reports, 2017, 7(1): 2573.
|
104 |
RODRIGUEZ-CABALLERO E, BELNAP J, BÜDEL B, et al. Dryland photoautotrophic soil surface communities endangered by global change[J]. Nature Geoscience, 2018, 11(3): 185-189.
|