地球科学进展 ›› 1998, Vol. 13 ›› Issue (6): 547 -554. doi: 10.11867/j.issn.1001-8166.1998.06.0547

干旱气候变化与可持续发展 上一篇    下一篇

硼、氯同位素测定方法及地球化学研究进展
刘卫国 1,2,彭子成 1,肖应凯 2   
  1. 1.中国科技大学地球与空间科学系 合肥 230026;2.中国科学院青海盐湖研究所 西宁 810008
  • 收稿日期:1998-03-23 修回日期:1998-06-29 出版日期:1998-12-01
  • 通讯作者: 刘卫国
  • 基金资助:

    国家自然科学基金项目“柴达木盆地氯同位素测定方法及地球化学研究”(项目编号: 49173163) 资助。

BORON AND CHLORINE ISOTOPIC DETERMINATIONS AND APPLICATIONS FOR EARTH SCIENCES

Liu Weiguo 1,2,Peng Zicheng 1,Xiao Yingkai 2   

  1. 1.Department of Earth and Space Science, University of Science and Technology of China, Hefei 230026;2.Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008
  • Received:1998-03-23 Revised:1998-06-29 Online:1998-12-01 Published:1998-12-01

近十年来,由于高精度硼、氯同位素测定方法的建立,硼、氯同位素地球化学在研究的深度和广度上都得到了快速发展。硼、氯同位素地球化学的研究已在海洋、盐湖、地下水、蒸发岩、热液矿床、环境等方面开展,并显示出在解决一些地学问题方面所具有的良好前景。该文简要概述了目前国内外硼、氯同位素测定方法和在地球科学的一些领域应用方面取得的成果和进展。

    Boron has two stable isotopes (11B and 10B), chlorine also has two stable isotopes (37Cl and 35Cl). The large different in mass ( 11 and 10, 35 and 37) make both boron and chlorine exist big isotopic fractionation in the nature. Variations of boron and chlorine isotopic compositions had not been found in early investigations due to poor precision of determing boron and chlorine. Since 1980s, with some high precise methods of determing boron and chlorine isotopes, the variations of boron and chlorine isotopes in nature have been evidenced by high precise determination and a lot of investigations. δ11B range from -30‰ to 60‰, and δ37Cl range from -2‰ to 7‰.
    Many significant work about boron and chlorine isotopic geochemistry have been maken in oceans, salt lakes, groundwater, evaporated sediment and hydrothermal fluids. This paper give a brief summary of including analytical methods and application in Earth sciences.

中图分类号: 

[1] Ramakumer K L, Parab A R, Khodade P S. Determination of isotopic composition of boron. J Radioanal Nucl Chem Lett, 1985, 94: 53-62.
[2] Spivack A J, Edmond J M. Determination of boron isotope ratios by thermalionization mass spectrometry of the dicesium metaborate cation. Analyt Chem, 1986, 58: 31- 35.
[3] Xiao Y K, Beary E S, Fassett J D. An improved method for the high-precision isotopic measurement of boron by thermal ionization mass spectrometry. Int J Mass Spectrom Ion Processes, 1988, 5: 203- 213.
[4] Aggarwal J K, Palmer M R. Boron isotope analysis a review. Analyst, 1995, 120:1 301-1 307.
[5] Vengosh A, Chivas A R, McCullonch M t. Direct determination of boron and chlorine isotopes in geological materials by negative thermal-ionization mass spectrometry. Chem Geol, 1989, 79: 333-343.
[6] Kaufmann R S, Long A, Bentley H, et al. Natural chlorine isotope variations. Nature, 1984, 309: 338-340.
[7] Xiao Y K, Zhang C G. High precision isotopic measurement of chlorine by thermal ionization mass spectrometry of Cs2Cl+ ion. Int J Mass Spectrom Ion Processes, 1992, 116: 183- 192.
[8] Xiao Y K, Zhou Y M, Liu W G. Precise measurement of chlorine isotopes based Cs2Cl+ by thermal ionization mass spectrometry. Analytical Letters, 1995, 28: 1 295-1 300.
[9] Kakihana H, Kotaka M, Satoh S, et al. Fundamental studies on the ion-exchange separation of boron isotopes . Bull Chem Soc Japan, 1977, 50: 158-163.
[10] Palmer M R, Spivack A J, Edmond J M. Temperat ure and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochim Cosmochim Acta, 1987, 51: 2 319-2 323.
[11] Palmer M R, London D, Morgan G B, et al. Experimental determination of fractionation of 11B/10B between tourmaline and aqueous vapor: A temperature and pressure-dependent isotopic system. Chem Geol, 1992, 101: 123-129.
[12] Spivack A J, Palmer M R, Edmond J M. The sedimentary cycle of the boron isotope. Geochim. Cosmochim Acta, 1987, 51: 1 939-1 949.
[13] Xiao Y K, Sun D P, Wang Y H, et al. Boron isotopic compositions of brine, sediments, and source water in Da Qaidam Lake, Qinghai, China. Geochim Cosmochim Acta, 1992, 56: 1561.
[14] Vengosh A, Chivas A R, McCullonch Mt, et al. Boron isotopic geochemistry of Australian salt lakes. Geochim Cosmochim Acta,1991, 55: 2 591-2 606.
[15] Philips F M, Bentley H W. Isotopic fractionation during ion filtration: 1. theory. Geochim Cosmochim Acta, 1987, 1087, 51: 683-695.
[16] 肖应凯, 金琳, 刘卫国, 等. 大柴达木湖的氯同位素组成. 科学通报, 1994, 39(41): 1 319- 1 322.
[17] 刘卫国, 肖应凯, 孙大鹏, 等. 柴达木盆地盐湖氯同位素组成的初步研究. 科学通报, 1994, 39(20): 1 918-1 919.
[18] Kakihana H, Ossaka T, Qi T, et al. Boron isotopic ratios of some hot spring water in the Kausatsu-shirane area.Geochemistry Journal,1987,21:133-137.
[19] 肖应凯, Shirodkar P V , 刘卫国, 等. 柴达木盆地盐湖的硼同位素组成及硼同位素效 应的研究. 幔壳演化与成岩成矿同位素地球化学. 地震出版社, 1993. 232.
[20] Vengosh A, Heumann K G, Juraskes, et al. Boron isotope application for tracining source of contamination in groundwater. Env Sci Tech,1994,28:1 968.
[21] Kaufmann R S, Frape S K, McMutt R, et al. Chlorine stable isotopic distribution of Michigan Basin formation waters. Applied Geochemistry, 1993, 8: 403-407.
[22] Desaulniers D E, Kaufmann R S, Cherry J A, et al. 37Cl-35Cl variations in a diffusion controlled groundwater system. Geochim Cosmochim Acta,1986,31:1 757- 1 764.
[23] 肖应凯, 刘卫国, 周引民, 等. 盐卤水和盐类矿物的氯同位素组成. 科学通报, 1996, 41: 2 067.
[24] Liu W G, Xiao Y K, Sun D P, et al. Chlorine isotopic geochemistry of salt lakes in the Qaidam Basin, China. Chemical Geology,1997, 136: 271-279.
[25] Hershey J P, Fernandez M , Milne J, et al . The ioization of boric acid in Na- Cl , Na- Ca- Cl and Na- Mg- Cl solutions at 25
e.Geochim Coschim Acta, 1986, 50: 143- 148.
[26] V engosh A, Kolodny Y, Starinsky A, et al. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim Cosmochim Acta, 1991, 55: 2 901-2 910.
[27] Heming N G, Hamson G N. Boron isotopic composition and concnetration in modern marine carbonates. Geochim Cosmochim Acta,1992, 56: 537-543.
[28] Sanyal A, Hemming N G, Hanson G N, et al. Evidence for a higher pH in the glacial ocean from boron isotopes in forarminifera. Nature, 1995, 373:234-236.
[29] Volpe C, Spivack A. Stable chlorine isotopic composition of marine aerosol particles in the westen Atlantic Ocean. Geophysical Research Letter, 1994, 21: 1 161-1 164.
[30] Spivack A J, Edmond J M. Boron isotope exchange between seawater and the oceanic crust. Geochim Cosmochim Acta, 1987, 51: 1 033-1 043.
[31] Campbell A C, Palmer M R, Klinkhammer G P. Chemistry of hot springs on the Mid-Atlantic Ridge. Nature, 1988, 335: 514-519.
[32] Palmer M R. Boron isotope systematics of Halmahera arc(indonesia) lavas: Evidence for involvement of the subducted slab. Geology, 1991, 19: 215-217.
[33] Palmer M R, Swihart G H. Boron isotope geochemistry : an overview. Rev Mineral, 1996, 33.
[34] You C F, Spivack A J, Smith J H. Mobilization of boron in convergent margins: Implications for the boron geochemical cycle. Geology,1993,21:207-210.
[35] Musashi M, Ossaka T, Qi T, et al. Nature brone isotope fractionation between hot spring water and rock in direct contact. Isotopen-raxis, 1991, 27: 163-166.
[36] Palmer M R, Slack J F. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites. Contrib Mineral Petrol, 1989, 103: 434-451.
[37] Palmer M R. Boron isotope systematics of hydrothermal fluids and tourmaline: A synthesis. Chem Geol, 1992, 94: 111-121.
[38] Swihart G H, Moore P B. A reconnaissance of the boron isotopic composition of tourmaline. Geochemi Cosmochim Acta, 1989, 53: 911-916.
[39] Magenheim A J, Spivack A J, Michael P J, et al. Chlorine stable isotope composition of the oceanic crust: Implication for Earth' distribution of chlorine. Earth and Planetary Science Letters, 1995, 131: 427- 432.
[40] Swihart G H, Moore P B. Boron isotopic composition of marine and non-marine evaporite borates. Geochim Cosmochim Acta, 1987,50: 1 297-1 301.
[41] 孙大鹏, 肖应凯, 王蕴慧, 等. 青海湖硼同位素地球化学初步研究. 科学通报, 1993, 38(9): 822- 825.
[42] 祁海平, 王蕴慧, 肖应凯, 等. 中国盐湖硼同位素的初步研究. 科学通报, 1993, 38(7), 634- 637.
[43] Eggenkamp H G M, Kreulen R. Chlorine stable isotopie fractionation in evaporites. Geochim Cosmochimi Acta, 1995, 59(24): 5 169- 5 175.
[44] Xiao Y K, Liu W G , Zhou Y M. The variations of isotopic composition of chlorine in the nature 38th IU PAC General Assembly. Guildford, UK , 1995.
[45] 刘卫国, 肖应凯, 孙大鹏, 等. 马海盐湖区卤水和盐类矿物的氯同位素特征及意义. 盐湖研究, 1995, 3(2) .
[46] Spivack A J, You C F, Smith H J. Foraminiferal boron isotope ratios as a proxy for surface ocean pH over the past 21-Myr. Nature,1993, 363: 149-151.
[47] Eastoe C J, Guilbert J M, Kaufmann R S. Preliminary evidence for fractionation of stable chlorine isotopes in ore-forming systems.Geology, 1989, 17: 285- 288.

[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[3] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[4] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[5] 赵振洋, 李双建, 王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨[J]. 地球科学进展, 2020, 35(2): 137-153.
[6] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[7] 李薇,张海东,戴国华,刘小驰. 2020年度地球化学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1154-1162.
[8] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[9] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[10] 刘洋,王文龙,滕学建,郭硕,滕飞,何鹏,田健,段霄龙. 内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、 Hf同位素特征及其地质意义[J]. 地球科学进展, 2019, 34(4): 366-381.
[11] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[12] 熊巨华,刘磊,赵学钦. 2019年度地球化学学科基金项目评审与成果分析[J]. 地球科学进展, 2019, 34(11): 1179-1184.
[13] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[14] 熊巨华, 宗克清. 2018年度地球科学部地球化学学科工作报告 *[J]. 地球科学进展, 2018, 33(12): 1286-1291.
[15] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
阅读次数
全文


摘要