地球科学进展 ›› 2023, Vol. 38 ›› Issue (4): 349 -362. doi: 10.11867/j.issn.1001-8166.2023.005

综述与评述 上一篇    下一篇

典型中尺度数值预报模式参数化方案的综述与展望
刘东海 1( ), 黄静 2, 刘娟 2, 周扬 1, 秦昆 1( )   
  1. 1.武汉大学遥感信息工程学院,湖北 武汉 430079
    2.北京应用气象研究所,北京 100029
  • 收稿日期:2022-11-18 修回日期:2023-01-08 出版日期:2023-04-04
  • 通讯作者: 秦昆 E-mail:ldhwhdx@whu.edu.cn;qink@whu.edu.cn
  • 基金资助:
    国家自然科学基金项目“全球尺度地理多元流的网络化挖掘及关联分析”(42171448)

Review and Prospect of Parameterization Schemes of Typical Mesoscale Numerical Prediction Models at Home and Abroad

Donghai LIU 1( ), Jing HUANG 2, Juan LIU 2, Yang ZHOU 1, Kun QIN 1( )   

  1. 1.School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
    2.Beijing Institute of Applied Meteorology, Beijing 100029, China
  • Received:2022-11-18 Revised:2023-01-08 Online:2023-04-04 Published:2023-04-18
  • Contact: Kun QIN E-mail:ldhwhdx@whu.edu.cn;qink@whu.edu.cn
  • About author:LIU Donghai (2000-), male, Pianguan County, Shanxi Province, Master student. Research areas include spatio temporal big data analysis. E-mail: ldhwhdx@whu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Networked mining and association analysis of geographical multiple flows at a global scale”(42171448)

中尺度天气现象对人类的生产生活有重要影响,中尺度数值预报模式是进行数值天气预报的主要工具。受模式分辨率和对天气现象物理机制认识不足的限制,许多复杂天气过程只能用参数化方案来隐式表达,对参数化方案进行研究有助于推动中尺度数值预报模式的模拟和预报效果的不断优化。在探讨国内外典型中尺度数值预报模式特性的基础上,综述了积云对流参数化方案、云微物理参数化方案、边界层参数化方案、陆面过程参数化方案和辐射传输过程参数化方案的研究进展,比较了代表性参数化方案的理论基础和应用场景,发现对独立或组合参数化方案效果的对比试验和改进试验是该领域主要的研究范式。认为参数化方案未来将走向深入探讨各种天气现象的影响因素和物理机制,多要素、多尺度和多方案耦合,更加重视对“灰色区域”的模拟,应用选择更加多元化,并与机器学习技术融合的发展模式。

Mesoscale weather phenomena have a significant impact on human production and life. Mesoscale numerical prediction models are one of the main tools used for numerical weather prediction. Owing to the limitations of model resolution and insufficient understanding of the physical mechanisms of weather phenomena, many complex weather processes can only be implicitly expressed by parameterization schemes, the research of which is helpful in promoting the continuous optimization of the simulation and prediction effects of mesoscale numerical prediction models. Based on the characteristics of typical mesoscale numerical prediction models at home and abroad, the research status of cumulus convective, cloud microphysical, planetary boundary layer, land surface process, and radiation transfer process parameterization schemes, which are important according to the main forms of atmospheric motion, have been summarized. The theoretical basis and application scenarios of representative parameterization schemes are also compared in the present study. The main research paradigms in this field are comparative experiments that include the comparison of different scheme effects in simulating the same weather phenomenon, comparison of the same scheme effects in different weather scenarios, and optimization experiments on independent or combined schemes. In the future, the physical mechanisms of various weather phenomena and their influencing factors will be explored in depth, and parameterization schemes will be coupled at the levels of multiple elements, scales, and schemes. Subsequently, the simulation of the gray area will receive more attention, and the application options of parameterization schemes will be more diversified. Owing to the arrival of the big data era and the high demand for data analysis, parameterization schemes and machine learning will be developed to form a new mechanism driven by methods and data.

中图分类号: 

93 KIEHL J T, BRIEGLEB B P. A new parameterization of the absorptance due to the 15-μm band system of carbon dioxide[J]. Journal of Geophysical Research, 1991, 96(D5): 9 013-9 019.
94 RAMANATHAN V, DICKINSON R E. The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the earth-troposphere system[J]. Journal of Atmospheric Sciences, 1979, 36(6): 1 084-1 104.
95 COLLINS W D, HACKNEY J K, EDWARDS D P. An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model[J]. Journal of Geophysical Research, 2002, 107(D22): ACL 17-1-ACL 17-20.
96 BERGER A. Long-term variations of daily insolation and quaternary climatic changes[J]. Journal of the Atmospheric Sciences, 1978, 35(12): 2 362-2 367.
97 LEAN J, BEER J, BRADLEY R. Reconstruction of solar irradiance since 1610: implications for climate change[J]. Geophysical Research Letters, 1995, 22(23): 3 195-3 198.
98 COLLINS W D. A global signature of enhanced shortwave absorption by clouds[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D24): 31 669-31 679.
99 JOSEPH J H, WISCOMBE W J, WEINMAN J A. The delta-Eddington approximation for radiative flux transfer[J]. Journal of the Atmospheric Sciences, 1976, 33(12): 2 452-2 459.
100 COAKLEY J A, CESS R D, YUREVICH F B. The effect of tropospheric aerosols on the Earth’s radiation budget: a parameterization for climate models[J]. Journal of the Atmospheric Sciences, 1983, 40(1): 116-138.
101 BRIEGLEB B P. Delta-Eddington approximation for solar radiation in the NCAR community climate model[J]. Journal of Geophysical Research, 1992, 97(D7): 7 603-7 612.
102 JIA Siyu, BAO Yunxuan, YUAN Chengsong, et al. Influence of different radiation parameterization schemes on numerical simulations of heavy fog events on expressways in Jiangsu Province[J]. Meteorological Science and Technology, 2018, 46(5): 932-942.
贾思雨, 包云轩, 袁成松, 等. 不同辐射参数化方案对南京地区大雾过程数值模拟的影响[J]. 气象科技, 2018, 46(5): 932-942.
1 CHEN Dandan, XU Yiqiang. Comparative study of mesoscale data under different terrain conditions of wind farms[J]. Shanghai Energy Conservation, 2022(4): 476-481.
陈丹丹, 徐以强. 中尺度数据在不同地形条件风电场下的研究[J]. 上海节能, 2022(4): 476-481.
2 CHENG Linsheng. The current status of mesoscale numerical model development and its application prospects[J]. Plateau Meteorology, 1999, 18(3): 350-360.
程麟生. 中尺度大气数值模式发展现状和应用前景[J]. 高原气象, 1999, 18(3): 350-360.
3 ZHU Keyun, QIU Chongjian, CHENG Hua. An adjoint model with a mesoscale MM4 model[J]. Journal of Chengdu Institute of Meteorology, 2001, 16(2): 75-82.
朱克云, 邱崇践, 程华. 中尺度MM4模式及其伴随模式[J]. 成都信息工程学院学报, 2001, 16(2): 75-82.
4 BLACK T L. The new NMC mesoscale eta model: description and forecast examples[J]. Weather and Forecasting, 1994, 9(2): 265-278.
5 POWERS J G, KLEMP J B, SKAMAROCK W C, et al. The weather research and forecasting model: overview, system efforts, and future directions[J]. Bulletin of the American Meteorological Society, 2017, 98(8): 1 717-1 737.
6 XUE M, DROEGEMEIER K K, WONG V. The Advanced Regional Prediction System (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction model. part I: model dynamics and verification[J]. Meteorology and Atmospheric Physics, 2000, 75(3): 161-193.
7 XUE M, DROEGEMEIER K K, WONG V, et al. The Advanced Regional Prediction System (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: model physics and applications[J]. Meteorology and Atmospheric Physics, 2001, 76: 143-165.
8 ZHENG Fang, XU Xianbin, XIANG Dongdong, et al. GPU-based parallel rearches on RRTM module of GRAPES numerical prediction system[J]. Computer Science, 2012, 39(): 370-374.
103 KESSLER E. On the distribution and continuity of water substance in atmospheric circulations[M]// On the distribution and continuity of water substance in atmospheric circulations. Boston, MA: American Meteorological Society, 1969: 1-84.
104 MANABE S, SMAGORINSKY J, STRICKLER R F. Simulated climatology of a general circulation model with a hydrologic cycle[J]. Monthly Weather Review, 1965, 93(12): 769-798.
105 BETTS A K, MILLER M J. A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets[J]. Quarterly Journal of the Royal Meteorological Society, 1986, 112(473): 693-709.
106 GUO Jianping, LIU Boming, GUO Xiaoran, et al. Research progress on new applications of networked observation of wind profile radar[J]. Advances in Meteorological Science and Technology, 2021, 11(2): 5-12, 51.
郭建平, 刘博铭, 郭晓冉, 等. 风廓线雷达组网观测新型应用研究进展[J]. 气象科技进展, 2021, 11(2): 5-12, 51.
107 MU Hongqiang, XIA Jun, HU Yuhui. Status quo of studying parametrization of land surface process[J]. Yangtze River, 2000, 31(7): 10-12, 48.
穆宏强, 夏军, 胡玉惠. 陆面过程参数化方案研究综述[J]. 人民长江, 2000, 31(7): 10-12, 48.
108 NIU Guoyao, HONG Zhongxiang, SUN Shufen, et al. Status and developmental trendsof land surface processes study[J]. Advences in Earth Science, 1997, 12(1): 20-25.
牛国跃, 洪钟祥, 孙菽芬. 陆面过程研究的现状与发展趋势[J]. 地球科学进展, 1997, 12(1): 20-25.
109 SUN Wenqi, LI Changyi. A review of atmospheric boundary layer parameterization schemes in numerical models[J]. Journal of Marine Meteorology, 2018, 38(3): 11-19.
8 郑芳, 许先斌, 向冬冬, 等. 基于GPU的GRAPES数值预报系统中RRTM模块的并行化研究[J]. 计算机科学, 2012, 39(): 370-374.
9 LIU Yubao, ZHOU Xiuji, HU Zhijin. A three dimensional elastic nested-grid meso-scale(β-γ) atmospheric model[J]. Acta Meteorologica Sinica, 1993, 51(3): 369-380.
刘玉宝, 周秀骥, 胡志晋. 三维弹性套网格中尺度(β-γ)大气模式[J]. 气象学报, 1993, 51(3): 369-380.
10 LI Ming, YANG Wenfeng, SHI Li, et al. Introduction of mesoscale model AREMS forecast system[J]. Journal of Shaanxi Meteorology, 2004(6): 11-13.
李明, 杨文峰, 史历, 等. 中尺度模式AREMS预报系统介绍[J]. 陕西气象, 2004(6): 11-13.
11 ARAKAWA A. The cumulus parameterization problem: past, present, and future[J]. Journal of Climate, 2004, 17(13): 2 493-2 525.
[1] 马雷鸣, 林红, 储海, 尹春光, 张军平, 陈磊, 王海宾, 徐康, 范旭亮. 上海强对流智能预报业务新技术研究进展[J]. 地球科学进展, 2023, 38(2): 111-124.
[2] 李一民, 谭振宇, 杨辰, 何峰, 孟迪, 罗菊花, 段洪涛. 基于多源卫星的滇池藻华提取机器学习算法研究[J]. 地球科学进展, 2022, 37(11): 1141-1156.
[3] 摆玉龙, 路亚妮, 刘名得. 基于变分模态分解的机器学习模型择优风速预测系统[J]. 地球科学进展, 2021, 36(9): 937-949.
[4] 王冰泉, 冉有华. 中国西北、西藏和周边地区 19612020年每十年 1 km季节冻土最大冻结深度数据集 [J]. 地球科学进展, 2021, 36(11): 1137-1145.
[5] 尤元红,黄春林,张莹,侯金亮. Noah-MP模型中积雪模拟对参数化方案的敏感性评估[J]. 地球科学进展, 2019, 34(4): 356-365.
[6] 王昊亮, 刘玉宝, 赵天良, 郭凤霞, 冯双磊, 王勃. 基于数值天气模式及其模式输出的闪电预报研究进展[J]. 地球科学进展, 2017, 32(1): 44-55.
[7] 汤秋鸿, 黄忠伟, 刘星才, 韩松俊, 冷国勇, 张学君, 穆梦斐. 人类用水活动对大尺度陆地水循环的影响[J]. 地球科学进展, 2015, 30(10): 1091-1099.
[8] 王连喜, 吴建生, 李琪, 顾嘉熠, 薛红喜. AquaCrop作物模型应用研究进展[J]. 地球科学进展, 2015, 30(10): 1100-1106.
[9] 任晓倩,孙菽芬,陈 文,刘辉志. 湖泊数值模拟研究现状综述[J]. 地球科学进展, 2013, 28(3): 347-356.
[10] 王晨稀. 边界层参数化影响“梅花”台风的敏感性试验[J]. 地球科学进展, 2013, 28(2): 197-208.
[11] 摆玉龙, 李新, 韩旭军. 陆面数据同化系统误差问题研究综述[J]. 地球科学进展, 2011, 26(8): 795-804.
[12] 朱好,张宏升. 沙尘天气过程临界起沙因子的研究进展[J]. 地球科学进展, 2011, 26(1): 30-38.
[13] 王咏薇,蒋维楣,刘红年. 大气数值模式中城市效应参数化方案研究进展[J]. 地球科学进展, 2008, 23(4): 371-381.
[14] 黄安宁,张耀存,朱坚. 物理过程参数化方案对中国夏季降水日变化模拟的影响[J]. 地球科学进展, 2008, 23(11): 1174-1184.
[15] 王澄海,董文杰,韦志刚. 陆面模式中土壤冻融过程参数化研究进展[J]. 地球科学进展, 2002, 17(1): 44-52.
阅读次数
全文


摘要