地球科学进展 ›› 2023, Vol. 38 ›› Issue (4): 331 -348. doi: 10.11867/j.issn.1001-8166.2022.088

综述与评述    下一篇

基于金属稳定同位素的矿冶影响区土壤重金属污染源解析研究进展
夏亚飞 1 , 2( ), 刘宇晖 1 , 2, 高庭 1, 刘承帅 1( )   
  1. 1.中国科学院地球化学研究所环境地球化学国家重点实验室, 贵州 贵阳 550081
    2.中国科学院大学, ?北京 100049
  • 收稿日期:2022-04-19 修回日期:2022-12-04 出版日期:2023-04-04
  • 通讯作者: 刘承帅 E-mail:xiayafei@mail.gyig.ac.cn;liuchengshuai@vip.gyig.ac.cn
  • 基金资助:
    国家自然科学基金杰出青年科学基金项目“元素环境地球化学”(42025705);中国科学院前沿科学重点研究项目“基于结构分异的喀斯特矿区土壤重金属污染行为机制”(QYZDB-SSW-DQC046)

Advances in the Application of Metal Stable Isotopes for the Identification of Heavy Metal Sources in Soil in Mining- and Smelting-Affected Areas

Yafei XIA 1 , 2( ), Yuhui LIU 1 , 2, Ting GAO 1, Chengshuai LIU 1( )   

  1. 1.State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-04-19 Revised:2022-12-04 Online:2023-04-04 Published:2023-04-18
  • Contact: Chengshuai LIU E-mail:xiayafei@mail.gyig.ac.cn;liuchengshuai@vip.gyig.ac.cn
  • About author:XIA Yafei (1994-), female, Zunyi County, Guizhou Province, Ph. D student. Research areas include environmental isotope geochemistry. E-mail: xiayafei@mail.gyig.ac.cn
  • Supported by:
    the National Science Foundation for Distinguished Young Scholars of China “Environmental geochemistry of elements”(42025705);The Key Research Project of Frontier Science, Chinese Academy of Sciences “Mechanism of heavy metal pollution behavior in karst mining soil based on structural differentiation”(QYZDB-SSW-DQC046)

矿冶影响区重金属的迁移和富集造成了严重的土壤重金属污染问题。深入了解矿冶影响区土壤中重金属的来源和迁移途径是开展土壤重金属污染高效治理的科学基础。近年来飞速发展的金属稳定同位素在识别土壤重金属污染来源和明确重金属迁移过程等方面有较大的应用优势。对金属稳定同位素分析技术、示踪原理及溯源模型进行系统分析,综述了矿产开采及冶炼过程(高温冶炼、电化学工艺和尾矿风化)导致的金属稳定同位素分馏研究进展,并总结了金属稳定同位素在矿冶影响区土壤重金属污染源解析的代表性应用成果。V同位素体系处于初期研究阶段,土壤重金属源解析应用研究相对缺乏;Zn、Cd和Hg同位素在识别高温冶炼过程相关的重金属污染源时有较大优势;Cu、Tl和Ni同位素可直接指示土壤中矿石的输入。但是,目前还存在部分金属稳定同位素分析难度大、溯源模型应用限制多、金属同位素易发生分馏导致源不确定等问题。在未来的工作中,需进一步探索和优化金属同位素分析方法,建立更多金属稳定同位素指纹图谱,开发适用性更强、结果更精确的溯源模型,明确复杂界面过程和反应中的金属稳定同位素分馏特征及机理,加强金属稳定同位素在追溯土壤重金属污染形成的时间尺度等方面的实际应用。

Heavy metal migration and enrichment in areas affected by mining and smelting cause severe soil contamination. A thorough understanding of the sources and migration of heavy metals in the soil is the scientific basis for the efficient treatment of soil pollution. In recent years, metal stable isotopes have shown great advantages in identifying sources of soil heavy metal contamination and analyzing heavy metal migration processes, thus acting as powerful tools to trace the environmental behavior of heavy metals. In this paper, we reviewed the analysis technology, tracing principles, and tracing models of metal stable isotopes, determined the isotope fractionations caused by mineral mining and smelting processes (high-temperature smelting, electrochemical processes, and tailing weathering), and discussed the representative applications of metal stable isotopes in the traceability of soil pollution in mining- and smelting-affected areas. The V isotope system is in the initial stages of investigation, and its applications in heavy metal soil source analysis are relatively lacking. Zn, Cd, and Hg isotopes are advantageous for identifying heavy metal contamination sources associated with high-temperature smelting processes. Cu, Tl, and Ni isotopes can directly indicate the ore content of the soil. However, some problems remain, such as the difficulty in analyzing certain systems of metallic stable isotopes, limitations in the application of tracer models, and source uncertainties due to isotope fractionation. Therefore, in the future, it will be necessary to further explore and optimize metal isotope analysis methods, establish more metal stable isotope fingerprints, develop traceability models with stronger applicability and more accurate results, comprehend the characteristics and mechanisms of isotope fractionation in complex interfacial processes and reactions, and strengthen the practical application of metal stable isotopes to trace the history of soil heavy metal pollution.

中图分类号: 

图1 金属稳定同位素土壤重金属污染源解析的基本原理
(a)2个同位素特征相反、贡献相同的端元的混合( δ为同位素组成, f为贡献比例,蓝色方体代表端元A,橙色方体代表端元B);(b)不同贡献( f A=3× f B)、同位素特征相反的端元的混合(蓝色方体代表端元A,橙色方体代表端元B);(c)不同贡献( f A=3× f B)、不同同位素特征的端元的混合(蓝色方体代表端元A,橙色方体代表端元B);(d)金属冶炼厂高温冶炼过程中金属稳定同位素分馏示意图,在该例子中,Cd同位素分馏表现为重Cd同位素( δ 1)优先进入矿渣中,轻Cd同位素( δ 2)在气相中富集;(e)矿冶影响区周边农田土壤系统金属同位素示踪污染的示意图,该系统可以通过金属同位素特征来定量高温冶炼(A)、矿产开采(B)、化肥(C)3个端元对农田土壤的相对贡献率
Fig.1 Principles of source apportionment of soil metals with metal stable isotopes
(a) Depicts the mass balance between two metal pools of opposite isotope signatures and equal size ( δ is the isotope composition, f is the contribution ratio, blue and orange cubes represent endmember A and B, respectively); (b) The mixing of different pool sizes ( f A = 3× f B) and opposite isotope signatures (blue and orange cubes represent endmember A and B, respectively); (c) The mixing of pools with different sizes ( f A = 3× f B) and different isotope characteristics (blue and red cubes represent endmember A and B, respectively); (d) A schematic diagram of metal stable isotope fractionation during high-temperature smelting in a metal smelter. In this example, Cd isotope fractionation appears as heavy Cd isotopes ( δ 1) preferentially enter the slag and light Cd isotopes ( δ 2) are enriched in the gas phase; (e) Illustrates a schematic example of a farmland soil system for which the relative fractions of endmember A, B, and C metal sources can be quantified by metal isotope signatures
图2 金属稳定同位素特征示踪土壤污染的端元混合模型原理示意图
混合模型基本原理为稳定同位素质量守恒。(a)线性混合模型中的二元、三元混合模型,该系统可以得到贡献率的唯一组合;(b)多源情况下的数学不确定系统,IsoSource模型和SIAR模型等适用( f 1 、f 2 、f 3 、f 4 、fn 为各污染端元的贡献率, δM表示金属稳定同位素组成, δM1和 δM2分别表示2种不同的金属稳定同位素, C表示浓度)
Fig. 2 Schematic illustration of the principles of mixing models used for source tracing with metal stable isotope signatures
The rationale is the conservation of stable isotope mass. (a) The binary and ternary mixing in the linear mixed model, the system can obtain the only combination of contribution rates; (b) The mathematical uncertainty system in the case of multiple sources, and the IsoSource model and the SIAR model are applicable ( f 1f 2f 3f 4,…, and fn are the contribution of each endmember; δM represents the metal stable isotopes, δM1 and δM2 represent two different metal stable isotopes, respectively, and C represents the concentration)
图3 矿冶影响区土壤重金属源及迁移过程解析的金属稳定同位素体系总结
Fig. 3 Overview of the reviewed stable isotope systems that be used for the source apportionment of soil metals in mining- and smelting-affected areas
1 MARTINS W B R, RODRIGUES J I D, de OLIVEIRA V P, et al. Mining in the Amazon: importance, impacts, and challenges to restore degraded ecosystems. Are we on the right way?[J]. Ecological Engineering, 2022, 174. DOI:10.1016/j.ecoleng.2021.106468 .
2 WANG Haiyang, HAN Ling, XIE Danni, et al. Distribution characteristics of heavy metals in farmland soils around mining areas and pollution assessment[J]. Journal of Environmental Sciences, 2022, 43(4): 2 104-2 114.
王海洋,韩玲,谢丹妮,等. 矿区周边农田土壤重金属分布特征及污染评价[J]. 环境科学学报, 2022,43(4):2 104-2 114.
3 LUO Xin, YANG Yixin, AO Yanhuan. Research progress on remediation technology of heavy metal pollution in mining area[J]. Journal of North China Institute of Science and Technology, 2019, 16(1): 49-54,62.
骆欣,杨怡心,敖燕环. 矿区土壤重金属污染修复技术研究进展[J]. 华北科技学院学报, 2019, 16(1): 49-54,62.
4 LI Linli, HUANG Xiaofeng, ZHAO Dan, et al. Review on migration, transformation and treatment of soil heavymetals in mercury mining area[J]. Nonferrous Metals Engineering, 2022,12(2):128-137.
李琳丽,黄小凤,赵丹,等. 汞矿区土壤重金属迁移转化及治理技术研究综述[J]. 有色金属工程, 2022,12(2):128-137.
5 LIU Y H, XIA Y F, WANG Z R, et al. Lithologic controls on the mobility of Cd in mining-impacted watersheds revealed by stable Cd isotopes[J]. Water Research, 2022, 220. DOI:10.1016/j.watres.2022.118619 .
6 ZHANG L, ZHOU H, CHEN X, et al. Study of the micromorphology and health risks of arsenic in copper smelting slag tailings for safe resource utilization[J]. Ecotoxicology and Environmental Safety, 2021, 219. DOI:10.1016/j.ecoenv.2021.112321 .
7 JARUP L. Hazards of heavy metal contamination[J]. British Medical Bulletin, 2003, 68: 167-182.
8 DIACONU M, PAVEL L V, HLIHOR R M, et al. Characterization of heavy metal toxicity in some plants and microorganisms—a preliminary approach for environmental bioremediation[J]. New Biotechnol, 2020, 56: 130-139.
9 ABLIZ A, SHI Q D, KEYIMU M, et al. Spatial distribution, source, and risk assessment of soil toxic metals in the coal-mining region of northwestern China[J]. Arabian Journal of Geosciences, 2018, 11(24). DOI:10.1007/s12517-018-4152-8 .
10 SATAPATHY S, PANDA C R. Source identification, environmental risk assessment and human health risks associated with toxic elements present in a coastal industrial environment, India[J]. Environmental Geochemistry and Health, 2018, 40(6): 2 243-2 257.
11 TAO X Z, WU P, TANG C Y, et al. Effect of acid mine drainage on a karst basin: a case study on the high-As coal mining area in Guizhou province, China[J]. Environmental Earth Sciences, 2012, 65(3): 631-638.
12 CHEN Y. Pollution status of heavy metals in China’s metallic mining areas and treatment measures concerned [C]// HU Z. Legislation, technology and practice of mine land reclamation. USA: CRC Press, 2014: 451-458.
13 WIEDERHOLD J G. Metal stable isotope signatures as tracers in environmental geochemistry[J]. Environmental Science & Technology, 2015, 49(5): 2 606-2 624.
14 YAN Ying, ZHANG Xiaowen, GUO Boli. Applications of lead-cadmium-zinc-mercury stable isotopes in source identification of heavy metal pollutions[J] Environmental Chemistry, 2020, 39(10): 2 712-2 721.
闫颖,张晓文,郭波莉. 铅—镉—锌—汞稳定同位素在重金属污染源解析中的研究进展[J]. 环境化学, 2020, 39(10): 2 712-2 721.
15 CHEN Yali, WENG Liping, MA Jie, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environmental Sciences, 2019, 38(10): 2 219-2 238.
陈雅丽,翁莉萍,马杰,等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019, 38(10): 2 219-2 238.
16 WANG L W, JIN Y L, WEISS D J, et al. Possible application of stable isotope compositions for the identification of metal sources in soil[J]. Journal of Hazardous Materials, 2021, 407. DOI:10.1016/j.jhazmat.2020.124812 .
17 QIN Jianqiao, FAN Chen, HUANG Tao, et al. Analytical method and application of soil heavy metal source[J]. Anhui Agricultural Sciences, 2019, 47(20): 80-82.
秦建桥,凡宸,黄涛,等. 土壤重金属源解析研究方法与应用[J]. 安徽农业科学, 2019, 47(20): 80-82.
18 WU Di, DONG Bin, WEI Haidong. Review of soil heavy metal pollution sources[J]. Anhui Agricultural Science Bulletin, 2017(23): 58-60.
吴迪,董彬,尉海东. 土壤重金属污染来源研究综述[J]. 安徽农学通报, 2017(23): 58-60.
19 LI Z Y, MA Z W, van der KUIJP T J, et al. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468/469: 843-853.
20 RATNAYAKE D M, TANAKA R, NAKAMURA E. Novel nickel isolation procedure for a wide range of sample matrices without using dimethylglyoxime for isotope measurements using MC-ICP-MS[J]. Analytica Chimica Acta, 2021: 1181. DOI:10.1016/j.aca.2021.338934 .
21 SUN M Z, ARCHER C, VANCE D. New methods for the chemical isolation and stable isotope measurement of multiple transition metals, with application to the Earth sciences[J]. Geostandards and Geoanalytical Research, 2021, 45(4): 643-658.
22 GALL L, WILLIAMS H M, SIEBERT C, et al. Nickel isotopic compositions of ferromanganese crusts and the constancy of deep ocean inputs and continental weathering effects over the Cenozoic[J]. Earth and Planetary Science Letters, 2013, 375: 148-155.
23 TAN D C, ZHU J M, WANG X L, et al. High-sensitivity determination of Cd isotopes in low-Cd geological samples by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(4): 713-727.
24 WU G L, ZHU J M, WANG X L, et al. High-sensitivity measurement of Cr isotopes by double spike MC-ICP-MS at the 10 ng level[J]. Analytical Chemistry, 2020, 92(1): 1 463-1 469.
25 CREECH J B, MOYNIER F, BADULLOVICH N. Tin stable isotope analysis of geological materials by double-spike MC-ICPMS[J]. Chemical Geology, 2017, 457: 61-67.
26 KOMÁREK M, RATIÉ G, VAŇKOVÁ Z, et al. Metal isotope complexation with environmentally relevant surfaces: opening the isotope fractionation black box[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(20): 3 573-3 603.
27 MIGASZEWSKI Z M, GAŁUSZKA A, DOŁĘGOWSKA S. Stable isotope geochemistry of acid mine drainage from the Wiśniówka area (south-central Poland)[J]. Applied Geochemistry, 2018, 95: 45-56.
28 MOYNIER F, VANCE D, FUJII T, et al. The isotope geochemistry of zinc and copper[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 543-600.
29 SHI Lin, ZHAO Dejun. Research progress of soil heavy metal pollution assessment methods in mining areas[J]. Cultural Geography, 2016(12): 74.
史琳,赵得军. 矿区土壤重金属污染评价方法研究进展[J]. 城市地理, 2016(12): 74.
30 GAN Fengwei, WANG Jingjing. Review of study on survey and remediation of soil contamination by heavy metalin nonferrous metal milling area[J]. Mineral Exploration, 2018, 9(5): 1 023-1 030.
甘凤伟,王菁菁. 有色金属矿区土壤重金属污染调查与修复研究进展[J]. 矿产勘查, 2018, 9(5): 1 023-1 030.
31 ZHOU Yi, HU Wenyou, HUANG Biao, et al. Current status and research progress of heavy metal pollution in soils surrounding highways of China[J]. Environmental Monitoring in China, 36(5): 112-120.
周怡,胡文友,黄标,等. 我国高速公路周边土壤重金属污染现状及研究进展[J]. 中国环境监测, 36(5): 112-120.
32 GUAGLIARDI I, CICCHELLA D, de ROSA R, et al. Assessment of lead pollution in topsoils of a southern Italy area: analysis of urban and peri-urban environment[J]. Journal of Environmental Sciences-China, 2015, 33: 179-187.
33 KHALIL A, HANICH L, HAKKOU R, et al. GIS-based environmental database for assessing the mine pollution: a case study of an abandoned mine site in Morocco[J]. Journal of Geochemical Exploration, 2014, 144: 468-477.
34 LI X, YANG H, ZHANG C, et al. Spatial distribution and transport characteristics of heavy metals around an antimony mine area in central China[J]. Chemosphere, 2017, 170: 17-24.
35 YUN S W, BAVEYE P C, KIM K B, et al. Effect of postmining land use on the spatial distribution of metal(loid)s and their transport in agricultural soils: analysis of a case study of Chungyang, South Korea[J]. Journal of Geochemical Exploration, 2016, 170: 157-166.
36 SCHONBACHLER M, REHKAMPER M, LEE D C, et al. Ion exchange chromatography and high precision isotopic measurements of zirconium by MC-ICP-MS[J]. Analyst, 2004, 129(1): 32-37.
37 SCHÖNBÄCHLER M. Ion exchange chromatography[M]//WHITE W M. Encyclopedia of geochemistry: a comprehensive reference source on the chemistry of the Earth. Cham: Springer International Publishing, 2018: 731-736.
38 SCHÖNBÄCHLER M, FEHR M. Basics of ion exchange chromatography for selected geological applications[M]. Oxford:Elsevier, 2013: 146.
39 PUDENZI M A, EBERLIN M N. Assessing relative electrospray ionization, atmospheric pressure photoionization, atmospheric pressure chemical ionization, and atmospheric pressure photo- and chemical ionization efficiencies in mass spectrometry petroleomic analysis via pools and pairs of selected polar compound standards[J]. Energy & Fuels, 2016, 30(9): 7 125-7 133.
40 VANHAECKE F, BALCAEN L, MALINOVSKY D. Use of single-collector and multi-collector ICP-mass spectrometry for isotopic analysis[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(7): 863-886.
41 BECKER J S. Recent developments in isotope analysis by advanced mass spectrometric techniques-plenary lecture[J]. Journal of Analytical Atomic Spectrometry, 2005, 20(11): 1 173-1 184.
42 CHEN Huanwen, HU Bin, ZHANG Xie. Fundamental principles and practical applications of ambient ionization mass spectrometry for direct analysis of complex samples[J]. Chinese Journal of Analytical Chemistry, 2010, 38(8): 1 069-1 088.
陈焕文,胡斌,张燮. 复杂样品质谱分析技术的原理与应用[J]. 分析化学, 2010, 38(8): 1 069-1 088.
43 TENG F Z, DAUPHAS N, WATKINS J M. Non-traditional stable isotopes: retrospective and prospective[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 1-26.
44 ZHANG Y, BAO Z, LV N, et al. Copper isotope ratio measurements of Cu-dominated minerals without column chromatography using MC-ICP-MS[J]. Frontiers in Chemistry, 2020, 8. DOI:10.3389/fchem.2020.00609 .
45 KIDDER J A, VOINOT A, SULLIVAN K V, et al. Improved ion-exchange column chromatography for Cu purification from high-Na matrices and isotopic analysis by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(4): 776-783.
46 ZHONG Q, ZHOU Y, TSANG D C W, et al. Cadmium isotopes as tracers in environmental studies: a review[J]. Science of the Total Environment, 2020, 736. DOI:10.1016/j.scitotenv.2020.139585 .
47 HUANG Fang, TIAN Shengyu. Recent progresses in several metal stable isotope systems: analytical methods, principles of tracing, and important applications[J]. Bulletin of Mineralogy, Petmlogy and Geochemistry, 2018, 37(5): 793-811.
黄方,田笙谕. 若干金属稳定同位素体系的研究进展:以中国科大实验室为例[J]. 矿物岩石地球化学通报, 2018, 37(5): 793-811.
48 YANG Juncheng, LI Guihua, JIANG Huimin, et al. Hotspot fields of isotopes tracing in agricultural science[J]. Journal of Isotopes, 2019, 32(3): 162-170.
杨俊诚,李桂花,姜慧敏,等. 同位素示踪农业应用的研究热点[J]. 同位素, 2019, 32(3): 162-170.
49 CHENG H, HU Y. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review[J]. Environmental Pollution, 2010, 158(5): 1 134-1 146.
50 YIN N H, SIVRY Y, BENEDETTI M F, et al. Application of Zn isotopes in environmental impact assessment of Zn-Pb metallurgical industries: a mini review[J]. Applied Geochemistry, 2016, 64: 128-135.
51 GUTTIKUNDA S K, JAWAHAR P. Atmospheric emissions and pollution from the coal-fired thermal power plants in India[J]. Atmospheric Environment, 2014, 92: 449-460.
52 AEBISCHER S, CLOQUET C, CARIGNAN J, et al. Disruption of the geochemical metal cycle during mining: multiple isotope studies of lake sediments from Schefferville, subarctic Québec[J]. Chemical Geology, 2015, 412: 167-178.
53 USEPA. Post-processing IsoSource results[Z/OL]. United States Environmental Protection Agency, 2016.[2022-01-10]. .
54 USEPA. Stable Isotope mixing models for estimating source proportions [Z/OL]. United States Environmental Protection Agency, 2017. [2022-01-10]. .
55 MOORE J W, SEMMENS B X. Incorporating uncertainty and prior information into stable isotope mixing models[J]. Ecology Letters, 2008, 11(5): 470-480.
56 PARNELL A C, INGER R, BEARHOP S, et al. Source partitioning using stable isotopes: coping with too much variation[J]. PLoS ONE, 2010, 5(3). DOI:10.1371/journal.pone.0009672 .
57 ROSE T, TÉLOUK P, KLEIN S, et al. Questioning Fe isotopes as a provenance tool: insights from bog iron ores and alternative applications in archeometry[J]. Journal of Archaeological Science, 2019, 101: 52-62.
58 FOWLER R H. The mathematical theory of non-uniform gases[J]. Nature, 1939, 144: 993-995.
59 LANGMUIR I. The evaporation, condensation and reflection of molecules and the mechanism of adsorption[J]. Physical Review, 1916, 8(2): 149-176.
60 KNUDSEN M. Molecular effusion and transpiration[J]. Nature, 1909, 80: 491-492.
61 YANG J L, LI Y B, LIU S Q, et al. Theoretical calculations of Cd isotope fractionation in hydrothermal fluids[J]. Chemical Geology, 2015, 391: 74-82.
62 NI P, MACRIS C A, DARLING E A, et al. Evaporation-induced copper isotope fractionation: insights from laser levitation experiments[J]. Geochimica et Cosmochimica Acta, 2021, 298: 131-148.
63 CAI H M, CHEN J B. Mass-independent fractionation of even mercury isotopes[J]. Science Bulletin, 2016, 61(2): 116-124.
64 SOSSI P A, MOYNIER F, TREILLES R, et al. An experimentally-determined general formalism for evaporation and isotope fractionation of Cu and Zn from silicate melts between 1 300 and 1 500 °C and 1 bar[J]. Geochimica et Cosmochimica Acta, 2020, 288: 316-340.
65 WOMBACHER F, REHKAMPER M, MEZGER K. Determination of the mass-dependence of cadmium isotope fractionation during evaporation[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2 349-2 357.
66 MARECHAL C N, TELOUK P, ALBAREDE F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 156(1/4): 251-273.
67 MATTIELLI N, PETIT J C J, DEBOUDT K, et al. Zn isotope study of atmospheric emissions and dry depositions within a 5 km radius of a Pb-Zn refinery[J]. Atmospheric Environment, 2009, 43(6): 1 265-1 272.
68 BIGALKE M, WEYER S, KOBZA J, et al. Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6 801-6 813.
69 CLOQUET C, CARIGNAN J, LEHMANN M F, et al. Variation in the isotopic composition of zinc in the natural environment and the use of zinc isotopes in biogeosciences: a review[J]. Analytical and Bioanalytical Chemistry, 2008, 390(2): 451-63.
70 FEKIACOVA Z, CORNU S, PICHAT S. Tracing contamination sources in soils with Cu and Zn isotopic ratios[J]. Science of the Total Environment, 2015, 517: 96-105.
71 SIVRY Y, RIOTTE J, SONKE J E, et al. Zn isotopes as tracers of anthropogenic pollution from Zn-ore smelters the Riou Mort-Lot River system[J]. Chemical Geology, 2008, 255(3/4): 295-304.
72 SHIEL A E, WEIS D, ORIANS K J. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining[J]. Science of the Total Environment, 2010, 408(11): 2 357-2 368.
73 CHRASTNÝ V, ČADKOVÁ E, VANĚK A, et al. Cadmium isotope fractionation within the soil profile complicates source identification in relation to Pb-Zn mining and smelting processes[J]. Chemical Geology, 2015, 405: 1-9.
74 ZHOU Y T, HE H P, WANG J, et al. Stable isotope fractionation of thallium as novel evidence for its geochemical transfer during leadzinc smelting activities[J]. Science of the Total Environment, 2022, 803. DOI:10.1016/j.scitotenv.2021.150036 .
75 GORDON R B, GRAEDEL T E, BERTRAM M, et al. The characterization of technological zinc cycles[J]. Resources, Conservation and Recycling, 2003, 39(2): 107-135.
76 RODUSHKIN I, STENBERG A, ANDREN H, et al. Isotopic fractionation during diffusion of transition metal ions in solution[J]. Analytical Chemistry, 2004, 76(7): 2 148-2 151.
77 KAVNER A, BONET F, SHAHAR A, et al. The isotopic effects of electron transfer: an explanation for Fe isotope fractionation in nature[J]. Geochimica et Cosmochimica Acta, 2005, 69(12): 2 971-2 979.
78 KAVNER A, JOHN S G, SASS S, et al. Redox-driven stable isotope fractionation in transition metals: application to Zn electroplating[J]. Geochimica et Cosmochimica Acta, 2008, 72(7): 1 731-1 741.
79 BLACK J R, JOHN S G, KAVNER A. Coupled effects of temperature and mass transport on the isotope fractionation of zinc during electroplating[J]. Geochimica et Cosmochimica Acta, 2014, 124: 272-282.
80 TONHÁ M S, GARNIER J, ARAUJO D F, et al. Behavior of metallurgical zinc contamination in coastal environments: a survey of Zn from electroplating wastes and partitioning in sediments[J]. Science of the Total Environment, 2020, 743. DOI: 10.1016/j.scitotenv.2020.140610 .
81 BIGALKE M, WEYER S, WILCKE W. Stable Cu isotope fractionation in soils during oxic weathering and podzolization[J]. Geochimica et Cosmochimica Acta, 2011, 75(11): 3 119-3 134.
82 ARCHER C, VANCE D. Mass discrimination correction in multiple-collector plasma source mass spectrometry: an example using Cu and Zn isotopes[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(5): 656-665.
83 EHRLICH S, BUTLER I, HALICZ L, et al. Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite, CuS[J]. Chemical Geology, 2004, 209(3/4): 259-269.
84 GUILBAUD R, BUTLER I B, ELLAM R M, et al. Fe isotope exchange between Fe(II)(aq) and nanoparticulate mackinawite (FeSm) during nanoparticle growth[J]. Earth and Planetary Science Letters, 2010, 300(1/2): 174-183.
85 WU L L, DRUSCHEL G, FINDLAY A, et al. Experimental determination of iron isotope fractionations among Fe a q 2 + -FeSaq-Mackinawite at low temperatures: implications for the rock record[J]. Geochimica et Cosmochimica Acta, 2012, 89: 46-61.
86 KAFANTARIS F C A, BORROK D M. Zinc isotope fractionation during surface adsorption and intracellular incorporation by bacteria[J]. Chemical Geology, 2014, 366: 42-51.
87 GELABERT A, POKROVSKY O, SCHOTT J, et al. Metal adsorption by diatoms: a surface complexation model[J]. Geochimica et Cosmochimica Acta, 2006, 70(18). DOI: 10.1016/j.gca.2006.06.397 .
88 GELABERT A, POKROVSKY O S, REGUANT C, et al. A surface complexation model for cadmium and lead adsorption onto diatom surface[J]. Journal of Geochemical Exploration, 2006, 88(1/3): 110-113.
89 COUTAUD A, MEHEUT M, VIERS J, et al. Zn isotope fractionation during interaction with phototrophic biofilm[J]. Chemical Geology, 2014, 390: 46-60.
90 POKROVSKY O S, VIERS J, EMNOVA E E, et al. Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr)oxides: possible structural control[J]. Geochimica et Cosmochimica Acta, 2008, 72(7): 1 742-1 757.
91 NAVARRETE J U, BORROK D M, VIVEROS M, et al. Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria[J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 784-799.
92 DUCHER M, BLANCHARD M, BALAN E. Equilibrium isotopic fractionation between aqueous Zn and minerals from first-principles calculations[J]. Chemical Geology, 2018, 483: 342-350.
93 DUCHER M, BLANCHARD M, BALAN E. Equilibrium zinc isotope fractionation in Zn-bearing minerals from first-principles calculations[J]. Chemical Geology, 2016, 443: 87-96.
94 BIGALKE M, WEYER S, WILCKE W. Copper isotope fractionation during complexation with insolubilized humic acid[J]. Environmental Science & Technology, 2010, 44: 5 496-5 502.
95 FUJII T, MOYNIER F, BLICHERT T J, et al. Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments[J]. Geochimica et Cosmochimica Acta, 2014, 140: 553-576.
96 MATTHIES R, KRAHÉ L, BLOWES D W. Zinc stable isotope fractionation upon accelerated oxidative weathering of sulfidic mine waste[J]. Science of the Total Environment, 2014, 487: 97-101.
97 ZHANG Y X, WEN H J, ZHU C W, et al. Cd isotope fractionation during simulated and natural weathering[J]. Environmental Pollution, 2016, 216: 9-17.
98 ROEBBERT Y, RABE K, LAZAROV M, et al. Fractionation of Fe and Cu isotopes in acid mine tailings: modification and application of a sequential extraction method[J]. Chemical Geology, 2018, 493: 67-79.
99 ZHANG Miaoyue, YIN Wei, WANG Yi, et al. Research progress on the environmental behavior of heavy metals in soil tracing by stable isotopes[J]. Acta Pedologica Sinica, 2022,59(5):1 215-1 227.
张妙月,尹威,王毅,等. 稳定同位素示踪土壤中重金属环境行为的研究进展[J]. 土壤学报, 2022,59(5):1 215-1 227.
100 OCHOA G R, WEISS D. Zinc isotope variability in three coal-fired power plants: a predictive model for determining isotopic fractionation during combustion[J]. Environmental Science & Technology, 2015, 49(20): 12 560-12 567.
101 JUILLOT F, MARÉCHAL C, MORIN G, et al. Contrasting isotopic signatures between anthropogenic and geogenic Zn and evidence for post-depositional fractionation processes in smelter-impacted soils from northern France[J]. Geochimica et Cosmochimica Acta, 2011, 75(9): 2 295-2 308.
102 WANG D D, ZHENG L G, REN M X, et al. Zinc in soil reflecting the intensive coal mining activities: evidence from stable zinc isotopes analysis[J]. Ecotoxicology and Environmental Safety, 2022, 239. DOI: 10.1016/j.ecoenv.2022.113669 .
103 JUILLOT F, MARÉCHAL C, PONTHIEU M, et al. Zn isotopic fractionation caused by sorption on goethite and 2-Lines ferrihydrite[J]. Geochimica et Cosmochimica Acta, 2008, 72(19): 4 886-4 900.
104 LIU Y H, GAO T, XIA Y F, et al. Using Zn isotopes to trace Zn sources and migration pathways in paddy soils around mining area[J]. Environmental Pollution, 2020, 267. DOI:10.1016/j.envpol.2020.115616 .
105 XIA Y F, GAO T, LIU Y H, et al. Zinc isotope revealing zinc’s sources and transport processes in karst region[J]. Science of the Total Environment, 2020, 724. DOI:10.1016/j.scitotenv.2020.138191 .
106 CLOQUET C, CARIGNAN J, LIBOUREL G, et al. Tracing source pollution in soils using cadmium and lead isotopes[J]. Environmental Science & Technology, 2006, 40: 2 525-2 530.
107 ZHU C W, WEN H J, ZHANG Y H, et al. Characteristics of Cd isotopic compositions and their genetic significance in the lead-zinc deposits of SW China[J]. Science China Earth Sciences, 2013, 56(12): 2 056-2 065.
108 WEN H J, ZHANG Y H, CLOQUET C, et al. Tracing sources of pollution in soils from the Jinding Pb-Zn mining district in China using cadmium and lead isotopes[J]. Applied Geochemistry, 2015, 52: 147-154.
109 LI Haitao, YANG Xin, LEI Huaji, et al. Research progress of cadmium stable isotopes [J]. Rock and Mineral Analysis, 2021, 40(1): 1-15.
李海涛, 杨鑫, 雷华基, 等. 镉稳定同位素研究进展[J]. 岩矿测试, 2021, 40(1): 1-15.
110 WAN Dan, CHEN Jiubin, ZHANG Ting, et al. Cadmium isotope fractionation and its applicationsin tracing the source and fate of cadmium in the soil: a review[J]. Journal of RockandMineralAnalysis, 2012, 41(3): 341-352.
万丹, 陈玖斌, 张婷, 等. 镉同位素分馏及其在示踪土壤镉来源和迁移转化过程中的应用进展[J]. 岩矿测试, 2022, 41(3): 341-352.
111 IMSENG M, WIGGENHAUSER M, KELLER A, et al. Fate of Cd in agricultural soils: a stable isotope approach to anthropogenic impact, soil formation, and soil-plant cycling[J]. Environmental Science & Technology, 2018, 52(4): 1 919-1 928.
112 SALMANZADEH M, HARTLAND A, STIRLING C H, et al. Isotope tracing of long-term cadmium fluxes in an agricultural soil[J]. Environmental Science & Technology, 2017, 51(13): 7 369-7 377.
113 WIGGENHAUSER M, BIGALKE M, IMSENG M, et al. Using isotopes to trace freshly applied cadmium through mineral phosphorus fertilization in soil-fertilizer-plant systems[J]. Science of the Total Environment, 2019, 648: 779-786.
114 LI D D, LIU S A, LI S G. Copper isotope fractionation during adsorption onto kaolinite: experimental approach and applications[J]. Chemical Geology, 2015, 396: 74-82.
115 KUSONWIRIYAWONG C, BIGALKE M, CORNU S, et al. Response of copper concentrations and stable isotope ratios to artificial drainage in a French Retisol[J]. Geoderma, 2017, 300: 44-54.
116 VIERS J, GRANDE J A, ZOUITEN C, et al. Are Cu isotopes a useful tool to trace metal sources and processes in Acid Mine Drainage (AMD) context?[J]. Chemosphere, 2018, 193: 1 071-1 079.
117 WALL A J, MATHUR R, POST J E, et al. Cu isotope fractionation during bornite dissolution: an in situ X-ray diffraction analysis[J]. Ore Geology Reviews, 2011, 42(1): 62-70.
118 VANCE D, MATTHEWS A, KEECH A, et al. The behaviour of Cu and Zn isotopes during soil development: controls on the dissolved load of rivers[J]. Chemical Geology, 2016, 445: 36-53.
119 MATHUR R, JIN L, PRUSH V, et al. Cu isotopes and concentrations during weathering of black shale of the Marcellus Formation, Huntingdon County, Pennsylvania (USA)[J]. Chemical Geology, 2012, 304/305: 175-184.
120 LIU S A, TENG F Z, LI S, et al. Copper and iron isotope fractionation during weathering and pedogenesis: insights from saprolite profiles[J]. Geochimica et Cosmochimica Acta, 2014, 146: 59-75.
121 El AZZI D, VIERS J, GUIRESSE M, et al. Origin and fate of copper in a small Mediterranean vineyard catchment: new insights from combined chemical extraction and delta 65Cu isotopic composition[J]. Science of the Total Environment, 2013, 463/464: 91-101.
122 BLOTEVOGEL S, SCHRECK E, AUDRY S, et al. Contribution of soil elemental contents and Cu and Sr isotope ratios to the understanding of pedogenetic processes and mechanisms involved in the soil-to-grape transfer (Soave vineyard, Italy)[J]. Geoderma, 2019, 343: 72-85.
123 BIGALKE M, KERSTEN M, WEYER S, et al. Isotopes trace biogeochemistry and sources of Cu and Zn in an intertidal soil[J]. Soil Science Society of America Journal, 2013, 77(2): 680-691.
124 KŘÍBEK B, ŠÍPKOVÁ A, ETTLER V, et al. Variability of the copper isotopic composition in soil and grass affected by mining and smelting in Tsumeb, Namibia[J]. Chemical Geology, 2018, 493: 121-135.
125 DÓTOR-ALMAZÁN A, ARMIENTA-HERNÁNDEZ M A, TALAVERA-MENDOZA O, et al. Geochemical behavior of Cu and sulfur isotopes in the tropical mining region of Taxco, Guerrero (southern Mexico)[J]. Chemical Geology, 2017, 471: 1-12.
126 MIHALJEVIČ M, BAIETA R, ETTLER V, et al. Tracing the metal dynamics in semi-arid soils near mine tailings using stable Cu and Pb isotopes[J]. Chemical Geology, 2019, 515: 61-76.
127 ŠILLEROVÁ H, CHRASTNY V, VITKOVA M, et al. Stable isotope tracing of Ni and Cu pollution in North-East Norway: potentials and drawbacks[J]. Environmental Pollution, 2017, 228: 149-157.
128 JIMENEZ-MORENO M, BARRE J P G, PERROT V, et al. Sources and fate of mercury pollution in Almaden mining district (Spain): evidences from mercury isotopic compositions in sediments and lichens[J]. Chemosphere, 2016, 147: 430-438.
129 JISKRA M, WIEDERHOLD J G, BOURDON B, et al. Solution speciation controls mercury isotope fractionation of Hg(II) sorption to goethite[J]. Environmental Science & Technology, 2012, 46(12): 6 654-6 662.
130 GHOSH S, SCHAUBLE E A, COULOUME G L, et al. Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid-vapor evaporation experiments[J]. Chemical Geology, 2013, 336: 5-12.
131 BLUM J D, JOHNSON M W. Recent developments in mercury stable isotope analysis[J]. Reviews in Mineralogy and Geochemistry, 2017, 82: 733-757.
132 PRIBIL M J, RIMONDI V, COSTAGLIOLA P, et al. Assessing mercury distribution using isotopic fractionation of mercury processes and sources adjacent and downstream of a legacy mine district in Tuscany, Italy[J]. Applied Geochemistry, 2020, 117. DOI:10.1016/j.apgeochem.2020.104600 .
133 CAO F, MENG M, SHAN B, et al. Source apportionment of mercury in surface soils near the Wuda coal fire area in Inner Mongolia, China[J]. Chemosphere, 2021, 263. DOI:10.1016/j.chemosphere.2020.128348 .
134 ZHU W, LI Z G, LI P, et al. Re-emission of legacy mercury from soil adjacent to closed point sources of Hg emission[J]. Environmental Pollution, 2018, 242(Pt A): 718-727.
135 BAPTISTA-SALAZAR C, HINTELMANN H, BIESTER H. Distribution of mercury species and mercury isotope ratios in soils and river suspended matter of a mercury mining area[J]. Environmental Science: Processes & Impacts, 2018, 20(4): 621-631.
136 QIU Xiaofei, LU Shansong, TAN Juanjuan, et al. Advances in Tl isotopic analysis and its geological application[J]. Earth Science—Journal of China University of Geosciences, 2014, 29(6): 705-714.
邱啸飞,卢山松,谭娟娟,等. 铊同位素分析技术及其在地学中的应用[J]. 地球科学——中国地质大学学报, 2014, 29(6): 705-714.
137 JIA Yanlong, XIAO Tangfu, NING Zengping, et al. Thallium isotopes and environmental tracing[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(3): 311-315.
贾彦龙,肖唐付,宁曾平,等. 铊同位素及环境示踪研究进展[J]. 矿物岩石地球化学通报, 2010, 29(3): 311-315.
138 HOWARTH S, PRYTULAK J, LITTLE S H, et al. Thallium concentration and thallium isotope composition of lateritic terrains[J]. Geochimica et Cosmochimica Acta, 2018, 239: 446-462.
139 KERSTEN M, XIAO T, KREISSIG K, et al. Tracing anthropogenic thallium in soil using stable isotope compositions[J]. Environmental Science & Technology, 2014, 48(16): 9 030-9 036.
140 VANÉK A, VEJVODOVA K, MIHALJEVIC M, et al. Thallium and lead variations in a contaminated peatland: a combined isotopic study from a mining/smelting area[J]. Environmental Pollution, 2021, 290. DOI:10.1016/j.envpol.2021.117973 .
141 GROSSLOVA Z, VANÉK A, OBORNA V, et al. Thallium contamination of desert soil in Namibia: chemical, mineralogical and isotopic insights[J]. Environmental Pollution, 2018, 239: 272-280.
142 VANÉK A, GROSSLOVA Z, MIHALJEVIC M, et al. Isotopic tracing of thallium contamination in soils affected by emissions from coal-fired power plants[J]. Environmental Science & Technology, 2016, 50(18): 9 864-9 871.
143 VANÉK A, GROSSLOVA Z, MIHALJEVIC M, et al. Thallium isotopes in metallurgical wastes/contaminated soils: a novel tool to trace metal source and behavior[J]. Journal of Hazardous Materials, 2018, 343: 78-85.
144 RATIÉ G, QUANTIN C, JOUVIN D, et al. Nickel isotope fractionation during laterite Ni ore smelting and refining: implications for tracing the sources of Ni in smelter-affected soils[J]. Applied Geochemistry, 2016, 64: 136-145.
145 RATIÉ G, QUANTIN C, MAIA D F A, et al. The behavior of nickel isotopes at the biogeochemical interface between ultramafic soils and Ni accumulator species[J]. Journal of Geochemical Exploration, 2019, 196: 182-191.
146 ZELANO I O, CLOQUET C, van der ENT A, et al. Coupling nickel chemical speciation and isotope ratios to decipher nickel dynamics in the Rinorea cf. bengalensis-soil system in Malaysian Borneo[J]. Plant Soil, 2020, 454(1/2): 225-243.
147 ZELANO I O, CLOQUET C, FRAYSSE F, et al. The influence of organic complexation on Ni isotopic fractionation and Ni recycling in the upper soil layers[J]. Chemical Geology, 2018, 483: 47-55.
148 WASYLENKI L E, HOWE H D, SPIVAK-BIRNDORF L J, et al. Ni isotope fractionation during sorption to ferrihydrite: implications for Ni in banded iron formations[J]. Chemical Geology, 2015, 400: 56-64.
149 RATIÉ G, JOUVIN D, GARNIER J, et al. Nickel isotope fractionation during tropical weathering of ultramafic rocks[J]. Chemical Geology, 2015, 402: 68-76.
150 WANG S J, WASYLENKI L E. Experimental constraints on reconstruction of Archean seawater Ni isotopic composition from banded iron formations[J]. Geochimica et Cosmochimica Acta, 2017, 206: 137-150.
151 CHETELAT J, NIELSEN S G, AURO M, et al. Vanadium stable isotopes in biota of terrestrial and aquatic food chains[J]. Environmental Science & Technology, 2021, 55(8): 4 813-4 821.
152 HUANG Y, LONG Z J, ZHOU D, et al. Fingerprinting vanadium in soils based on speciation characteristics and isotope compositions[J]. Science of the Total Environment, 2021, 791. DOI:10.1016/j.scitotenv.2021.148240 .
153 QIN Aihua, YU Chengguang, LI Kuo, et al. Mining of Chaihe Pb-Zn deposit in Liaoning Province and reconstruction of its heavy metal pollution record[J]. Geoscience, 2014, 28(3): 537-543.
秦爱华,于成广,李括,等. 辽宁省柴河铅锌矿开采与重金属污染历史重建[J]. 现代地质, 2014, 28(3): 537-543.
154 SYMEONIDES C. Tree-ring analysis for tracing the history of pollution-application to a study in northern Sweden[J]. Journal of Environmental Quality, 1979, 8(4): 482-486.
155 THEVENON F, GUÉDRON S, CHIARADIA M, et al. (Pre-) historic changes in natural and anthropogenic heavy metals deposition inferred from two contrasting Swiss Alpine lakes[J]. Quaternary Science Reviews, 2011, 30(1/2): 224-233.
156 COUILLARD Y, CATTANEO A, GALLON C, et al. Sources and chronology of fifteen elements in the sediments of lakes affected by metal deposition in a mining area[J]. Journal of Paleolimnology, 2007, 40(1): 97-114.
[1] 李聪颖, 吴思璠. 大洋缺氧事件金属稳定同位素研究进展[J]. 地球科学进展, 2022, 37(11): 1127-1140.
[2] 周卫健,吴书刚,熊晓虎,程鹏,王鹏,侯瑶瑶,牛振川,杜花,陈宁,卢雪峰,付云翀,刘林. 我国城市大气化石源 CO214C示踪研究进展[J]. 地球科学进展, 2020, 35(9): 881-889.
[3] 曹芳, 章炎麟. 碳质气溶胶的放射性碳同位素( 14C)源解析:原理、方法和研究进展[J]. 地球科学进展, 2015, 30(4): 425-432.
[4] 王健,赵红梅,徐大伟,于晓菲,吕宪国,王国平. 湿地生态系统中的多环芳烃研究进展[J]. 地球科学进展, 2009, 24(8): 936-941.
阅读次数
全文


摘要