地球科学进展 ›› 2003, Vol. 18 ›› Issue (3): 420 -426. doi: 10.11867/j.issn.1001-8166.2003.03.0420

研究论文 上一篇    下一篇

生物硅的测定及其生物地球化学意义
叶曦雯 1,刘素美 1,张经 1,2   
  1. 1.青岛海洋大学化学化工学院,山东 青岛 266003;2.华东师范大学河口海岸动力沉积和动力地貌综合国家重点实验室,上海 200062
  • 收稿日期:2002-07-02 修回日期:2002-10-24 出版日期:2003-06-01
  • 通讯作者: 叶曦雯 E-mail:yexiwen@lib.ouqd.edu.cn
  • 基金资助:

    国家重点基础研究发展规划项目“东、黄海生态动力学与生物资源可持续利用”(编号:G1999043705);“我国近海有害赤潮发生的生态学、海洋学机制及预测防治”(编号:2001CB409703);国家自然科学基金重点项目“胶州湾流域生源要素流失与海湾富营养化演变过程”(编号:40036010)资助.

THE DETERMINATION OF BIOGENIC SILICA AND ITS BIOGEOCHEMISTRY SIGNIFICANCE

Ye Xiwen 1,Liu Sumei 1,Zhang Jing 1,2   

  1. 1.College of Chemistry and Chemical Engineering Ocean University of Qingdao,Qingdao 266003,China;2.State Key Laboratory of Estuary and Coast, Eastchina Normal of University, Shanghai 200062,China
  • Received:2002-07-02 Revised:2002-10-24 Online:2003-06-01 Published:2003-06-01

生物硅(BSi)指用化学方法测定的沉积物中的无定形硅含量。生物硅的含量与水体中初级生产息息相关。硅藻、放射虫、海绵骨针和硅鞭毛虫产生的生物硅是地球化学和古海洋学研究的重要参数。重点讨论了目前生物硅测定方法中的化学提取法,评述了提取过程中存在的一些问题,并对BSi测定的生物地球化学意义进行了讨论。

Biogenic silica(BSi) is a chemical determination of the amount of amorphous. BSi is also known as biogenic opal or simple opal by geologists. Recent compilation of percent biogenic silica in surface sediments have revealed a close link to biosiliceous productivity patterns in the overlying surface waters. Amorphous silica can be comprised of different components mainly of biological origin such as diatoms phytoliths, radiolarians, silicoflagellates and sponge spicules. The opal content of marine sediments carries a valuable paleoceanographic record of changes in the strengths and locations of surface ocean productivity. Measuring the silicon isotopic composition of diatoms can provide a record of environmental change. The BSi sedimentary record also has been used to study climate change. The sedimentary BSi record is a sensitive indicator of anthropogenic nutrient enrichment because it integrates seasonal uptake of dissolved silicate utilized in diatom production. In this paper,the  author discussed some questions in the measurement of BSi in marine sediments and particulates. The importance of determination of biogenic silica in biogeochemical research is also analyzed.

中图分类号: 

[1] Banahan S,Goering J J. The production of biogenic silica and accumulation on the southeastern Bering Sea shelf[J]. Continental Shelf Research, 1986,5:199-213.

[2] Lyle M, Murray D W, Finney B P, et al. The record of late Pleistocene sedimentation in the eastern tropical Pacific Ocean[J]. Paleoceanography, 1988,3:39-59.

[3] Leinen M, Cwienk D, Ross G R, et al. Distribution of biogenic silica and quartz in recent deep-sea sediment [J]. Geology,1986,14:199-203.

[4] Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments [J]. Deep-Sea Research, 1989, 36(9): 1 415-1 426.

[5] Lyle M, Murray D W, Finney B P, et al. The record of late Pleistocene sedimentation in the eastern tropical Pacific[J]. Ocean Paleoceanography, 1988,3:39-59.

[6] Archer D, Lyle M, Rodgers K, et al. What controls opal preservation in tropical deep-sea sediments [J]. Paleoceanography, 1993,8:7-21.

[7] Ellis D B, Moore T C. Calcium carbonate opal and quartz in Holocene pelagic sediments and the calcite compensation level in the South Atlantic Ocean[J]. Journal of Marine Research, 1973,31:210-227.

[8] Eisma D, Van Der Gaast S J. Determination of opal in marine sediments by X-ray diffraction[J]. Netherlands Journal of Sea Research, 1971,5:382-389.

[9] Chester R, Elderfield H. The infrared determination of opal in siliceous deep-sea sediments[J]. Geochimica et Cosmochimica Acta, 1968,32:1 128-1 140.

[10] Frohlich F. Deep-sea biogenic silica: New structural and analytical data from infrared analysis-geological implications[J]. Terra Research,1989,1: 267-273.

[11] Leinen M. A normative calculation technique for determining opal in deep-sea sediments[J]. Geochimica et Cosmochimica Acta, 1977,41:671-676.

[12] Brewster N A. The determination of biogenic opal in high latitude deep-sea sediments[A].In: IiJima A, Hein J R,Siever,eds. Siliceous Deposits in the Pacific Region: Developments in Sediment Logy[C]. New York: Elsevier Press, 1983.17-331.

[13] Eggimann D W, Manhiem F T, Betzer P R. Dissolution and analysis of amorphous silica in marine sediments [J]. Journal of Sediment  Petroleum, 1980,50:215-225.

[14] DeMaster D J. The supply and accumulation of the silica in the marine environment[J]. Geochemicaetet et Cosmochimica Acta, 1981, 45:1 715-1 732.

[15] Muller P J, Schneider R. Automated leaching method for the determination of opal in sediments and particulate matter[J]. Deep-Sea Research, 1993, 40:425-444.

[16] Landen A, Holby O, Hall P J. Determination of biogenic silica in marine sediments-selection of pretreatment method and sample size[J]. Vatten, 1996,52:85-92.

[17] Pokras E. Preservation of fossil diatoms in Atlantic sediment cores-control by supply rate[J].Deep-Sea Research, 1986,33:893-902.

[18] Leinen M. Techniques for determining opal in deep-sea sediments: A comparison of radiolarian counts and X-ray diffraction data [J]. Marine Micropaleontology, 1985,9:375-383.

[19] DeMaster D J. The supply and accumulation of the silica in the marine environment[J]. Geochemica et Cosmochimica Acta, 1981, 45:1 715-1 732.

[20] Conley D J. An interlaboratory comparison for the measurement of biogenic silica in sediments[J]. Marine Chemistry, 1998,63:39-48.

[21] DeMaster D J. The marine budgets of silica and 32Si[D].Connecticut: Yale University, 1979.

[22] Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep-Sea Research, 1989,36(9):1 415-1 426.

[23] Follett E A C, McHardy W J, Mitchell B D, et al. Chemical dissolution techniques in the study of soil clays [J]. Clay Minerals, 1965,6:12-34.

[24] McKyes E, Sethi A, Yong R N. Amorphous coating on particles of sensitive clay soils[J]. Clays Clay Miner, 1974,22:427-433.

[25] Flower R J. Diatiom preservation-experiments and observations on dissolution and breakage in modern and fossil material [J]. Hydrobiologia, 1993,269: 473-484.

[26] Gehlen M, van Raaphorst W. Early diagenesis of silica in sandy North Sea sediment: Quantification of the solid phase [J]. Marine Chemistry, 1993,42:71-83.

[27] Kamatani A. Determination of biogenic silica in marine sediment[J]. La Mer (Bulletin Societe,Franco-Japonaise. Oceanogr), 1980,18:63-68.

[28] Knauss K G, Wolery T J. The dissolution kinetics of quartz as a function of pH and time at 70[J]. Geochimica et Cosmochimica Acta, 1988,52:43-53.

[29] DeMaster D J, Knpp G B, Nittrouer C A. Biological uptake and accumulation of silica on the Amazon continental shelf [J]. Geochimica et Cosmochimica Acta, 1983,47:1 713-1 723.

[30] Kamatani A, Oku O. Measuring biogenic silica in marine sediment[J]. Marine Chemistry, 2000,68:219-229.

[31] Schluter D, Richert D. Effect of pH on the measurement of biogenic silica[J]. Marine Chemistry, 1998,63:81-92.

[32] Kamatani A, Takano M. The behavior of dissolved silica during the mixing of river and sea waters in Tokyo Bay[J]. Estuarine Costal Shelf Science, 1984,19:505-512.

[33] Krausse G L, Schelske C L, Davis C O. Comparison three-alkaline methods of digestion of biogenic silica in water[J]. Freshwater Biology, 1983,13:73-81.

[34] Ragueneau O, Treguer P. Determination of biogenic silica in coastal waters: Applicabili and limits of the alkaline digestion method[J]. Marine Chemistry, 1994,45:43-51.

[35] Shemesh A, Mortlock R A, Smith R J, et al. Determination of Ge/Si rations in marine siliceous microfossils: Separation, cleaning and dissolution of diatioms and radiolaria[J].Marine Chemistry, 1988,25:305-323.

[36] Koning E, Epping E, van Raaphorst W. Determining biogenic silica in marine samples by tracking silicate and aluminium concentrations in alkaline leaching solutions[J]. Aquatic Geochemistry,2002,8:37-67.

[37] Paasche E. Silicon and the ecology of marine diatoms,1 Thalassiosira pseudonana(Cyclotella nana) grown in chemostate with silicate as the limiting nutrient[J]. Marine Biology, 1973,19:117-126.

[38] Southern Ocean-Joint Global Ocean Flux Study. Protocol for determination of biogenic and lithogenic silica in particulate malter: Report of SO-JGOFS working group[R]. France: SO-JGOFS,1992.

[39] Schelske C L, Stoemer E F. Eutrophication,silica depletion,and predicted changes in algal quality in Lake Michigan [J]. Science, 1971,173:423-424.

[40] Conley D J, Schelske C L, Stoermer E F. Modification of the biogeochemical cycle of silica with eutrophication [J]. Marine Ecology Progress Seriers, 1993,101:179-192.

[41] Schelske C L, Stoermer E F, Conley D J, et al. Early eutrophication in the lower Great lakes:New evidence from biogenic silica in sediment[J]. Science,1983,222:320-322.

[42] Schelske C L, Conley D J,Stoermer E F, et al. Biogenic silica and phosphorus accumulation in sediments as indices of eutrophication in the laurentian Great Lakes[J].Hydrobiologia,1986,143:79-86.

[43] Stoermer E F, Kociolek J P, Schelske C L, et al. Siliceous microfossol succession in the recent history of Lake Superior[J]. Proceedings of the Academy Natural Scienees of Philadelphia,1985a,137:106-118.

[44] Turner R E, Rabalais N N. Coastal eutrophication near the Mississippi river delta[J]. Nature,1994,368:619-621.

[45] Van Bennekom A J,Salomons W. Pathways of nutrients and organic matter from land to ocean through rivers[A]. In:Martine J M,Burton J D,Eisma D,eds.River Inputs to Ocean Systems[C].Rome:UNEP/UNESCO,1981.33-51.

[46] Wahby S D,Bishara N F. The effect of the River Nile on Mediterranean water,before and after the construction of the High Dam at Aswan[A]. In:Matin J M,Burton J D,Eisma D,eds. Proceedings of a SCOR Workshop on River Inputs to Ocean System[C]. Rome, Paris: UNESCO,1980.311-318.

[47] Admiraal W,Breugem P,Jacobs D M L H A,et al. Fixation of dissolved silicate and sedimentation of biogenic silicate in the lower Rhine during diatom blooms[J]. Biogeochemistry,1990,9:175-185.

[48] Treguer P, Nelson D M, Van Bennekom A J, et al. The silica balance in the world ocean:A reestimate [J]. Science, 1995,268:375-379.

[49] Broecker W S, Peng T H.Tracers in the Sea[M]. New York :Eldigio Press ,1982.

[50] Thunell R C, Pride C J, Tappa E, et al. Biogenic silica fluxes and accumulation rates in the gulf of California [J]. Geology, 1994,22:303-306.

[51] Schelske C L. Biogeochemical silica mass balance in lake Michigan and Lake Superior[J]. Biogeochemistry, 1985,1:197-218.

[52] DeMaster D J, Knapp G B, Nittrouer C A. Biological uptake and accumulation of silica on the Amazon continental shelf [J]. Geochimicaetet et Cosmochimica Acta, 1983,47:1 713-1 723.

[53] Anderson G F. Silica,diatoms and a freshwater productivity maximum in Atlantic coastal plain estuaries. Chesapeake bay [J]. Estuarine Coastal Shelf Science,1986,22:183-197.

[54] Nelson D M, Treguer P, Brzezinski M A, et al. Production and dissolution of biodenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation [J]. Global Biogeochemistry Cycle,1995,9:359-372.

[55] Barker P J, Fontes C, Gasse F, et al. Experimental dissolution of diatiom silica in concentrated salt solutions and implications for paleoenvironmental reconstruction[J]. Limnology and Oceanographic, 1994,39: 99-110.

[56] Van Iperen J A, Van Weering T C E, Janesen J H F, et al. Diatioms in surface sediments of the Zaire deep-sea fan (SE Atlantic Ocean) and their relation to overlying water masses[J]. Netherlands Journal of Sea Research, 1987, 21:203-217.

[57] Jia Guodong, Jian Zhimin,Peng Ping’an, et al. Biogenic silica records in core 19762 from southern South China Sea and their relation to paleoceanographical events[J]. Geochimica, 2000,29:293-296. [贾国东,翦知湣,彭平安,.南海南部17962柱状样生物硅沉积记录及其古海洋意义[J].地球化学, 2000,29:293-296.]

[58] Colman S M, Peck J A, Karabanov E B. Continental climate response to orbital forcing from biogenic silica records in lake Baikal[J]. Nature,1995,378:769-771.

[59] Xiao Jule,Yoshio Inouchi,Hisao Kumai. Biogenic silica record in lake Biwa of central Japan over the past 145 000 years[J]. Quaternary Research, 1997, 47:277-283.

[60] Wang Wenyuan, Liu Jiaqi, Peng Ping'an. Determination and application of biogenic silica in lake sediments: An example from Huguangyan maar lake,southen China[J]. Geochimica, 2000, 9: 327-330. [王文远,刘嘉麒,彭平安. 湖泊沉积物生物硅的测定与应用:以湖光岩玛珥湖为例[J].地球化学,2000,9:327-330.]

[61] Treguer P, Lindner L, van Bennekom A J, et al. Production of biogenic silica in the Weddel-Scotia Seas measured with 32Si[J]. Limnological and Oceanographer,1991,36(6):1 217-1 227.

[62] De La Rocha C L, Brzezinski M A, DeNiro M J, et al. Silicon isotope composition of diatoms as an indicator of past oceanic change[J]. Nature,1998, 395: 680-683.

[63] NiJampurkar V N, Rao D K, Oldfied F, et al. The half-life of Si-32:A new estimate based on varved lake sediments [J]. Earth and Planet Science Letters,1998,163: 191-196.

[64] Schluter M, Sauter E. Biogenic silica cycle in surface sediments of the Greenland Sea[J]. Marine System, 2000, 23(4): 333-342.

[65] Boyle E A J. Pumping iron makes thinner diatoms[J]. Nature,1998,393:733-734.

[66] Ragueneau O, Gallinari M, Corrin L, et al. The benthic silica cycle in the Northeast Atlantic[J]. Progress in Oceanographer, 2001,50(1/4):171-200.

[67] Rickert D, Schluter M, Wallmann K. Dissolution kinetics of biogenic silica from the water column to the sediments [J]. Geochimica et Cosmochimica Acta,2002,66(3): 439-455.

[68] Sigmon D E, Nelson D M, Brzezinskib M A. The Si cycle in the Pacific sector of the Southern Ocean: Seasonal diatom production in the surface layer and export tothe deep sea[J]. Deep Sea Research, 2002,49:1 747-1 763.

[1] 吴晓川,欧阳黎明,郭晓中,黄焱羚,黄振华,李伟. 海域沉积物蠕动地貌的研究现状与展望[J]. 地球科学进展, 2021, 36(7): 763-772.
[2] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[3] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[4] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[5] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[6] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[7] 刘柏妤, 张虎才, 常凤琴, 张扬, 张晓楠, 冯仡哲, 李华勇. 茈碧湖现代沉积特征及其环境指示意义[J]. 地球科学进展, 2020, 35(2): 198-208.
[8] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[9] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[10] 田壮才, 郭秀军, 余乐, 贾永刚, 张少同, 乔路正. 内孤立波悬浮海底沉积物研究进展[J]. 地球科学进展, 2018, 33(2): 166-178.
[11] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[12] 焦鑫, 柳益群, 杨晚, 周鼎武. 水下火山喷发沉积特征研究进展[J]. 地球科学进展, 2017, 32(9): 926-936.
[13] 杨林, 董玉祥, 杜建会. 海岸沙丘对风暴响应研究进展[J]. 地球科学进展, 2017, 32(7): 716-722.
[14] 陶亚玲, 常宏. 长江第一湾附近构造作用下的河流地貌演化[J]. 地球科学进展, 2017, 32(5): 488-501.
[15] 魏传义, 刘春茹, 李长安, 尹功明, 李文朋, 赵举兴, 张增杰, 张岱, 孙习林, 李亚伟. 石英ESR法物源示踪:认识与进展[J]. 地球科学进展, 2017, 32(10): 1062-1071.
阅读次数
全文


摘要