地球科学进展 ›› 2022, Vol. 37 ›› Issue (1): 99 -109. doi: 10.11867/j.issn.1001-8166.2021.109

“青促会成立10周年之地球科学领域”专刊 上一篇    

吸湿凝结水对荒漠地区生物土壤结皮生态功能的影响综述
潘颜霞( ), 张亚峰, 虎瑞   
  1. 中国科学院西北生态环境资源研究院沙坡头沙漠试验研究站,甘肃 兰州 730000
  • 收稿日期:2021-09-18 修回日期:2021-10-25 出版日期:2022-01-10
  • 通讯作者: 潘颜霞 E-mail:panyanxia@lzb.ac.cn
  • 基金资助:
    美丽中国生态文明建设科技工程专项“绿色环保沙化治理技术与示范”(XDA23060202);甘肃省自然科学基金项目“民勤荒漠绿洲过渡带植被—土壤系统水分运移特征及驱动机制研究”(21JR7RA049)

Review of the Impacts of Hygroscopic Condensate on BSCs Ecological Function in Desert Areas

Yanxia PAN( ), Yafeng ZHANG, Rui HU   

  1. Shapotou Desert Research and Experiment Station,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
  • Received:2021-09-18 Revised:2021-10-25 Online:2022-01-10 Published:2022-01-29
  • Contact: Yanxia PAN E-mail:panyanxia@lzb.ac.cn
  • About author:PAN Yanxia (1981-), female, Shouguang City, Shandong Province, Associate professor. Research areas include ecohydrology in arid area. E-mail: panyanxia@lzb.ac.cn
  • Supported by:
    the Strategic Priority Research Program of the Chinese Academy of Sciences "Green environmental protection desertification control technology and demonstration"(XDA23060202);The Natural Science Foundation of Gansu "Characteristics and driving mechanism of water transport in vegetation-soil system in Minqin desert oasis transition zone"(21JR7RA049)

生物土壤结皮可以作为一种模式系统来研究复杂的生态学问题,而吸湿凝结水是生物土壤结皮在干旱期维持功能活性的基础,吸湿凝结水输入期间生物土壤结皮的生理活动会影响土壤中的碳交换和许多生物地球化学过程,因此,在荒漠生态系统中,地表吸湿凝结水与生物土壤结皮的关系研究显得尤为重要。但由于吸湿凝结水的形成过程受下垫面特征以及诸多热力及气象环境要素的影响,需要基于土壤学、生物学、气象学、物理学和表面科学等学科的交叉集成研究。在综述国内外研究动态的基础上,根据吸湿凝结水形成的物理基础,对比分析了不同原理测量方法的优缺点及发展趋势,从吸湿凝结水对生物土壤结皮的作用机制和生物土壤结皮发育对吸湿凝结水形成的影响两方面总结和讨论了目前吸湿凝结水形成与生物土壤结皮关系研究的进展和不足,根据现有研究结果,阐述了在未来全球变化背景下,非降雨水输入特征的改变及对生物土壤结皮发育和荒漠生态系统功能的生态作用,并提出了当前研究中存在的问题及未来的研究重点,这些问题的解决将提高我们对荒漠生态系统稳定性和可持续性的科学认知水平。

Biological Soil Crusts (BSCs) can be used as a model system to study complex ecological issues. As a continuous water source, hygroscopic condensate is most important factor to the survival of BSCs in dry conditions, which influences the physiological activities of BSCs and soil carbon exchange and other biogeochemical processes. Therefore, the relationship between hygroscopic condensate and BSCs is particularly important in desert ecosystem. Considering the formation process of hygroscopic condensate is affected by underlying surface characteristics and many thermal and meteorological environmental factors, the cross-integrated research based on soil science, biology, meteorology, physics, surface science and other disciplines is proper for this study topic. This paper reviews the latest research trends on hygroscopic condensate and BSCs relationship, analyzes the advantages and disadvantages for different measurement methods and their development tendency, summarizes the effect mechanism of hygroscopic condensation to BSCs and the influence of BSCs growth on the formation of hygroscopic condensation, discusses the evolution and deficiency of current research on the relationship between hygroscopic condensation formation and BSCs based on above two aspects, states the change of non-rainfall water input and its ecological effect to BSCs growth and desert ecosystem function under the condition of future global changes. Furthermore, we put forward the existing problems in current research and the research priorities in future. The solution of these problems will improve our scientific understanding about the stability and sustainability of desert ecosystems.

中图分类号: 

图1 DewBiological soil crusts为主题词的检索结果(数据来自Web of Science
Fig. 1 The retrieved results based on dew and biological soil crusts as keywords data from Web of Science
表1 吸湿凝结水测定方法比较
Table 1 Comparison of methods for hygroscopic condensate measurement
方法分类 测量方法 测量仪器/计算方法 原理 优点 缺点 参考文献

直接

测量法

凝结面法 Duvdevan木板、Cloth plate method布板等 重量变化

凝结面类型多样、

简单、便宜

与天然凝结面有差别、精度低、不能计算

形成间期

24 - 26
称重法 Hiltner凝结水天平等 重量变化 连续测定 与天然凝结面有差别、水分不能进入土壤 27 - 29

自动称重式蒸渗仪、

微型蒸渗仪等

重量变化

凝结面与天然状态

一致、精度高

对电子秤的精度要求高,边界层效应

影响精度

27 - 37

间接

测量法

平衡测算法 波文比法 水量平衡 参数容易获得、比直接测量方便

受水平衡计算过程中

各种因子影响,

易产生误差

38 - 40
Penman-Monteith公式 水量平衡 参数容易获得、比直接测量方便

受水平衡计算过程中

各种因子影响,

易产生误差

8 20 41
涡度相关法 能量平衡 代表区域广泛

易漏掉不确定水源,

中间观测量易引入

较多误差

33 42 - 43
稳定同位素技术 氢氧同位素分析仪 同位素数量变化 无破坏、定量化程度高

对仪器设备要求高,

价格昂贵

44 - 47

电子传导

测量法

叶面湿度传感器 电阻值变化

简单、易操作、能测定

形成间期

推算误差较大 48

电子传导土壤—水汽

计量器

热传导能力变化 简单、易操作、连续测定 干扰表土层,热导度影响凝结和蒸发,降低了测量精度 30 49

模型模拟

测算法

数值模型、经验和半经验统计模型、沙地凝结水计算模型等 凝结水形成原理和过程建模 参数容易获得、比直接测量方便

形成过程的复杂性

导致精确度不高

31 - 32 34 - 35 50
遥感测算法

微波辐射计、

微波雷达等

遥感信号变化 无破坏、范围广、时间长 要求遥感信号灵敏度高,受环境因子影响大,精确度不高 30 51 - 52
1 WANG L, KASEKE K F, SEELY M K. Effects of non-rainfall water inputs on ecosystem functions[J]. Wiley Interdisciplinary Reviews: Water, 2017, 4(1): e1179.
2 BEYSENS D. Dew water[M]. Gistrup Denmark: Rivers Publishers, 2018.
3 KIDRON G J, STARINSKY A. Measurements and ecological implications of nonrainfall water in desert ecosystems—a review[J]. Ecohydrology, 2019, 12(6): e2121.
4 ZHUANG Y, RATCLIFFE S. Relationship between dew presence and bassia dasyphylla plant growth[J]. Journal of Arid Land, 2012, 4(1): 11-18.
5 HILL A J, DAWSON T E, SHELEF O, et al. The role of dew in negev desert plants[J]. Oecologia, 2015, 178(2): 317-327.
6 WANG L, KASEKE K F, RAVI S, et al. Convergent vegetation fog and dew water use in the Namib Desert[J]. Ecohydrology, 2019, 12(7): e2130.
7 ZHANG J, ZHANG Y M, DOWNING A, et al. The influence of biological soil crusts on dew deposition in Gurbantunggut Desert, Northwestern China[J]. Journal of Hydrology, 2009, 379(3/4): 220-228.
8 FISCHER T, VESTE M, BENS O, et al. Dew formation on the surface of biological soil crusts in central European sand ecosystems[J]. Biogeosciences, 2012, 9: 4 621-4 628.
9 KIDRON G J, TEMINA M. The effect of dew and fog on lithic lichens along an altitudinal gradient in the Negev Desert[J]. Geomicrobiology Journal, 2013, 30(4): 281-290.
10 KIDRON G J, TEMINA M. Non-rainfall water input determines lichen and cyanobacteria zonation on limestone bedrock in the Negev Highlands[J]. Flora, 2017, 229: 71-79.
11 KIDRON G J, KRONENFELD R. Assessing the likelihood of the soil surface to condense vapour: the Negev experience[J]. Ecohydrology, 2020, 13(3): e2200.
12 GOTSCH S G, ASBJORNSEN H, HOLWERDA F, et al. Foggy days and dry nights determine crown-level water balance in a seasonal tropical montane cloud forest[J]. Plant, Cell and Environment, 2014, 37(1): 261-272.
13 ZHANG Q, WANG S, YUE P, et al. Variation characteristics of non-rainfall water and its contribution to crop water requirements in China's summer monsoon transition zone[J]. Journal of Hydrology, 2019, 578: 124039.
14 GOLDSMITH G R, MATZKE N J, DAWSON T E, et al. The incidence and implications of clouds for cloud forest plant water relations[J]. Ecology Letters, 2013, 16(3): 307-314.
15 BERRY Z C, EMERY N C, GOTSCH S G, et al. Foliar water uptake: processes, pathways, and integration into plant water budgets[J]. Plant, Cell and Environment, 2019, 42(2): 410-423.
16 BERRY Z C, GOLDSMITH G R. Diffuse light and wetting differentially affect tropical tree leaf photosynthesis[J]. New Phytologist, 2020, 225(1): 143-153.
17 GOLDSMITH G R, LEHMANN M M, CERNUSAK L A, et al. Inferring foliar water uptake using stable isotopes of water[J]. Oecologia, 2017, 184(4): 763-766.
18 LI Xinrong, HUI Rong, ZHAO Yang. Eco-physiology of biological soil crusts in desert regions of China[M]. Beijing: Higher Education Press, 2017.
李新荣, 回嵘, 赵洋. 中国荒漠生物土壤结皮生理生态学研究[M]. 北京: 高等教育出版社, 2017.
19 BOWKER M A, MAESTRE F T, ELDRIDGE D, et al. Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology[J]. Biodiversity & Conservation, 2014, 23(7): 1 619-1 637.
20 JACOBS A F G, HEUSINKVELD B G, BERKOWICZ S M. A simple model for potential dewfall in an arid region[J]. Atmospheric Research, 2002, 64(1/4): 285-295.
21 LI Huizhuo. The improvement on the determining method of hygroscopic water of the soil[J]. Journal of Agricultural University of Hebei, 1996, 19(3): 77-81.
李惠卓. 土壤吸湿水测定方法的改进[J]. 河北农业大学学报, 1996, 19(3): 77-81.
22 GARRATT J R, SEGAL M. On the contribution to dew formation[J]. Boundary-Layer Meteorology, 1988, 45: 209-236.
23 CHEN Hesheng, KANG Yuehu. Condensed vapor and its role in the ecological environment of Shapotou region[J]. Journal of Arid Land Resources and Environment, 1992, 6(2): 63-72.
陈荷生, 康跃虎. 沙坡头地区凝结水及其在生态环境中的意义[J]. 干旱区资源与环境, 1992, 6(2): 63-72.
24 SUBRAMANIAM A R, KESAVARAO A V R. Dew fall in sand dune areas of India[J]. International Journal of Biometeorology, 1983, 27(3): 271-280.
25 KIDRON G J, YAIR A, DANIN A. Dew variability within a small arid drainage basin in the Negev Highlands, Israel[J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126(562): 63-80.
26 KIDRON G J, HERRNSTADT I, BARZILAY E. The role of dew as a moisture source for sand microbiotic crusts in the Negev Desert, Israel[J]. Journal of Arid Environments, 2002, 52(4): 517-533.
27 ZANGVIL A. Six years of dew observmion in the Negev Desert, lsrael[J]. Journal of Arid Environments, 1996, 32: 361-371.
28 LIU Wenjie, ZENG Juemin, WANG Changming, et al. On the relationship between forests and occult precipitation (dew and fog precipitation)[J]. Journal of Natural Resources, 2001, 16(6): 571-575.
刘文杰, 曾觉民, 王昌命, 等. 森林与雾露水关系研究进展[J]. 自然资源学报, 2001, 16(6): 571-575.
29 NINARI N, BERLINER P R. The role of dew in the water and heat balance of bare loess soil in the Negev Desert: quantifying the actual dew deposition on the soil surface[J]. Atmospheric Research, 2002, 64(1/4): 323-334.
30 JACKSON T J, MOY L. Dew effects on passive microwave observations of land surfaces[J]. Remote Sensing of Environment, 1999, 70(3): 129-137.
31 WILSON T B, BLANDⅥ, NORMAN J M. Measurement and simulation of dew accumulation and drying in a potato canopy[J]. Agricultural and Forest Meteorology, 1999, 93: 111-119.
32 LUO W H, GOUDRIAAN J. Measuring dew formation and its threshold value for net radiation loss on top leaves in a paddy rice crop by using the dewball: a new and simple instrument[J]. International Journal of Biometeorology, 2000, 44(4): 167-171.
33 JACOBS A, BERKOWICZ B. Dew measurements along a longitudinal sand dune transect, Negev Desert, Israel[J]. International Journal of Biometeorology, 2000, 43: 184-190.
34 MADEIRA A C, KIM K S, TAYLOR S E, et al. A simple cloud-based energy balance model to estimate dew[J]. Agricultural and Forest Meteorology, 2002, 111: 55-63.
35 BEYSENS D, MUSELLI M, NIKOLAYEV V, et al. Measurement and modelling of dew in island, coastal and alpine areas[J]. Atmospheric Research, 2005, 73(1/2): 1-22.
36 LIU L C, LI S Z, DUAN Z H, et al. Effects of microbiotic crusts on dew deposition in the restored vegetation area at Shapotou, Northwest China[J]. Journal of Hydrology, 2006, 328: 331-337.
37 PAN Y X, WANG X P, ZHANG Y F. Dew formation characteristics in a revegetation-stabilized desert ecosystem in Shapotou area, Northern China[J]. Journal of Hydrology, 2010, 387: 265-272.
38 MALEK E, MCCURDY G, GILES B. Dew contribution to the annual water balances in semi-arid desert valleys[J]. Journal of Arid Environments, 1999, 42(2): 71-80.
39 KALTHOFF N, FIEBIG-WITTMAACK M, MEISSNER C, et al. The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the Andes[J]. Journal of Arid Environments, 2006, 65(3): 420-443.
40 ZHUANG Y L, ZHAO W Z. Dew formation and its variation in haloxylon ammodendron plantations at the edge of a desert oasis, northwestern China[J]. Agricultural and Forest Meteorology, 2017, 247: 541-550.
41 JANNIS G, VERONIKA S, MARKUS H, et al. Determining dew and hoar frost formation for a low mountain range and alpine grassland site by weighable lysimeter[J]. Journal of Hydrology, 2018, 563: 372-381.
42 HOLWERDA F, BURKARD R, EUGSTER W, et al. Estimating fog deposition at a Puerto Rican elfin cloud forest site[J]. Hydrological Processes, 2006, 20: 2 669-2 692.
43 MORO M J, WERE A, VILLAGARCÍA L, et al. Dew measurement by Eddy covariance and wetness sensor in a semiarid ecosystem of SE Spain[J]. Journal of Hydrology, 2007, 335(3/4): 295-302.
44 BARIAC T, RAMBAL S, JUSSERAND C, et al. Evaluating water fluxes of field-grown alfalfa from diurnal observations of natural isotopes concentrations, energy budget and ecophysiological parameters[J]. Agricultural and Forest Meteorology, 1989, l48: 263-283.
45 WELP L, LEE X, KIM K, et al. δ18O of water vapor, evapotranspiration and the site of leaf water evaporation in a soybean canopy[J]. Plant Cell and Environment, 2008, 31: 1 214-1 228.
46 KIM K, LEE X. Transition of stable isotope ratios of leaf water under simulated dew formation[J]. Plant Cell and Environment, 2011, 34(10): 1 790-1 801.
47 WEN X F, LEE X H, SUN X M, et al. Dew water isotopic ratios and their relationships to ecosystem water pools and fluxes in a cropland and a grass land in China[J]. Oecologia, 2012, 168: 549-561.
48 UCLÉS O, VILLAGARCÍA L, MORO M J, et al. Role of dewfall in the water balance of a semiarid coastal steppe ecosystem[J]. Hydrological Processes, 2014, 28(4): 2 271-2 280.
49 BUNNENBERG C, KÜHN W. An electrical conductance method for determining condensation and evaporation processes in arid soils with high spatial resolution[J]. Soil Science, 1980, 129(1): 58-66.
50 YAN B X, XU Y Y. Method exploring on dew condensation monitoring in wetland ecosystem[J]. Procedia Environmental Sciences, 2010, 2: 123-133.
51 WIGNERON J P, CALVET J C, KERR Y. Monitoring water interception by crop fields from passive microwave observations[J]. Agricultural and Forest Meteorology, 1996, 80(24): 177-194.
52 RIDLEY J, STRAWBRIDGE F, CARD R, et al. Radar backscatter characteristics of a desert surface[J]. Remote Sensing of Environment, 1996, 57(2): 63-78.
53 FENG Jinchao, LIU Lichao, XIAO Honglang. Dynamic measurement and theoretical calculation on water absorption and condensation of sandy soil in Shapotou region[J]. Journal of Desert Research, 1998, 18(1): 11-15.
冯金朝, 刘立超, 肖洪浪. 沙坡头地区土壤水分吸湿凝结的动态观测与理论计算[J]. 中国沙漠, 1998, 18(1): 11-15.
54 ZHOU Jinlong, AKRAM∙ABODUOLA, DONG Xinguang. An experimental study on the condensation water in the plain area of the northern slope of Tianshan Mountains[J]. Journal of Xinjiang Agricultural University, 2002, 25(1): 49-53.
周金龙, 艾克日木·阿不都拉, 董新光. 天山北麓平原区凝结水的观测试验分析[J]. 新疆农业大学学报, 2002, 25(1): 49-53.
55 GUO Zhanrong, LIU Jianhui. An overview on soil condensate in arid and semiarid regions in China[J]. Arid Zone Research, 2005, 22(4): 576-580.
郭占荣, 刘建辉. 中国干旱半干旱地区土壤凝结水研究综述[J]. 干旱区研究, 2005, 22(4): 576-580.
56 VESTE M, LITTMANN T, FRIEDRICH H, et al. Microclimatic boundary conditions for activity of soil lichen crusts in sand dunes of the north-western Negev Desert, Israel[J]. Flora, 2001, 196: 465-476.
57 VESTE M, LITTMANN T. Dewfall and its geo-ecological implication for biological surface crusts in desert sand dunes (northwestern Negev, Israel)[J]. Journal of Arid Land, 2006, 16: 139-147.
58 JIA R L, LI X R, LIU L C, et al. Effects of sand burial on dew deposition on moss soil crust in a revegetated area of the tennger desert, northern china[J]. Journal of Hydrology, 2014, 519: 2 341-2 349.
59 LANGE O L, KIDRON G J, BUDEL B, et al. Taxonomic composition and photosynthetic characteristics of the biological crusts covering sand dunes in the western Negev[J]. Functional Ecology, 1992, 6: 519-527.
60 LANGE O L, MEYER A, ZELLNER H, et al. Eight days in the life of a desert lichen: water relations and photosynthesis of Teloschistes capensis in the coastal fog zone in the Namib Desert[J]. Madoqua, 1990, 17: 17-30.
61 KIDRON G J, STARINSKY A, YAALON D H. Cyanobacteria are confined to dewless habitats within a dew desert: implications for past and future climate change for lithic microorganisms[J]. Journal of Hydrology, 2014, 519: 3 606-3 614.
62 KIDRON G J, TEMINA M, STARINSKY A. An investigation of the role of water(rain and dew) in controlling the growth form of lichens on cobbles in the Negev Desert[J]. Geomicrobiology, 2011, 28: 335-346.
63 KIDRON G J, TEMINA M. Lichen colonization on cobbles in the Negev Desert following 15 years in the field[J]. Geomicrobiology, 2010, 27: 455-463.
64 WILSKE B, BURGHEIMER J, KARNIELI A, et al. The CO2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev Desert, Israel[J]. Biogeosciences, 2008, 5: 1 411-1 423.
65 RAO B Q, LIU Y D, WANG W B, et al. Influence of dew on biomass and photosystem II activity of cyanobacterial crusts in the Hopq Desert, northwest China[J]. Soil Biology and Biochemistry, 2009, 41: 2 387-2 393.
66 TEMINA M, KIDRON G J. Lichens as biomarkers for dew precipitation in the Negev Desert[J]. Flora, 2011, 206: 646-652.
67 TEMINA M, KIDRON G J. The effect of dew on flint and limestone lichen communities in the Negev Desert[J]. Flora, 2015, 213: 77-84.
68 CSINTALAN Z, TAKÁCS Z, PROCTOR M C F, et al. Early morning photosynthesis of the moss Tortula ruralis following summer dew fall in a Hungarian temperate dry sandy grassland[J]. Plant Ecology, 2000, 151: 51-54.
69 PAN Yanxia, WANG Xinping, ZHANG Yafeng, et al. Ecological effect of hygroscopic and condensate water on biological soil crusts in Shapotou region of China[J]. Chinese Journal of Applied Ecology, 2013, 24(3): 653-658.
潘颜霞, 王新平, 张亚峰, 等. 沙坡头地区吸湿凝结水对生物土壤结皮的生态作用[J]. 应用生态学报, 2013, 24(3): 653-658.
70 TUBA Z, CSINTALAN Z, PROCTOR M C F. Photosynthetic responses of a moss, Tortula ruralis ssp. ruralis, and the lichens Cladonia convoluta and C. furcata to water deficit and short periods of desiccation, and their ecophysiological significance: a baseline study at present-day CO2 concentration[J]. New Phytologist, 1996, 133: 353-361.
71 KIDRON G J. Angle and aspect dependent dew and fog precipitation in the Negev Desert[J]. Journal of Hydrology, 2005, 301: 66-74.
72 LALLEY J S, VILES H A. Do vehicle track disturbances affect the productivity of soil-growing lichens in a fog desert?[J]. Functional Ecology, 2006, 20: 548-556.
73 KAPPEN L, LANGE O L, SCHULZE E D, et al. Ecophysiological investigations on lichens of the Negev Desert. VI. Annual course of the photosynthetic production of Ramalina maciformis (Del.) Bory[J]. Flora, 1979, 168: 85-108.
74 LUO Y, ZHOU X. Soil respiration and the environment[M]. London: Academic Press, 2006.
75 RAICH J W, SCHLESINGER W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus, Series B: Chemical and Physical Meteorology, 1992, 44: 81-89.
76 SCHLESINGER W H, BELNAP J, MARION G. On carbon sequestration in desert ecosystems[J]. Global Change Biology, 2009, 15: 1 488-1 490.
77 WOHLFAHRT G, FENSTERMAKER L F, ARNONE J A. Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem[J]. Global Change Biology, 2008, 14: 1 475-1 487.
78 XIE J X, LI Y, ZHAI C X, et al. CO2 absorption by alkaline soils and its implication to the global carbon cycle[J]. Environmental Geology, 2008, 56: 953-961.
79 FIERER N, SCHIMEL J P. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil[J]. Soil Science Society of America Journal, 2003, 67: 798-805.
80 LIU X Z, WAN S Q, SU B, et al. Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem[J]. Plant and Soil, 2002, 240: 213-223.
81 THOMAS A D, HOON S R, LINTON P E. Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari[J]. Applied Soil Ecology, 2008, 39: 254-263.
82 XU L, BALDOCCHI D D, TANG J. How soil moisture, rain pulses and growth alter the response of ecosystem respiration to temperature[J]. Global Biogeochemcial Cycles, 2004, 18(4). DOI: 10.1029/2004GB002281.
83 THOMAS A D, HOON S R. Carbon dioxide fluxes from biologically-crusted Kalahari Sands after simulated wetting[J]. Journal of Arid Environments, 2010, 74(1): 131-139.
84 MÓNICA L D G, LÁZARO R, QUERO J L, et al. Simulated climate change reduced the capacity of lichen-dominated biocrusts to act as carbon sinks in two semi-arid Mediterranean ecosystems[J]. Biodiversity and Conservation, 2014, 23(7): 1 787-1 807.
85 ZAADY E, KUHN U, WILSKE B, et al. Patterns of CO2 exchange in biological soil crusts of successional age[J]. Soil Biology and Biochemistry, 2000, 32: 959-966.
86 LANGE O L, MEYER A, ZELLNER H, et al. Photosynthesis and water relations of lichen soil crusts: field measurements in the coastal fog zone of the Namib Desert[J]. Functional Ecology, 1994, 8: 253-264.
87 CHAMIZO S, RODRÍGUEZ-CABALLERO E, MORO M J, et al. Non-rainfall water inputs: a key water source for biocrust carbon fixation[J]. Science of the Total Environment, 2021, 792: 148299.
88 SATOH K, HIRAI M, NISHIO J, et al. Recovery of photosynthetic systems during rewetting is quite rapid in a terrestrial cyanobacterium, Nostoc commune[J]. Plant and Cell Physiology, 2002, 43: 170-176.
89 POTTS M. Desiccation tolerance of prokaryotes[J]. Microbiological Reviews, 1994, 58: 755-805.
90 HAREL Y, OHAD I, KAPLAN A. Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust[J]. Plant Physiology, 2004, 136: 3 070-3 079.
91 BILLI D, POTTS M. Life and death of dried prokaryotes[J]. Research in Microbiology, 2002, 153: 7-12.
92 AGUIRRE-GUTIERREZ C A, HOLWERDA F, GOLDSMIT G R, et al. The importance of dew in the water balance of a continental semiarid grassland[J]. Journal of Arid Environments, 2019, 168: 26-35.
93 HU C X, LIU Y D, ZHANG D L, et al. Cementing mechanism of algal crusts from desert area[J]. Chinese Science Bulletin, 2002, 47(16): 1 361-1 368.
94 PAN Z, PITT W G, ZHANG Y M, et al. The upside-down water collection system of Syntrichia caninervis[J]. Nature Plants, 2016, 2(7): 16076.
95 OUYANG H L, LAN S B, YANG H J, et al. Mechanism of biocrusts boosting and utilizing non-rainfall water in Hobq Desert of China[J]. Applied Soil Ecology, 2017, 120: 70-80.
96 LI S L, BOWKER M A, XIAO B. Biocrusts enhance non-rainfall water deposition and alter its distribution in dryland soils[J]. Journal of Hydrology, 2021, 595: 126050.
97 BALDAUF S, PORADA P, RAGGIO J, et al. Relative humidity predominantly determines long-term biocrust-forming lichen cover in drylands under climate change[J]. Journal of Ecology, 2021, 109: 1 370-1 385.
98 TOMASZKIEWICZ M, NAJM M A, BEYSENS D, et al. Projected climate change impacts upon dew yield in the Mediterranean Basin[J]. Science of the Total Environment, 2016, 566/567:1 339-1 348.
99 DOU Y J, QUAN J N, JIA X C, et al. Near-surface warming reduces dew frequency in China[J]. Geophysical Research Letters, 2021, 48: e2020GL091923.
100 FENG T J, ZHANG L X, CHEN Q, et al. Dew formation reduction in global warming experiments and the potential consequences[J]. Journal of Hydrology, 2021, 593: 125819.
101 LI X R, JIA R L, ZHANG Z S, et al. Hydrological response of biological soil crusts to global warming: a ten-year simulative study[J]. Global Change Biology, 2018, 24: 4 960-4 971.
102 CYNTHIA G S, KOOHAFKAN M C, MICHAELLA C, et al. Dew deposition suppresses transpiration and carbon uptake in leaves[J]. Agricultural and Forest Meteorology, 2018, 259: 305-316.
103 OUYANG H L, HU C X. Insight into climate change from the carbon exchange of biocrusts utilizing non-rainfall water[J]. Scientific Reports, 2017, 7(1): 2573.
104 RODRIGUEZ-CABALLERO E, BELNAP J, BÜDEL B, et al. Dryland photoautotrophic soil surface communities endangered by global change[J]. Nature Geoscience, 2018, 11(3): 185-189.
[1] 李昂,王化锋,宁立波,胡闯,朱晛亭. 边坡裂隙岩体内凝结水形成区域的分布特征[J]. 地球科学进展, 2020, 35(2): 189-197.
[2] 苏延桂,李新荣,赵昕,李爱霞,陈应武. 不同类型生物土壤结皮固氮活性及对环境因子的响应研究[J]. 地球科学进展, 2011, 26(3): 332-338.
[3] 李新荣,张元明,赵允格. 生物土壤结皮研究:进展、前沿与展望[J]. 地球科学进展, 2009, 24(1): 11-24.
[4] 孙自永,程国栋,马瑞,甘义群. 雾水的D和 18O同位素研究进展[J]. 地球科学进展, 2008, 23(8): 794-802.
[5] 庄艳丽,赵文智. 干旱区凝结水研究进展[J]. 地球科学进展, 2008, 23(1): 31-38.
[6] 王新平,康尔泗,李新荣,张景光. 荒漠地区土壤初始状况对水平入渗的影响[J]. 地球科学进展, 2003, 18(4): 592-596.
[7] 叶曦雯,刘素美,张经. 生物硅的测定及其生物地球化学意义[J]. 地球科学进展, 2003, 18(3): 420-426.
[8] 刘卫国,彭子成,肖应凯. 硼、氯同位素测定方法及地球化学研究进展[J]. 地球科学进展, 1998, 13(6): 547-554.
[9] 周中毅,潘长春,闵育顺,施继锡,王庆隆. 沉积盆地古地温测定方法及应用[J]. 地球科学进展, 1991, 6(5): 44-45.
阅读次数
全文


摘要