1 |
MARTINS W B R, RODRIGUES J I D, de OLIVEIRA V P, et al. Mining in the Amazon: importance, impacts, and challenges to restore degraded ecosystems. Are we on the right way?[J]. Ecological Engineering, 2022, 174. DOI:10.1016/j.ecoleng.2021.106468 .
|
2 |
WANG Haiyang, HAN Ling, XIE Danni, et al. Distribution characteristics of heavy metals in farmland soils around mining areas and pollution assessment[J]. Journal of Environmental Sciences, 2022, 43(4): 2 104-2 114.
|
|
王海洋,韩玲,谢丹妮,等. 矿区周边农田土壤重金属分布特征及污染评价[J]. 环境科学学报, 2022,43(4):2 104-2 114.
|
3 |
LUO Xin, YANG Yixin, AO Yanhuan. Research progress on remediation technology of heavy metal pollution in mining area[J]. Journal of North China Institute of Science and Technology, 2019, 16(1): 49-54,62.
|
|
骆欣,杨怡心,敖燕环. 矿区土壤重金属污染修复技术研究进展[J]. 华北科技学院学报, 2019, 16(1): 49-54,62.
|
4 |
LI Linli, HUANG Xiaofeng, ZHAO Dan, et al. Review on migration, transformation and treatment of soil heavymetals in mercury mining area[J]. Nonferrous Metals Engineering, 2022,12(2):128-137.
|
|
李琳丽,黄小凤,赵丹,等. 汞矿区土壤重金属迁移转化及治理技术研究综述[J]. 有色金属工程, 2022,12(2):128-137.
|
5 |
LIU Y H, XIA Y F, WANG Z R, et al. Lithologic controls on the mobility of Cd in mining-impacted watersheds revealed by stable Cd isotopes[J]. Water Research, 2022, 220. DOI:10.1016/j.watres.2022.118619 .
|
6 |
ZHANG L, ZHOU H, CHEN X, et al. Study of the micromorphology and health risks of arsenic in copper smelting slag tailings for safe resource utilization[J]. Ecotoxicology and Environmental Safety, 2021, 219. DOI:10.1016/j.ecoenv.2021.112321 .
|
7 |
JARUP L. Hazards of heavy metal contamination[J]. British Medical Bulletin, 2003, 68: 167-182.
|
8 |
DIACONU M, PAVEL L V, HLIHOR R M, et al. Characterization of heavy metal toxicity in some plants and microorganisms—a preliminary approach for environmental bioremediation[J]. New Biotechnol, 2020, 56: 130-139.
|
9 |
ABLIZ A, SHI Q D, KEYIMU M, et al. Spatial distribution, source, and risk assessment of soil toxic metals in the coal-mining region of northwestern China[J]. Arabian Journal of Geosciences, 2018, 11(24). DOI:10.1007/s12517-018-4152-8 .
|
10 |
SATAPATHY S, PANDA C R. Source identification, environmental risk assessment and human health risks associated with toxic elements present in a coastal industrial environment, India[J]. Environmental Geochemistry and Health, 2018, 40(6): 2 243-2 257.
|
11 |
TAO X Z, WU P, TANG C Y, et al. Effect of acid mine drainage on a karst basin: a case study on the high-As coal mining area in Guizhou province, China[J]. Environmental Earth Sciences, 2012, 65(3): 631-638.
|
12 |
CHEN Y. Pollution status of heavy metals in China’s metallic mining areas and treatment measures concerned [C]// HU Z. Legislation, technology and practice of mine land reclamation. USA: CRC Press, 2014: 451-458.
|
13 |
WIEDERHOLD J G. Metal stable isotope signatures as tracers in environmental geochemistry[J]. Environmental Science & Technology, 2015, 49(5): 2 606-2 624.
|
14 |
YAN Ying, ZHANG Xiaowen, GUO Boli. Applications of lead-cadmium-zinc-mercury stable isotopes in source identification of heavy metal pollutions[J] Environmental Chemistry, 2020, 39(10): 2 712-2 721.
|
|
闫颖,张晓文,郭波莉. 铅—镉—锌—汞稳定同位素在重金属污染源解析中的研究进展[J]. 环境化学, 2020, 39(10): 2 712-2 721.
|
15 |
CHEN Yali, WENG Liping, MA Jie, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environmental Sciences, 2019, 38(10): 2 219-2 238.
|
|
陈雅丽,翁莉萍,马杰,等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019, 38(10): 2 219-2 238.
|
16 |
WANG L W, JIN Y L, WEISS D J, et al. Possible application of stable isotope compositions for the identification of metal sources in soil[J]. Journal of Hazardous Materials, 2021, 407. DOI:10.1016/j.jhazmat.2020.124812 .
|
17 |
QIN Jianqiao, FAN Chen, HUANG Tao, et al. Analytical method and application of soil heavy metal source[J]. Anhui Agricultural Sciences, 2019, 47(20): 80-82.
|
|
秦建桥,凡宸,黄涛,等. 土壤重金属源解析研究方法与应用[J]. 安徽农业科学, 2019, 47(20): 80-82.
|
18 |
WU Di, DONG Bin, WEI Haidong. Review of soil heavy metal pollution sources[J]. Anhui Agricultural Science Bulletin, 2017(23): 58-60.
|
|
吴迪,董彬,尉海东. 土壤重金属污染来源研究综述[J]. 安徽农学通报, 2017(23): 58-60.
|
19 |
LI Z Y, MA Z W, van der KUIJP T J, et al. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468/469: 843-853.
|
20 |
RATNAYAKE D M, TANAKA R, NAKAMURA E. Novel nickel isolation procedure for a wide range of sample matrices without using dimethylglyoxime for isotope measurements using MC-ICP-MS[J]. Analytica Chimica Acta, 2021: 1181. DOI:10.1016/j.aca.2021.338934 .
|
21 |
SUN M Z, ARCHER C, VANCE D. New methods for the chemical isolation and stable isotope measurement of multiple transition metals, with application to the Earth sciences[J]. Geostandards and Geoanalytical Research, 2021, 45(4): 643-658.
|
22 |
GALL L, WILLIAMS H M, SIEBERT C, et al. Nickel isotopic compositions of ferromanganese crusts and the constancy of deep ocean inputs and continental weathering effects over the Cenozoic[J]. Earth and Planetary Science Letters, 2013, 375: 148-155.
|
23 |
TAN D C, ZHU J M, WANG X L, et al. High-sensitivity determination of Cd isotopes in low-Cd geological samples by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(4): 713-727.
|
24 |
WU G L, ZHU J M, WANG X L, et al. High-sensitivity measurement of Cr isotopes by double spike MC-ICP-MS at the 10 ng level[J]. Analytical Chemistry, 2020, 92(1): 1 463-1 469.
|
25 |
CREECH J B, MOYNIER F, BADULLOVICH N. Tin stable isotope analysis of geological materials by double-spike MC-ICPMS[J]. Chemical Geology, 2017, 457: 61-67.
|
26 |
KOMÁREK M, RATIÉ G, VAŇKOVÁ Z, et al. Metal isotope complexation with environmentally relevant surfaces: opening the isotope fractionation black box[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(20): 3 573-3 603.
|
27 |
MIGASZEWSKI Z M, GAŁUSZKA A, DOŁĘGOWSKA S. Stable isotope geochemistry of acid mine drainage from the Wiśniówka area (south-central Poland)[J]. Applied Geochemistry, 2018, 95: 45-56.
|
28 |
MOYNIER F, VANCE D, FUJII T, et al. The isotope geochemistry of zinc and copper[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 543-600.
|
29 |
SHI Lin, ZHAO Dejun. Research progress of soil heavy metal pollution assessment methods in mining areas[J]. Cultural Geography, 2016(12): 74.
|
|
史琳,赵得军. 矿区土壤重金属污染评价方法研究进展[J]. 城市地理, 2016(12): 74.
|
30 |
GAN Fengwei, WANG Jingjing. Review of study on survey and remediation of soil contamination by heavy metalin nonferrous metal milling area[J]. Mineral Exploration, 2018, 9(5): 1 023-1 030.
|
|
甘凤伟,王菁菁. 有色金属矿区土壤重金属污染调查与修复研究进展[J]. 矿产勘查, 2018, 9(5): 1 023-1 030.
|
31 |
ZHOU Yi, HU Wenyou, HUANG Biao, et al. Current status and research progress of heavy metal pollution in soils surrounding highways of China[J]. Environmental Monitoring in China, 36(5): 112-120.
|
|
周怡,胡文友,黄标,等. 我国高速公路周边土壤重金属污染现状及研究进展[J]. 中国环境监测, 36(5): 112-120.
|
32 |
GUAGLIARDI I, CICCHELLA D, de ROSA R, et al. Assessment of lead pollution in topsoils of a southern Italy area: analysis of urban and peri-urban environment[J]. Journal of Environmental Sciences-China, 2015, 33: 179-187.
|
33 |
KHALIL A, HANICH L, HAKKOU R, et al. GIS-based environmental database for assessing the mine pollution: a case study of an abandoned mine site in Morocco[J]. Journal of Geochemical Exploration, 2014, 144: 468-477.
|
34 |
LI X, YANG H, ZHANG C, et al. Spatial distribution and transport characteristics of heavy metals around an antimony mine area in central China[J]. Chemosphere, 2017, 170: 17-24.
|
35 |
YUN S W, BAVEYE P C, KIM K B, et al. Effect of postmining land use on the spatial distribution of metal(loid)s and their transport in agricultural soils: analysis of a case study of Chungyang, South Korea[J]. Journal of Geochemical Exploration, 2016, 170: 157-166.
|
36 |
SCHONBACHLER M, REHKAMPER M, LEE D C, et al. Ion exchange chromatography and high precision isotopic measurements of zirconium by MC-ICP-MS[J]. Analyst, 2004, 129(1): 32-37.
|
37 |
SCHÖNBÄCHLER M. Ion exchange chromatography[M]//WHITE W M. Encyclopedia of geochemistry: a comprehensive reference source on the chemistry of the Earth. Cham: Springer International Publishing, 2018: 731-736.
|
38 |
SCHÖNBÄCHLER M, FEHR M. Basics of ion exchange chromatography for selected geological applications[M]. Oxford:Elsevier, 2013: 146.
|
39 |
PUDENZI M A, EBERLIN M N. Assessing relative electrospray ionization, atmospheric pressure photoionization, atmospheric pressure chemical ionization, and atmospheric pressure photo- and chemical ionization efficiencies in mass spectrometry petroleomic analysis via pools and pairs of selected polar compound standards[J]. Energy & Fuels, 2016, 30(9): 7 125-7 133.
|
40 |
VANHAECKE F, BALCAEN L, MALINOVSKY D. Use of single-collector and multi-collector ICP-mass spectrometry for isotopic analysis[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(7): 863-886.
|
41 |
BECKER J S. Recent developments in isotope analysis by advanced mass spectrometric techniques-plenary lecture[J]. Journal of Analytical Atomic Spectrometry, 2005, 20(11): 1 173-1 184.
|
42 |
CHEN Huanwen, HU Bin, ZHANG Xie. Fundamental principles and practical applications of ambient ionization mass spectrometry for direct analysis of complex samples[J]. Chinese Journal of Analytical Chemistry, 2010, 38(8): 1 069-1 088.
|
|
陈焕文,胡斌,张燮. 复杂样品质谱分析技术的原理与应用[J]. 分析化学, 2010, 38(8): 1 069-1 088.
|
43 |
TENG F Z, DAUPHAS N, WATKINS J M. Non-traditional stable isotopes: retrospective and prospective[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 1-26.
|
44 |
ZHANG Y, BAO Z, LV N, et al. Copper isotope ratio measurements of Cu-dominated minerals without column chromatography using MC-ICP-MS[J]. Frontiers in Chemistry, 2020, 8. DOI:10.3389/fchem.2020.00609 .
|
45 |
KIDDER J A, VOINOT A, SULLIVAN K V, et al. Improved ion-exchange column chromatography for Cu purification from high-Na matrices and isotopic analysis by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(4): 776-783.
|
46 |
ZHONG Q, ZHOU Y, TSANG D C W, et al. Cadmium isotopes as tracers in environmental studies: a review[J]. Science of the Total Environment, 2020, 736. DOI:10.1016/j.scitotenv.2020.139585 .
|
47 |
HUANG Fang, TIAN Shengyu. Recent progresses in several metal stable isotope systems: analytical methods, principles of tracing, and important applications[J]. Bulletin of Mineralogy, Petmlogy and Geochemistry, 2018, 37(5): 793-811.
|
|
黄方,田笙谕. 若干金属稳定同位素体系的研究进展:以中国科大实验室为例[J]. 矿物岩石地球化学通报, 2018, 37(5): 793-811.
|
48 |
YANG Juncheng, LI Guihua, JIANG Huimin, et al. Hotspot fields of isotopes tracing in agricultural science[J]. Journal of Isotopes, 2019, 32(3): 162-170.
|
|
杨俊诚,李桂花,姜慧敏,等. 同位素示踪农业应用的研究热点[J]. 同位素, 2019, 32(3): 162-170.
|
49 |
CHENG H, HU Y. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review[J]. Environmental Pollution, 2010, 158(5): 1 134-1 146.
|
50 |
YIN N H, SIVRY Y, BENEDETTI M F, et al. Application of Zn isotopes in environmental impact assessment of Zn-Pb metallurgical industries: a mini review[J]. Applied Geochemistry, 2016, 64: 128-135.
|
51 |
GUTTIKUNDA S K, JAWAHAR P. Atmospheric emissions and pollution from the coal-fired thermal power plants in India[J]. Atmospheric Environment, 2014, 92: 449-460.
|
52 |
AEBISCHER S, CLOQUET C, CARIGNAN J, et al. Disruption of the geochemical metal cycle during mining: multiple isotope studies of lake sediments from Schefferville, subarctic Québec[J]. Chemical Geology, 2015, 412: 167-178.
|
53 |
USEPA. Post-processing IsoSource results[Z/OL]. United States Environmental Protection Agency, 2016.[2022-01-10]. .
|
54 |
USEPA. Stable Isotope mixing models for estimating source proportions [Z/OL]. United States Environmental Protection Agency, 2017. [2022-01-10]. .
|
55 |
MOORE J W, SEMMENS B X. Incorporating uncertainty and prior information into stable isotope mixing models[J]. Ecology Letters, 2008, 11(5): 470-480.
|
56 |
PARNELL A C, INGER R, BEARHOP S, et al. Source partitioning using stable isotopes: coping with too much variation[J]. PLoS ONE, 2010, 5(3). DOI:10.1371/journal.pone.0009672 .
|
57 |
ROSE T, TÉLOUK P, KLEIN S, et al. Questioning Fe isotopes as a provenance tool: insights from bog iron ores and alternative applications in archeometry[J]. Journal of Archaeological Science, 2019, 101: 52-62.
|
58 |
FOWLER R H. The mathematical theory of non-uniform gases[J]. Nature, 1939, 144: 993-995.
|
59 |
LANGMUIR I. The evaporation, condensation and reflection of molecules and the mechanism of adsorption[J]. Physical Review, 1916, 8(2): 149-176.
|
60 |
KNUDSEN M. Molecular effusion and transpiration[J]. Nature, 1909, 80: 491-492.
|
61 |
YANG J L, LI Y B, LIU S Q, et al. Theoretical calculations of Cd isotope fractionation in hydrothermal fluids[J]. Chemical Geology, 2015, 391: 74-82.
|
62 |
NI P, MACRIS C A, DARLING E A, et al. Evaporation-induced copper isotope fractionation: insights from laser levitation experiments[J]. Geochimica et Cosmochimica Acta, 2021, 298: 131-148.
|
63 |
CAI H M, CHEN J B. Mass-independent fractionation of even mercury isotopes[J]. Science Bulletin, 2016, 61(2): 116-124.
|
64 |
SOSSI P A, MOYNIER F, TREILLES R, et al. An experimentally-determined general formalism for evaporation and isotope fractionation of Cu and Zn from silicate melts between 1 300 and 1 500 °C and 1 bar[J]. Geochimica et Cosmochimica Acta, 2020, 288: 316-340.
|
65 |
WOMBACHER F, REHKAMPER M, MEZGER K. Determination of the mass-dependence of cadmium isotope fractionation during evaporation[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2 349-2 357.
|
66 |
MARECHAL C N, TELOUK P, ALBAREDE F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 156(1/4): 251-273.
|
67 |
MATTIELLI N, PETIT J C J, DEBOUDT K, et al. Zn isotope study of atmospheric emissions and dry depositions within a 5 km radius of a Pb-Zn refinery[J]. Atmospheric Environment, 2009, 43(6): 1 265-1 272.
|
68 |
BIGALKE M, WEYER S, KOBZA J, et al. Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6 801-6 813.
|
69 |
CLOQUET C, CARIGNAN J, LEHMANN M F, et al. Variation in the isotopic composition of zinc in the natural environment and the use of zinc isotopes in biogeosciences: a review[J]. Analytical and Bioanalytical Chemistry, 2008, 390(2): 451-63.
|
70 |
FEKIACOVA Z, CORNU S, PICHAT S. Tracing contamination sources in soils with Cu and Zn isotopic ratios[J]. Science of the Total Environment, 2015, 517: 96-105.
|
71 |
SIVRY Y, RIOTTE J, SONKE J E, et al. Zn isotopes as tracers of anthropogenic pollution from Zn-ore smelters the Riou Mort-Lot River system[J]. Chemical Geology, 2008, 255(3/4): 295-304.
|
72 |
SHIEL A E, WEIS D, ORIANS K J. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining[J]. Science of the Total Environment, 2010, 408(11): 2 357-2 368.
|
73 |
CHRASTNÝ V, ČADKOVÁ E, VANĚK A, et al. Cadmium isotope fractionation within the soil profile complicates source identification in relation to Pb-Zn mining and smelting processes[J]. Chemical Geology, 2015, 405: 1-9.
|
74 |
ZHOU Y T, HE H P, WANG J, et al. Stable isotope fractionation of thallium as novel evidence for its geochemical transfer during leadzinc smelting activities[J]. Science of the Total Environment, 2022, 803. DOI:10.1016/j.scitotenv.2021.150036 .
|
75 |
GORDON R B, GRAEDEL T E, BERTRAM M, et al. The characterization of technological zinc cycles[J]. Resources, Conservation and Recycling, 2003, 39(2): 107-135.
|
76 |
RODUSHKIN I, STENBERG A, ANDREN H, et al. Isotopic fractionation during diffusion of transition metal ions in solution[J]. Analytical Chemistry, 2004, 76(7): 2 148-2 151.
|
77 |
KAVNER A, BONET F, SHAHAR A, et al. The isotopic effects of electron transfer: an explanation for Fe isotope fractionation in nature[J]. Geochimica et Cosmochimica Acta, 2005, 69(12): 2 971-2 979.
|
78 |
KAVNER A, JOHN S G, SASS S, et al. Redox-driven stable isotope fractionation in transition metals: application to Zn electroplating[J]. Geochimica et Cosmochimica Acta, 2008, 72(7): 1 731-1 741.
|
79 |
BLACK J R, JOHN S G, KAVNER A. Coupled effects of temperature and mass transport on the isotope fractionation of zinc during electroplating[J]. Geochimica et Cosmochimica Acta, 2014, 124: 272-282.
|
80 |
TONHÁ M S, GARNIER J, ARAUJO D F, et al. Behavior of metallurgical zinc contamination in coastal environments: a survey of Zn from electroplating wastes and partitioning in sediments[J]. Science of the Total Environment, 2020, 743. DOI: 10.1016/j.scitotenv.2020.140610 .
|
81 |
BIGALKE M, WEYER S, WILCKE W. Stable Cu isotope fractionation in soils during oxic weathering and podzolization[J]. Geochimica et Cosmochimica Acta, 2011, 75(11): 3 119-3 134.
|
82 |
ARCHER C, VANCE D. Mass discrimination correction in multiple-collector plasma source mass spectrometry: an example using Cu and Zn isotopes[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(5): 656-665.
|
83 |
EHRLICH S, BUTLER I, HALICZ L, et al. Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite, CuS[J]. Chemical Geology, 2004, 209(3/4): 259-269.
|
84 |
GUILBAUD R, BUTLER I B, ELLAM R M, et al. Fe isotope exchange between Fe(II)(aq) and nanoparticulate mackinawite (FeSm) during nanoparticle growth[J]. Earth and Planetary Science Letters, 2010, 300(1/2): 174-183.
|
85 |
WU L L, DRUSCHEL G, FINDLAY A, et al. Experimental determination of iron isotope fractionations among Fe a q 2 + -FeSaq-Mackinawite at low temperatures: implications for the rock record[J]. Geochimica et Cosmochimica Acta, 2012, 89: 46-61.
|
86 |
KAFANTARIS F C A, BORROK D M. Zinc isotope fractionation during surface adsorption and intracellular incorporation by bacteria[J]. Chemical Geology, 2014, 366: 42-51.
|
87 |
GELABERT A, POKROVSKY O, SCHOTT J, et al. Metal adsorption by diatoms: a surface complexation model[J]. Geochimica et Cosmochimica Acta, 2006, 70(18). DOI: 10.1016/j.gca.2006.06.397 .
|
88 |
GELABERT A, POKROVSKY O S, REGUANT C, et al. A surface complexation model for cadmium and lead adsorption onto diatom surface[J]. Journal of Geochemical Exploration, 2006, 88(1/3): 110-113.
|
89 |
COUTAUD A, MEHEUT M, VIERS J, et al. Zn isotope fractionation during interaction with phototrophic biofilm[J]. Chemical Geology, 2014, 390: 46-60.
|
90 |
POKROVSKY O S, VIERS J, EMNOVA E E, et al. Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr)oxides: possible structural control[J]. Geochimica et Cosmochimica Acta, 2008, 72(7): 1 742-1 757.
|
91 |
NAVARRETE J U, BORROK D M, VIVEROS M, et al. Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria[J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 784-799.
|
92 |
DUCHER M, BLANCHARD M, BALAN E. Equilibrium isotopic fractionation between aqueous Zn and minerals from first-principles calculations[J]. Chemical Geology, 2018, 483: 342-350.
|
93 |
DUCHER M, BLANCHARD M, BALAN E. Equilibrium zinc isotope fractionation in Zn-bearing minerals from first-principles calculations[J]. Chemical Geology, 2016, 443: 87-96.
|
94 |
BIGALKE M, WEYER S, WILCKE W. Copper isotope fractionation during complexation with insolubilized humic acid[J]. Environmental Science & Technology, 2010, 44: 5 496-5 502.
|
95 |
FUJII T, MOYNIER F, BLICHERT T J, et al. Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments[J]. Geochimica et Cosmochimica Acta, 2014, 140: 553-576.
|
96 |
MATTHIES R, KRAHÉ L, BLOWES D W. Zinc stable isotope fractionation upon accelerated oxidative weathering of sulfidic mine waste[J]. Science of the Total Environment, 2014, 487: 97-101.
|
97 |
ZHANG Y X, WEN H J, ZHU C W, et al. Cd isotope fractionation during simulated and natural weathering[J]. Environmental Pollution, 2016, 216: 9-17.
|
98 |
ROEBBERT Y, RABE K, LAZAROV M, et al. Fractionation of Fe and Cu isotopes in acid mine tailings: modification and application of a sequential extraction method[J]. Chemical Geology, 2018, 493: 67-79.
|
99 |
ZHANG Miaoyue, YIN Wei, WANG Yi, et al. Research progress on the environmental behavior of heavy metals in soil tracing by stable isotopes[J]. Acta Pedologica Sinica, 2022,59(5):1 215-1 227.
|
|
张妙月,尹威,王毅,等. 稳定同位素示踪土壤中重金属环境行为的研究进展[J]. 土壤学报, 2022,59(5):1 215-1 227.
|
100 |
OCHOA G R, WEISS D. Zinc isotope variability in three coal-fired power plants: a predictive model for determining isotopic fractionation during combustion[J]. Environmental Science & Technology, 2015, 49(20): 12 560-12 567.
|
101 |
JUILLOT F, MARÉCHAL C, MORIN G, et al. Contrasting isotopic signatures between anthropogenic and geogenic Zn and evidence for post-depositional fractionation processes in smelter-impacted soils from northern France[J]. Geochimica et Cosmochimica Acta, 2011, 75(9): 2 295-2 308.
|
102 |
WANG D D, ZHENG L G, REN M X, et al. Zinc in soil reflecting the intensive coal mining activities: evidence from stable zinc isotopes analysis[J]. Ecotoxicology and Environmental Safety, 2022, 239. DOI: 10.1016/j.ecoenv.2022.113669 .
|
103 |
JUILLOT F, MARÉCHAL C, PONTHIEU M, et al. Zn isotopic fractionation caused by sorption on goethite and 2-Lines ferrihydrite[J]. Geochimica et Cosmochimica Acta, 2008, 72(19): 4 886-4 900.
|
104 |
LIU Y H, GAO T, XIA Y F, et al. Using Zn isotopes to trace Zn sources and migration pathways in paddy soils around mining area[J]. Environmental Pollution, 2020, 267. DOI:10.1016/j.envpol.2020.115616 .
|
105 |
XIA Y F, GAO T, LIU Y H, et al. Zinc isotope revealing zinc’s sources and transport processes in karst region[J]. Science of the Total Environment, 2020, 724. DOI:10.1016/j.scitotenv.2020.138191 .
|
106 |
CLOQUET C, CARIGNAN J, LIBOUREL G, et al. Tracing source pollution in soils using cadmium and lead isotopes[J]. Environmental Science & Technology, 2006, 40: 2 525-2 530.
|
107 |
ZHU C W, WEN H J, ZHANG Y H, et al. Characteristics of Cd isotopic compositions and their genetic significance in the lead-zinc deposits of SW China[J]. Science China Earth Sciences, 2013, 56(12): 2 056-2 065.
|
108 |
WEN H J, ZHANG Y H, CLOQUET C, et al. Tracing sources of pollution in soils from the Jinding Pb-Zn mining district in China using cadmium and lead isotopes[J]. Applied Geochemistry, 2015, 52: 147-154.
|
109 |
LI Haitao, YANG Xin, LEI Huaji, et al. Research progress of cadmium stable isotopes [J]. Rock and Mineral Analysis, 2021, 40(1): 1-15.
|
|
李海涛, 杨鑫, 雷华基, 等. 镉稳定同位素研究进展[J]. 岩矿测试, 2021, 40(1): 1-15.
|
110 |
WAN Dan, CHEN Jiubin, ZHANG Ting, et al. Cadmium isotope fractionation and its applicationsin tracing the source and fate of cadmium in the soil: a review[J]. Journal of RockandMineralAnalysis, 2012, 41(3): 341-352.
|
|
万丹, 陈玖斌, 张婷, 等. 镉同位素分馏及其在示踪土壤镉来源和迁移转化过程中的应用进展[J]. 岩矿测试, 2022, 41(3): 341-352.
|
111 |
IMSENG M, WIGGENHAUSER M, KELLER A, et al. Fate of Cd in agricultural soils: a stable isotope approach to anthropogenic impact, soil formation, and soil-plant cycling[J]. Environmental Science & Technology, 2018, 52(4): 1 919-1 928.
|
112 |
SALMANZADEH M, HARTLAND A, STIRLING C H, et al. Isotope tracing of long-term cadmium fluxes in an agricultural soil[J]. Environmental Science & Technology, 2017, 51(13): 7 369-7 377.
|
113 |
WIGGENHAUSER M, BIGALKE M, IMSENG M, et al. Using isotopes to trace freshly applied cadmium through mineral phosphorus fertilization in soil-fertilizer-plant systems[J]. Science of the Total Environment, 2019, 648: 779-786.
|
114 |
LI D D, LIU S A, LI S G. Copper isotope fractionation during adsorption onto kaolinite: experimental approach and applications[J]. Chemical Geology, 2015, 396: 74-82.
|
115 |
KUSONWIRIYAWONG C, BIGALKE M, CORNU S, et al. Response of copper concentrations and stable isotope ratios to artificial drainage in a French Retisol[J]. Geoderma, 2017, 300: 44-54.
|
116 |
VIERS J, GRANDE J A, ZOUITEN C, et al. Are Cu isotopes a useful tool to trace metal sources and processes in Acid Mine Drainage (AMD) context?[J]. Chemosphere, 2018, 193: 1 071-1 079.
|
117 |
WALL A J, MATHUR R, POST J E, et al. Cu isotope fractionation during bornite dissolution: an in situ X-ray diffraction analysis[J]. Ore Geology Reviews, 2011, 42(1): 62-70.
|
118 |
VANCE D, MATTHEWS A, KEECH A, et al. The behaviour of Cu and Zn isotopes during soil development: controls on the dissolved load of rivers[J]. Chemical Geology, 2016, 445: 36-53.
|
119 |
MATHUR R, JIN L, PRUSH V, et al. Cu isotopes and concentrations during weathering of black shale of the Marcellus Formation, Huntingdon County, Pennsylvania (USA)[J]. Chemical Geology, 2012, 304/305: 175-184.
|
120 |
LIU S A, TENG F Z, LI S, et al. Copper and iron isotope fractionation during weathering and pedogenesis: insights from saprolite profiles[J]. Geochimica et Cosmochimica Acta, 2014, 146: 59-75.
|
121 |
El AZZI D, VIERS J, GUIRESSE M, et al. Origin and fate of copper in a small Mediterranean vineyard catchment: new insights from combined chemical extraction and delta 65Cu isotopic composition[J]. Science of the Total Environment, 2013, 463/464: 91-101.
|
122 |
BLOTEVOGEL S, SCHRECK E, AUDRY S, et al. Contribution of soil elemental contents and Cu and Sr isotope ratios to the understanding of pedogenetic processes and mechanisms involved in the soil-to-grape transfer (Soave vineyard, Italy)[J]. Geoderma, 2019, 343: 72-85.
|
123 |
BIGALKE M, KERSTEN M, WEYER S, et al. Isotopes trace biogeochemistry and sources of Cu and Zn in an intertidal soil[J]. Soil Science Society of America Journal, 2013, 77(2): 680-691.
|
124 |
KŘÍBEK B, ŠÍPKOVÁ A, ETTLER V, et al. Variability of the copper isotopic composition in soil and grass affected by mining and smelting in Tsumeb, Namibia[J]. Chemical Geology, 2018, 493: 121-135.
|
125 |
DÓTOR-ALMAZÁN A, ARMIENTA-HERNÁNDEZ M A, TALAVERA-MENDOZA O, et al. Geochemical behavior of Cu and sulfur isotopes in the tropical mining region of Taxco, Guerrero (southern Mexico)[J]. Chemical Geology, 2017, 471: 1-12.
|
126 |
MIHALJEVIČ M, BAIETA R, ETTLER V, et al. Tracing the metal dynamics in semi-arid soils near mine tailings using stable Cu and Pb isotopes[J]. Chemical Geology, 2019, 515: 61-76.
|
127 |
ŠILLEROVÁ H, CHRASTNY V, VITKOVA M, et al. Stable isotope tracing of Ni and Cu pollution in North-East Norway: potentials and drawbacks[J]. Environmental Pollution, 2017, 228: 149-157.
|
128 |
JIMENEZ-MORENO M, BARRE J P G, PERROT V, et al. Sources and fate of mercury pollution in Almaden mining district (Spain): evidences from mercury isotopic compositions in sediments and lichens[J]. Chemosphere, 2016, 147: 430-438.
|
129 |
JISKRA M, WIEDERHOLD J G, BOURDON B, et al. Solution speciation controls mercury isotope fractionation of Hg(II) sorption to goethite[J]. Environmental Science & Technology, 2012, 46(12): 6 654-6 662.
|
130 |
GHOSH S, SCHAUBLE E A, COULOUME G L, et al. Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid-vapor evaporation experiments[J]. Chemical Geology, 2013, 336: 5-12.
|
131 |
BLUM J D, JOHNSON M W. Recent developments in mercury stable isotope analysis[J]. Reviews in Mineralogy and Geochemistry, 2017, 82: 733-757.
|
132 |
PRIBIL M J, RIMONDI V, COSTAGLIOLA P, et al. Assessing mercury distribution using isotopic fractionation of mercury processes and sources adjacent and downstream of a legacy mine district in Tuscany, Italy[J]. Applied Geochemistry, 2020, 117. DOI:10.1016/j.apgeochem.2020.104600 .
|
133 |
CAO F, MENG M, SHAN B, et al. Source apportionment of mercury in surface soils near the Wuda coal fire area in Inner Mongolia, China[J]. Chemosphere, 2021, 263. DOI:10.1016/j.chemosphere.2020.128348 .
|
134 |
ZHU W, LI Z G, LI P, et al. Re-emission of legacy mercury from soil adjacent to closed point sources of Hg emission[J]. Environmental Pollution, 2018, 242(Pt A): 718-727.
|
135 |
BAPTISTA-SALAZAR C, HINTELMANN H, BIESTER H. Distribution of mercury species and mercury isotope ratios in soils and river suspended matter of a mercury mining area[J]. Environmental Science: Processes & Impacts, 2018, 20(4): 621-631.
|
136 |
QIU Xiaofei, LU Shansong, TAN Juanjuan, et al. Advances in Tl isotopic analysis and its geological application[J]. Earth Science—Journal of China University of Geosciences, 2014, 29(6): 705-714.
|
|
邱啸飞,卢山松,谭娟娟,等. 铊同位素分析技术及其在地学中的应用[J]. 地球科学——中国地质大学学报, 2014, 29(6): 705-714.
|
137 |
JIA Yanlong, XIAO Tangfu, NING Zengping, et al. Thallium isotopes and environmental tracing[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(3): 311-315.
|
|
贾彦龙,肖唐付,宁曾平,等. 铊同位素及环境示踪研究进展[J]. 矿物岩石地球化学通报, 2010, 29(3): 311-315.
|
138 |
HOWARTH S, PRYTULAK J, LITTLE S H, et al. Thallium concentration and thallium isotope composition of lateritic terrains[J]. Geochimica et Cosmochimica Acta, 2018, 239: 446-462.
|
139 |
KERSTEN M, XIAO T, KREISSIG K, et al. Tracing anthropogenic thallium in soil using stable isotope compositions[J]. Environmental Science & Technology, 2014, 48(16): 9 030-9 036.
|
140 |
VANÉK A, VEJVODOVA K, MIHALJEVIC M, et al. Thallium and lead variations in a contaminated peatland: a combined isotopic study from a mining/smelting area[J]. Environmental Pollution, 2021, 290. DOI:10.1016/j.envpol.2021.117973 .
|
141 |
GROSSLOVA Z, VANÉK A, OBORNA V, et al. Thallium contamination of desert soil in Namibia: chemical, mineralogical and isotopic insights[J]. Environmental Pollution, 2018, 239: 272-280.
|
142 |
VANÉK A, GROSSLOVA Z, MIHALJEVIC M, et al. Isotopic tracing of thallium contamination in soils affected by emissions from coal-fired power plants[J]. Environmental Science & Technology, 2016, 50(18): 9 864-9 871.
|
143 |
VANÉK A, GROSSLOVA Z, MIHALJEVIC M, et al. Thallium isotopes in metallurgical wastes/contaminated soils: a novel tool to trace metal source and behavior[J]. Journal of Hazardous Materials, 2018, 343: 78-85.
|
144 |
RATIÉ G, QUANTIN C, JOUVIN D, et al. Nickel isotope fractionation during laterite Ni ore smelting and refining: implications for tracing the sources of Ni in smelter-affected soils[J]. Applied Geochemistry, 2016, 64: 136-145.
|
145 |
RATIÉ G, QUANTIN C, MAIA D F A, et al. The behavior of nickel isotopes at the biogeochemical interface between ultramafic soils and Ni accumulator species[J]. Journal of Geochemical Exploration, 2019, 196: 182-191.
|
146 |
ZELANO I O, CLOQUET C, van der ENT A, et al. Coupling nickel chemical speciation and isotope ratios to decipher nickel dynamics in the Rinorea cf. bengalensis-soil system in Malaysian Borneo[J]. Plant Soil, 2020, 454(1/2): 225-243.
|
147 |
ZELANO I O, CLOQUET C, FRAYSSE F, et al. The influence of organic complexation on Ni isotopic fractionation and Ni recycling in the upper soil layers[J]. Chemical Geology, 2018, 483: 47-55.
|
148 |
WASYLENKI L E, HOWE H D, SPIVAK-BIRNDORF L J, et al. Ni isotope fractionation during sorption to ferrihydrite: implications for Ni in banded iron formations[J]. Chemical Geology, 2015, 400: 56-64.
|
149 |
RATIÉ G, JOUVIN D, GARNIER J, et al. Nickel isotope fractionation during tropical weathering of ultramafic rocks[J]. Chemical Geology, 2015, 402: 68-76.
|
150 |
WANG S J, WASYLENKI L E. Experimental constraints on reconstruction of Archean seawater Ni isotopic composition from banded iron formations[J]. Geochimica et Cosmochimica Acta, 2017, 206: 137-150.
|
151 |
CHETELAT J, NIELSEN S G, AURO M, et al. Vanadium stable isotopes in biota of terrestrial and aquatic food chains[J]. Environmental Science & Technology, 2021, 55(8): 4 813-4 821.
|
152 |
HUANG Y, LONG Z J, ZHOU D, et al. Fingerprinting vanadium in soils based on speciation characteristics and isotope compositions[J]. Science of the Total Environment, 2021, 791. DOI:10.1016/j.scitotenv.2021.148240 .
|
153 |
QIN Aihua, YU Chengguang, LI Kuo, et al. Mining of Chaihe Pb-Zn deposit in Liaoning Province and reconstruction of its heavy metal pollution record[J]. Geoscience, 2014, 28(3): 537-543.
|
|
秦爱华,于成广,李括,等. 辽宁省柴河铅锌矿开采与重金属污染历史重建[J]. 现代地质, 2014, 28(3): 537-543.
|
154 |
SYMEONIDES C. Tree-ring analysis for tracing the history of pollution-application to a study in northern Sweden[J]. Journal of Environmental Quality, 1979, 8(4): 482-486.
|
155 |
THEVENON F, GUÉDRON S, CHIARADIA M, et al. (Pre-) historic changes in natural and anthropogenic heavy metals deposition inferred from two contrasting Swiss Alpine lakes[J]. Quaternary Science Reviews, 2011, 30(1/2): 224-233.
|
156 |
COUILLARD Y, CATTANEO A, GALLON C, et al. Sources and chronology of fifteen elements in the sediments of lakes affected by metal deposition in a mining area[J]. Journal of Paleolimnology, 2007, 40(1): 97-114.
|