地球科学进展 ›› 2023, Vol. 38 ›› Issue (4): 363 -376. doi: 10.11867/j.issn.1001-8166.2022.091

综述与评述 上一篇    下一篇

湿地条件下无机汞—有机汞相互转化研究进展
李博 1( ), 殷怡童 1, 关翔宇 1, 武雄 2, 罗锡明 1( )   
  1. 1.中国地质大学(北京)海洋学院,北京 100083
    2.中国地质大学(北京)水资源 与环境学院,北京 100083
  • 收稿日期:2022-09-23 修回日期:2022-12-27 出版日期:2023-04-04
  • 通讯作者: 罗锡明 E-mail:lililo0220@126.com;luoxm@cugb.edu.cn
  • 基金资助:
    国家自然科学基金重点项目“典型抗生素对地下水系统中反硝化过程的影响机理研究”(41731282);中国地质调查局项目“地下水中有机污染组分对补给方式的响应——水样测试分析质量控制”(DD20190323)

Research Progress on the Mutual Transformation of Inorganic to Organic Mercury in Wetlands

Bo LI 1( ), Yitong YIN 1, Xiangyu GUAN 1, Xiong WU 2, Ximing LUO 1( )   

  1. 1.School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
    2.School of Water Resources & Environment, China University of Geosciences (Beijing), Beijing 100083, China
  • Received:2022-09-23 Revised:2022-12-27 Online:2023-04-04 Published:2023-04-18
  • Contact: Ximing LUO E-mail:lililo0220@126.com;luoxm@cugb.edu.cn
  • About author:LI Bo (1999-), male, Tongliao City, Inner Mongolia Autonomous Region, Master student. Research areas include pollutant migration and transformation. E-mail: lililo0220@126.com
  • Supported by:
    the National Natural Science Foundation of China “Study on the influence mechanism of typical antibiotics on denitrification process in groundwater system”(41731282);The China Geological Survey“Response of organic pollutant components in groundwater to recharge mode— quality control of water sample test and analysis”(DD20190323)

汞(Hg)作为一种有毒重金属污染物,在全球范围内受到广泛关注。有机汞尤其是甲基汞的毒性比无机汞毒性更大,且易在食物链中积累,因此无机汞—有机汞的转化问题近年来备受关注。之前的研究多集中于海洋环境中的Hg甲基化问题,对于淡水环境尤其是湿地环境Hg甲基化的研究相对欠缺。而湿地环境的特殊性与复杂性使其成为突出的甲基汞产出单元,且生物积累作用明显。通过系统总结湿地中无机汞—有机汞转化的途径和机理以及其影响因素和相关生物作用,指出沉积物、颗粒有机碳和周丛生物是重要的甲基汞产生微环境,频繁密切的生物间相互作用成为湿地高甲基化潜力的保障。因此加强各类湿地Hg甲基化研究对保护湿地生态及居民健康具有重要意义。

Mercury has received widespread attention as a toxic heavy metal contaminant. Organic mercury, especially methyl mercury (MeHg), is more toxic than inorganic mercury and can easily accumulate in the food chain; therefore, the problem of inorganic to organic mercury conversion has attracted much attention in recent years. Most previous research has focused on mercury methylation in marine environments, and research on freshwater environments, especially wetlands, is lacking. The uniqueness and complexity of the wetland environment make it a prominent MeHg production unit, and the bioaccumulation effect is evident. In the present study, the pathways, mechanisms, influencing factors, and related biological effects of organic mercury conversion to inorganic mercury in wetlands are systematically summarized. Sediments, particulate organic carbon, and periphyton organisms are important microenvironments for MeHg generation, and frequent interactions between organisms guarantee the high methylation potential of wetlands. Therefore, strengthening the research on Hg methylation in various wetlands is of great significance for protecting the ecology of wetlands and the health of residents.

中图分类号: 

图1 以甲基汞为关键词的贡献网络图
不同颜色代表论文发表的年份,圆圈大小代表发文量
Fig. 1 A co-occurrence network with methylmercury as the key word
The different colors represent when the paper was published, and the size of the circle represents the amount of publication
图2 湿地环境无机汞—有机汞转化示意图
Fig. 2 Inorganic and organic mercury conversion in wetland environment
图3 无机汞—有机汞转化途径及影响因素示意图
Fig. 3 Inorganic and organic mercury conversion pathways and influencing factors
表1 湿地环境具有甲基化潜力的菌属 2 20 90 - 91 94 108 110 - 113
Table 1 Bacterial genera with methylation potential in wetland 2 20 90 - 91 94 108 110 - 113
1 GALLORINI A, LOIZEAU J L. Mercury methylation in oxic aquatic macro-environments: a review[J]. Journal of Limnology, 2021, 80(2). DOI:10.4081/jlimnol.2021.2007 .
2 LIU C T, LIU J L, ZHOU C Y, et al. Redox potential and C/N ratio predict the structural shift of mercury methylating microbe communities in a subalpine sphagnum peatland[J]. Geoderma, 2021, 403. DOI:10.1016/j.geoderma.2021.115375 .
3 O’CONNOR D, HOU D Y, OK Y S, et al. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical review[J]. Environment International, 2019, 126: 747-761.
4 LOUX N T. An assessment of thermodynamic reaction constants for simulating aqueous environmental monomethylmercury speciation[J]. Chemical Speciation & Bioavailability, 2007, 19(4): 183-196.
5 DRISCOLL C T, MASON R P, CHAN H M, et al. Mercury as a global pollutant: sources, pathways, and effects[J].Environmental Science & Technology, 2013, 47(10): 4 967-4 983.
6 HOGGARTH C G J, HALL B D, MITCHELL C P J. Mercury methylation in high and low-sulphate impacted wetland ponds within the prairie pothole region of North America[J]. Environmental Pollution, 2015, 205: 269-277.
7 ZHANG Z S, LI M, LI Z, et al. Unexpected high methylmercury contents related to soil organic carbon and its molecular composition in wetland soils of the Yarlung Tsangbo River, Tibet[J]. Geoderma, 2020, 377. DOI:10.1016/j.geoderma.2020.114607 .
8 DIEZ E G, LOIZEAU J L, COSIO C, et al. Role of settling particles on mercury methylation in the oxic water column of freshwater systems[J].Environmental Science & Technology, 2016, 5 021: 11 672-11 679.
9 ECKLEY C S, HINTELMANN H. Determination of mercury methylation potentials in the water column of lakes across Canada[J]. Science of the Total Environment, 2006, 368(1): 111-125.
10 MONPERRUS M, TESSIER E, AMOUROUX D, et al. Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the mediterranean sea[J]. Marine Chemistry, 2007, 107(1): 49-63.
11 HAMELIN S, PLANAS D, AMYOT M. Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada)[J]. Science of the Total Environment, 2015, 512/513: 464-471.
12 AYANLADE A, PROSKE U. Assessing wetland degradation and loss of ecosystem services in the Niger Delta, Nigeria[J].Marine and Freshwater Research, 2016, 67: 828-836.
13 SCHAEFER J K, KRONBERG R M, BJORN E, et al. Anaerobic guilds responsible for mercury methylation in boreal wetlands of varied trophic status serving as either a methylmercury source or sink[J]. Environmental Microbiology, 2020, 22(9): 3 685-3 699.
14 St. LOUIS V L, RUDD J W M, KELLY C A,et al. Importance of wetlands as sources of methyl mercury to boreal forest ecosystems[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51(5): 1 065-1 076.
15 WEBER J H. Review of possible paths for abiotic methylation of Mercury(II) in the aquatic environment[J]. Chemosphere, 1993, 26(11): 2 063-2 077.
16 YU R Q, BARKAY T. Microbial mercury transformations: molecules, functions and organisms[J]. Advances in Applied Microbiology, 2022, 118: 31-90.
17 PARKS J M, JOHS A, PODAR M, et al. The genetic basis for bacterial mercury methylation[J]. Science, 2013, 339(6 125): 1 332-1 335.
18 GORDON J, QUINTON W, BRANFIREUN B A, et al. Mercury and methylmercury biogeochemistry in a thawing permafrost wetland complex, northwest territories, Canada[J]. Hydrological Processes, 2016, 30(20): 3 627-3 638.
19 MA M, DU H X, WANG D Y. Mercury methylation by anaerobic microorganisms: a review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(20): 1 893-1 936.
20 XU J Y, LIEM-NGUYEN V, BUCK M, et al. Mercury methylating microbial community structure in boreal wetlands explained by local physicochemical conditions[J]. Frontiers in Environmental Science, 2021, 8. DOI:10.3389/fenvs.2020.518662 .
21 COMPEAU G C, BARTHA R. Sulfate-reducing bacteria:principal methylators of mercury in anoxic estuarine sediment[J]. Applied and Environmental Microbiology, 1985, 50(2): 498-502.
22 FLEMING E J, MACK E E, GREEN P G, et al. Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium[J]. Applied and Environmental Microbiology, 2006, 72(1): 457-464.
23 GILMOUR C C, PODAR M, BULLOCK A L, et al. Mercury methylation by novel microorganisms from new environments[J]. Environmental Science & Technology, 2013, 47(20): 11 810-11 820.
24 EKSTROM E B, MOREL F M M, BENOIT J M. Mercury methylation independent of the acetyl-coenzyme A pathway in sulfate-reducing bacteria[J]. Applied and Environmental Microbiology, 2003, 69(9): 5 414-5 422.
25 CHOI S C, CHASE T, BARTHA R. Metabolic pathways leading to mercury methylation in Desulfovibrio desulfuricans LS[J]. Applied And Environmental Microbiology, 1994, 60(11): 4 072-4 077.
26 GU Chunhao, XU Huaifeng, QIU Guangle. The progress in research on mechanism of microbial mercury methylation and de-methylation[J]. Environmental Chemistry, 2013, 32(6): 926-936.
谷春豪, 许怀凤, 仇广乐.汞的微生物甲基化与去甲基化机理研究进展[J].环境化学, 2013, 32(6): 926-936.
27 REGNELL O, WATRAS C J. Microbial mercury methylation in aquatic environments: a critical review of published field and laboratory studies[J]. Environmental Science & Technology, 2019, 53(1): 4-19.
28 DATE S S, PARKS J M, RUSH K W, et al. Kinetics of enzymatic mercury methylation at nanomolar concentrations catalyzed by hgcAB [J]. Applied and Environmental Microbiology, 2019, 85(13). DOI:10.1128/AEM.00438-19 .
29 QIAN C, CHEN H M, JOHS A, et al. Quantitative proteomic analysis of biological processes and responses of the bacterium Desulfovibrio desulfuricans ND132 upon deletion of its mercury methylation genes[J]. Proteomics, 2018, 18(17). DOI:10.1002/pmic.201700479 .
30 GILMOUR C C, ELIAS D A, KUCKEN A M, et al. Sulfate-reducing bacterium desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation[J]. Applied and Environmental Microbiology, 2011, 77(12): 3 938-3 951.
31 BARKAY T, WAGNER-DOBLER I. Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment[J]. Advances in Applied Microbiology, 2005, 57. DOI:10.1016/S0065-2164(05)57001-1 .
32 SELLERS P, KELLY C A, RUDD J W M, et al. Photodegradation of methylmercury in lakes[J]. Nature, 1996, 380(6 576): 694-697.
33 LI Y B, MAO Y X, LIU G L, et al. Degradation of methylmercury and its effects on mercury distribution and cycling in the Florida Everglades[J]. Environmental Science & Technology, 2010, 44(17): 6 661-6 666.
34 TAI C, LI Y B, YIN Y G, et al. Methylmercury photodegradation in surface water of the Florida Everglades: importance of dissolved organic matter-methylmercury complexation[J]. Environmental Science & Technology, 2014, 48(13): 7 333-7 340.
35 BLACK F J, POULIN B A, FLEGAL A R. Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters[J]. Geochimica et Cosmochimica Acta, 2012, 84: 492-507.
36 HAMMERSCHMIDT C R, FITZGERALD W F. Iron-mediated photochemical decomposition of methylmercury in an Arctic Alaskan Lake[J]. Environmental Science & Technology, 2010, 44(16): 6 138-6 143.
37 ZHANG T, HSU-KIM H. Photolytic degradation of methylmercury enhanced by binding to natural organic ligands[J]. Nature Geoscience, 2010, 3(7): 473-476.
38 FERNANDEZ-GOMEZ C, DROTT A, BJORN E, et al. Towards universal wavelength-specific photodegradation rate constants for methyl mercury in humic waters, exemplified by a boreal lake-wetland gradient[J]. Environmental Science & Technology, 2013, 47(12): 6 279-6 287.
39 BOYD E S, KING S, TOMBERLIN J K, et al. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming[J]. Environmental Microbiology, 2009, 11(4): 950-959.
40 QIAN Y, YIN X P, LIN H, et al. Why dissolved organic matter enhances photodegradation of methylmercury[J]. Environmental Science & Technology Letters, 2014, 1(10): 426-431.
41 BARKAY T, GU B H. Demethylation─the other side of the mercury methylation coin: a critical review[J]. ACS Environmental Au, 2022, 2(2): 77-97.
42 KHAN M A K, WANG F Y. Chemical demethylation of methylmercury by selenoamino acids[J]. Chemical Research in Toxicology, 2010, 23(7): 1 202-1 206.
43 ASADUZZAMAN A M, SCHRECKENBACH G. Degradation mechanism of methyl mercury selenoamino acid complexes: a computational study[J]. Inorganic Chemistry, 2011, 50(6): 2 366-2 372.
44 WEST J, GRAHAM A M, LIEM-NGUYEN V, et al. Dimethylmercury degradation by dissolved sulfide and mackinawite[J]. Environmental Science & Technology, 2020, 54(21): 13 731-13 738.
45 DU H X, MA M, IGARASHI Y, et al. Biotic and abiotic degradation of methylmercury in aquatic ecosystems: a review[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(5): 605-611.
46 BOYD E S, BARKAY T. The mercury resistance operon: from an origin in a geothermal environment to an efficient detoxification machine[J]. Frontiers in Microbiology, 2012, 3. DOI:10.3389/fmicb.2012.00349 .
47 CHRISTAKIS C A, BARKAY T, BOYD E S. Expanded diversity and phylogeny of mer genes broadens mercury resistance paradigms and reveals an origin for MerA among thermophilic Archaea[J]. Frontiers in Microbiology, 2021, 12. DOI:10.3389/fmicb.2021.682605 .
48 SCHAEFER J K, LETOWSKI J, BARKAY T. Mer-mediated resistance and volatilization of Hg(II) under anaerobic conditions[J]. Geomicrobiology Journal, 2002, 19(1): 87-102.
49 BROWN N L, MISRA T K, WINNIE J N, et al. The nucleotide-sequence of the mercuric resistance operons of plasmid R100 and transposon Tn501: further evidence for mer genes which enhance the activity of the mercuric ion detoxification system[J]. Molecular and General Genetics MGG, 1986, 202(1): 143-151.
50 BARKAY T, MILLER S M, SUMMERS A O. Bacterial mercury resistance from atoms to ecosystems[J]. FEMS Microbiology Reviews, 2003, 27(2/3): 355-384.
51 OREMLAND R S, MILLER L G, DOWDLE P, et al. Methylmercury oxidative-degradation potentials in contaminated and pristine sediments of the Carson River, Nevada[J]. Applied and Environmental Microbiology, 1995, 61(7): 2 745-2 753.
52 MARVIN-DIPASQUALE M C, OREMLAND R S. Bacterial methylmercury degradation in Florida Everglades peat sediment[J]. Environmental Science & Technology, 1998, 32(17): 2 556-2 563.
53 OREMLAND R S, CULBERTSON C W, WINFREY M R. Methylmercury decomposition in sediments and bacterial cultures: involvement of methanogens and sulfate reducers in oxidative demethylation[J]. Applied and Environmental Microbiology, 1991, 57(1): 130-137.
54 XIANG Y P, LIU G L, YIN Y G, et al. Periphyton as an important source of methylmercury in Everglades water and food web[J]. Journal of Hazardous Materials, 2021, 410: 12 455.1-12 455.7
55 ZHENG D M, LI X Y, LI H, et al. Changes of mercury and methylmercury content and mercury methylation in suaeda salsa soil under different salinity[J]. Environmental Geochemistry and Health, 2022, 44(4): 1 399-1 407.
56 WANG Qichao, LIU Ruhai, Xianguo LÜ, et al. Progress of study on the mercury process in the wetland environment[J]. Advances in Earth Science, 2002, 17(6): 881-885.
王起超, 刘汝海, 吕宪国, 等.湿地汞环境过程研究进展[J].地球科学进展, 2002, 17(6): 881-885.
57 WU Z Y, LI Z K, SHAO B, et al. Impact of dissolved organic matter and environmental factors on methylmercury concentrations across aquatic ecosystems inferred from a global dataset[J]. Chemosphere, 2022, 294. DOI:10.1016/j.chemosphere.2002.133713 .
58 BRIDOU R, MONPERRUS M, GONZALEZ P R, et al. Simultaneous determination of mercury methylation and demethylation capacities of various sulfate-reducing bacteria using species-specific isotopic tracers[J]. Environmental Toxicology and Chemistry, 2011, 30(2): 337-344.
59 SCHAEFER J K, ROCKS S S, ZHENG W,et al. Active transport,substrate specificity,and methylation of Hg(II)in anaerobic bacteria[J]. Proceedings of the National Academy of Scienc-es of the United States of America,2011,108(21):8 714-8 719.
60 HSU-KIM H, KUCHARZYK K H, ZHANG T, et al. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review[J]. Environmental Science & Technology, 2013, 47(6): 2 441-2 456.
61 GIONFRIDDO C M, TATE M T, WICK R R, et al. Microbial mercury methylation in Antarctic Sea ice[J]. Nature Microbiology, 2016, 1. DOI:10.1038/nmicrobiol.2016.127 .
62 ZOU Yan, SI Youbin, YAN Xue, et al. Research on mercury methylation by Geobacter sulfurreducens and its influencing factors[J]. Environmental Science, 2012, 33(9): 3 247-3 252.
邹嫣, 司友斌, 颜雪, 等. Geobacter sulfurreducens对汞的甲基化及其影响因素研究[J].环境科学, 2012, 33(9): 3 247-3 252.
63 YU R Q, FLANDERS J R, MACK E E, et al. Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments[J]. Environmental Science & Technology, 2012, 46(5): 2 684-2 691.
64 DUARTE A C, PEREIRA M E, OLIVEIRA J P, et al. Mercury desorption from contaminated sediments[J]. Water Air & Soil Pollution, 1991, 56(1): 77-82.
65 PAK K R, BARTHA R. Mercury methylation and demethylation in anoxic lake sediments and by strictly anaerobic bacteria[J]. Applied and Environmental Microbiology, 1998, 64(3): 1 013-1 017.
66 KELLY C A, RUDD J W M, HOLOKA M H. Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling[J]. Environmental Science & Technology, 2003, 37(13): 2 941-2 946.
67 GUNDA T, SCANLON T M. Topographical influences on the spatial distribution of soil mercury at the catchment scale[J]. Water, Air, & Soil Pollution, 2013, 224(4): 1-13.
68 ZHOU J, WANG Z W, ZHANG X S, et al. Distribution and elevated soil pools of mercury in an acidic subtropical forest of southwestern China[J]. Environmental Pollution, 2015, 202: 187-195.
69 BOYD E S, YU R Q, BARKAY T, et al. Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah[J]. Science of the Total Environment, 2017, 581/582: 495-506.
70 ACHÁ D, HINTELMANN H, YEE J. Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region[J]. Chemosphere, 2011, 82(6): 911-916.
71 CESÁRIO R, MONTEIRO C E, NOGUEIRA M, et al. Mercury and methylmercury dynamics in sediments on a protected area of Tagus Estuary (Portugal)[J]. Water, Air, & Soil Pollution, 2016, 227(12): 1-17.
72 FENG S L, AI Z J, ZHENG S M, et al. Effects of dryout and inflow water quality on mercury methylation in a constructed wetland[J]. Water, Air, & Soil Pollution, 2014, 225(4): 1-11.
73 GILMOUR C C, HENRY E A. Mercury methylation in aquatic systems affected by acid deposition[J]. Environmental Pollution, 1991, 71(2/3/4): 131-169.
74 OREM W, GILMOUR C, AXELRAD D, et al. Sulfur in the south Florida ecosystem: distribution, sources, biogeochemistry, impacts, and management for restoration[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(): 249-288.
75 POULIN B A, RYAN J N, TATE M T, et al. Geochemical factors controlling dissolved elemental mercury and methylmercury formation in Alaskan wetlands of varying trophic status[J]. Environmental Science & Technology, 2019, 53(11): 6 203-6 213.
76 TJERNGREN I, KARLSSON T, BJÖRN E, et al. Potential Hg methylation and MeHg demethylation rates related to the nutrient status of different boreal wetlands[J]. Biogeochemistry, 2012, 108(1/2/3): 335-350.
77 DROTT A, LAMBERTSSON L, BJÖRN E, et al. Do potential methylation rates reflect accumulated methyl mercury in contaminated sediments?[J]. Environmental Science & Technology, 2008, 42(1): 153-158.
78 WINDHAM-MYERS L, MARVIN-DIPASQUALE M, KRABBENHOFT D P, et al. Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment[J]. Journal of Geophysical Research: Biogeosciences, 2009, 114(G2). DOI:10.1029/2008JG000815 .
79 GRAHAM A M, AIKEN G R, GILMOUR C C. Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions[J]. Environmental Science & Technology, 2012, 46(5): 2 715-2 723.
80 SCHAEFER J K, MOREL F M M. High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens[J]. Nature Geoscience, 2009, 2(2): 123-126.
81 BOUCHET S, GOÑI-URRIZA M, MONPERRUS M, et al. Linking microbial activities and low-molecular-weight thiols to Hg methylation in biofilms and periphyton from high-altitude tropical lakes in the Bolivian Altiplano[J]. Environmental Science & Technology, 2018, 52(17): 9 758-9 767.
82 KORTHALS E T, WINFREY M R. Seasonal and spatial variations in mercury methylation and demethylation in an oligotrophic lake[J]. Applied and Environmental Microbiology, 1987, 53(10): 2 397-2 404.
83 ULLRICH S M, TANTON T W, ABDRASHITOVA S A. Mercury in the aquatic environment: a review of factors affecting methylation[J]. Critical Reviews in Environmental Science and Technology, 2001, 31(3): 241-293.
84 LÁZARO W L, GUIMARÃES J R D, IGNÁCIO A R A, et al. Cyanobacteria enhance methylmercury production: a hypothesis tested in the periphyton of two lakes in the Pantanal floodplain, Brazil[J]. Science of the Total Environment, 2013, 456/457: 231-238
85 LECLERC M, PLANAS D, AMYOT M. Relationship between extracellular low-molecular-weight thiols and mercury species in natural lake periphytic biofilms[J]. Environmental Science & Technology, 2015, 49(13): 7 709-7 716.
86 BRAVO A G, BOUCHET S, TOLU J, et al. Molecular composition of organic matter controls methylmercury formation in boreal lakes[J]. Nature Communications, 2017, 8. DOI:10.1038/ncomms14255 .
87 LINDQVIST O, JOHANSSON K, AASTRUP M, et al. Mercury in the Swedish environment—recent research on causes, consequences and corrective methods[J]. Water, Air, and Soil Pollution, 1991, 55(1/2): xi-xiii.
88 CLECKNER L B, GILMOUR C C, HURLEY J P, et al. Mercury methylation in periphyton of the Florida Everglades[J]. Limnology and Oceanography, 1999, 44(7): 1 815-1 825.
89 SHEN Ge, XU Bin, JIN Yunxiang, et al. Advances in studies of wetlands in zoige plateau[J]. Geography and Geo-Information Science, 2016, 32(4): 76-82, 89.
申格, 徐斌, 金云翔, 等.若尔盖高原湿地研究进展[J].地理与地理信息科学, 2016, 32(4): 76-82, 89.
90 ROTH S, POULIN B A, BAUMANN Z, et al. Nutrient inputs stimulate mercury methylation by syntrophs in a subarctic peatland[J]. Frontiers in Microbiology, 2021, 12. DOI:10.3389/fmicb.2021.741523 .
91 ZHANG L J, PHILBEN M, TAS N, et al. Unravelling biogeochemical drivers of methylmercury production in an Arctic Fen soil and a bog soil[J]. Environmental Pollution (Barking, Essex: 1987), 2022, 299. DOI:10.1016/j.envpol.2022.118878 .
92 BILODEAU F, SCHETAGNE R, THERRIEN J, et al. Absence of noticeable mercury effects on fish populations in boreal reservoirs despite threefold to sevenfold increases in mercury concentrations[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73(7): 1 104-1 125.
93 SILVERTHORN V M, BISHOP C A, JARDINE T, et al. Impact of flow diversion by run-of-river Dams on American dipper diet and mercury exposure[J]. Environmental Toxicology and Chemistry, 2018, 37(2): 411-426.
94 LECLERC M, HARRISON M C, STORCK V, et al. Microbial diversity and mercury methylation activity in periphytic biofilms at a Run-of-river hydroelectric dam and constructed wetlands[J]. mSphere, 2021, 6(2). DOI:10.1128/mSphere.00021-21 .
95 FENG P Y, XIANG Y P, CAO D, et al. Occurrence of methylmercury in aerobic environments: evidence of mercury bacterial methylation based on simulation experiments[J]. SSRN Electronic Journal, 2022. DOI:10.2139/ssrn.4093950 .
96 WANG Y M, YIN D L, XIANG Y P, et al. A review of studies on the biogeochemical behaviors of mercury in the Three Gorges Reservoir, China[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(5): 686-694.
97 ZHAO J Y, YE Z H, ZHONG H. Rice root exudates affect microbial methylmercury production in paddy soils[J]. Environmental Pollution, 2018, 242: 1 921-1 929.
98 GONG Y, NUNES L M, GREENFIELD B K, et al. Bioaccessibility-corrected risk assessment of urban dietary methylmercury exposure via fish and rice consumption in China[J]. Science of the Total Environment, 2018, 630: 222-230.
99 ZHANG H, FENG X B, LARSSEN T, et al. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure[J]. Environmental Health Perspectives, 2010, 118(9): 1 183-1 188.
100 WANG X, YE Z H, LI B, et al. Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg[J]. Environmental Science & Technology, 2014, 48(3): 1 878-1 885.
101 TANG W L, SU Y, GAO Y X, et al. Effects of farming activities on the biogeochemistry of mercury in rice-paddy soil systems[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(5): 635-642.
102 PENG X Y, LIU F J, WANG W X, et al. Reducing total mercury and methylmercury accumulation in rice grains through water management and deliberate selection of rice cultivars[J]. Environmental Pollution, 2012, 162: 202-208.
103 ROTHENBERG S E, ANDERS M, AJAMI N J, et al. Water management impacts rice methylmercury and the soil microbiome[J]. Science of the Total Environment, 2016, 572: 608-617.
104 XING Y, WANG J X, KINDER C E S, et al. Rice hull biochar enhances the mobilization and methylation of mercury in a soil under changing redox conditions: implication for Hg risks management in paddy fields[J]. Environment International, 2022, 168. DOI:10.1016/j.envint.2022.107484 .
105 ZHU H K, ZHONG H, WU J L. Incorporating rice residues into paddy soils affects methylmercury accumulation in rice[J]. Chemosphere, 2016, 152: 259-264.
106 ACHÁ D, IÑIGUEZ V, ROULET M, et al. Sulfate-reducing bacteria in floating macrophyte rhizospheres from an Amazonian floodplain lake in Bolivia and their association with Hg methylation[J]. Applied and Environmental Microbiology, 2005, 71: 7 531-7 535.
107 POULAIN A J, BARKAY T. Cracking the mercury methylation code[J]. Science, 2013, 339: 1 280-1 281.
108 SCHAEFER J K, KRONBERG R M, MOREL F M M, et al. Detection of a key Hg methylation gene, hgcA, in wetland soils[J]. Environmental Microbiology Reports, 2014, 6(5): 441-447.
109 JONES D S, JOHNSON N W, MITCHELL C P J, et al. Diverse communities of hgcAB (+) microorganisms methylate mercury in freshwater sediments subjected to experimental sulfate loading[J]. Environmental Science & Technology, 2020. DOI:10.1021/acs.est.0c02513 .
110 STRICKMAN R J S, FULTHORPE R R, COLEMAN WASIK J K, et al. Experimental sulfate amendment alters peatland bacterial community structure[J]. Science of the Total Environment, 2016, 566/567: 1 289-1 296.
111 GRAHAM E B, GABOR R S, SCHOOLER S, et al. Oligotrophic wetland sediments susceptible to shifts in microbiomes and mercury cycling with dissolved organic matter addition[J]. PeerJ, 2018, 6. DOI:10.7717/peerj.4575 .
112 YU R Q, REINFELDER J R, HINES M E, et al. Syntrophic pathways for microbial mercury methylation[J]. ISME Journal, 2018, 12(7): 1 826-1 835.
113 BAE H S, DIERBERG F E, OGRAM A. Periphyton and flocculent materials are important ecological compartments supporting abundant and diverse mercury methylator assemblages in the Florida Everglades[J]. Applied and Environmental Microbiology, 2019, 85(13): e00156-e00119.
114 LIU Na. Characterization and identification of SRB and its control method[D]. Wuhan: Huazhong University of Science and Technology, 2012.
刘娜. 硫酸盐还原菌的分类鉴定及抑制规律研究[D]. 武汉: 华中科技大学, 2012.
115 CHEN Jie, CHU Yin, SI Youbin. Dissimilatory Fe(Ⅲ) reduction by Shewanclla oneidensis MR-1 and impact factors[J]. Journal of Anhui Agricultural University, 2011, 38(4):554-558.
陈洁, 储茵, 司友斌. 奥奈达希瓦氏菌MR-1的Fe(Ⅲ)还原特性及其影响因素[J].安徽农业大学学报, 2011, 38(4):554-558.
116 ZHU W, SONG Y, ADEDIRAN G A, et al. Mercury transformations in resuspended contaminated sediment controlled by redox conditions, chemical speciation and sources of organic matter[J]. Geochimica et Cosmochimica Acta,2018, 220: 158-179.
117 ZHANG H X, HUO S, YEAGER K M, et al. A historical sedimentary record of mercury in a shallow eutrophic lake: impacts of human activities and climate change[J]. Engineering, 2019, 52: 296-304.
118 FRANCO M W, MENDES L A, WINDMÖLLER C C, et al. Mercury methylation capacity and removal of Hg species from aqueous medium by cyanobacteria[J]. Water, Air, & Soil Pollution, 2018, 229(4): 1-12.
119 NOH S, KIM C K, KIM Y, et al. Assessing correlations between monomethylmercury accumulation in fish and trophic states of artificial temperate reservoirs[J]. Science of the Total Environment, 2017, 580: 912-919.
120 SOERENSEN A L, SCHARTUP A T, GUSTAFSSON E, et al. Eutrophication increases phytoplankton methylmercury concentrations in a coastal sea—a Baltic Sea case study[J].Environmental Science & Technology, 2016, 50(21): 11 787-11 796.
121 ZHAO Q X, WANG J T, OUYANG S Y, et al. The exacerbation of mercury methylation by Geobacter sulfurreducens PCA in a freshwater algae-bacteria symbiotic system throughout the lifetime of algae[J]. Journal of Hazardous Materials, 2021, 415: 125 691.1-125 691.9.
122 LEI P, NUNES L M, LIU Y R, et al. Mechanisms of algal biomass input enhanced microbial Hg methylation in lake sediments[J]. Environment International, 2019, 126: 279-288.
123 GARCIA-CALLEJA J, COSSART T, PEDRERO Z, et al. Determination of the intracellular complexation of inorganic and methylmercury in Cyanobacterium Synechocystis sp. PCC 6803[J]. Environmental Science & Technology, 2021, 55(20): 13 971-13 979.
124 LEI P, ZHANG J, ZHU J J, et al. Algal organic matter drives methanogen-mediated methylmercury production in water from eutrophic shallow lakes[J]. Environmental Science & Technology, 2021, 55(15): 10 811-10 820.
125 ALANOCA L, AMOUROUX D, MONPERRUS M, et al. Diurnal variability and biogeochemical reactivity of mercury species in an extreme high-altitude lake ecosystem of the Bolivian Altiplano[J]. Environmental Science and Pollution Research, 2016, 23(7): 6 919-6 933.
126 GAISER E E, MCCORMICK P V, HAGERTHEY S E, et al. Landscape patterns of periphyton in the Florida Everglades[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(): 92-120.
127 SANLI K, BENGTSSON-PALME J, NILSSON R H, et al. Metagenomic sequencing of marine periphyton: taxonomic and functional insights into biofilm communities[J]. Frontiers in Microbiology, 2015,6. DOI:10.3389/fmicb.2015.01192 .
128 RAMANAN R, KIM B H, CHO D H, et al. Algae-bacteria interactions: evolution, ecology and emerging applications[J]. Biotechnology Advances, 2016, 34(1): 14-29.
129 OLSEN T A, BRANDT C C, BROOKS S C. Periphyton biofilms influence net methylmercury production in an industrially contaminated system[J]. Environmental Science & Technology, 2016, 50(20): 10 843-10 850.
130 LÁZARO W L, DÍEZ S, da SILVA C J, et al. Seasonal changes in peryphytic microbial metabolism determining mercury methylation in a tropical wetland[J]. Science of the Total Environment, 2018, 627: 1 345-1 352.
131 CARRELL A A, SCHWARTZ G E, CREGGER M A, et al. Nutrient exposure alters microbial composition, structure, and mercury methylating activity in periphyton in a contaminated watershed[J]. Frontiers in Microbiology,2021,12. DOI:10.3389/fmicb.2021.647861 .
132 MANGAL V, PHUNG T, NGUYEN T Q, et al. Molecular characterization of mercury binding ligands released by freshwater algae grown at three photoperiods[J]. Frontiers in Environmental Science, 2019,6. DOI:10.3389/fenvs.2018.00155 .
133 BRANFIREUN B A, COSIO C, POULAIN A J, et al. Mercury cycling in freshwater systems—an updated conceptual model[J]. The Science of the Total Environment, 2020, 745. DOI:10.1016/j.scitotenv.2020.140906 .
134 SIEBER J R, MCINERNEY M J, GUNSALUS R P. Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation [M]. Paloalto:Annual Reviews, 2012.
135 GROSSKOPF T, ZENOBI S, ALSTON M, et al. A stable genetic polymorphism underpinning microbial syntrophy[J]. ISME Journal, 2016, 10(12): 2 844-2 853.
136 LIU Y R, DONG J X, ZHANG Q G, et al. Longitudinal occurrence of methylmercury in terrestrial ecosystems of the Tibetan Plateau[J]. Environmental Pollution, 2016, 218: 1 342-1 349.
137 MA M, DU H X, WANG D Y, et al. Biotically mediated mercury methylation in the soils and sediments of Nam Co Lake, Tibetan Plateau[J]. Environmental Pollution, 2017, 227: 243-251.
[1] 陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9): 881-898.
[2] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[3] 李建国, 王文超, 濮励杰, 刘丽丽, 张忠启, 李强. 滩涂围垦对盐沼湿地碳收支的影响研究进展[J]. 地球科学进展, 2017, 32(6): 599-614.
[4] 安正韬, WeiYongping. 澳大利亚湿地水环境管理和技术的有机结合[J]. 地球科学进展, 2016, 31(2): 213-224.
[5] 郑聚锋, 潘根兴, 程琨, 张旭辉. 从《IPCC 2006 国家温室气体排放清单增补:2013湿地》谈湿地温室气体计量进展及问题[J]. 地球科学进展, 2014, 29(10): 1120-1125.
[6] 范伟,章光新,李然然. 湿地地表水—地下水交互作用的研究综述[J]. 地球科学进展, 2012, 27(4): 413-423.
[7] 赵红梅,于晓菲,王健,王国平. 火烧对湿地生态系统影响研究进展[J]. 地球科学进展, 2010, 25(4): 374-380.
[8] 邓伟,白军红,胡金明,李爱农. 黄淮海湿地系统分类体系构建[J]. 地球科学进展, 2010, 25(10): 1023-1030.
[9] 王健,赵红梅,徐大伟,于晓菲,吕宪国,王国平. 湿地生态系统中的多环芳烃研究进展[J]. 地球科学进展, 2009, 24(8): 936-941.
[10] 张祥霖,石盛莉,潘根兴,李恋卿,张旭辉,李志鹏. 互花米草入侵下福建漳江口红树林湿地土壤生态化学变化[J]. 地球科学进展, 2008, 23(9): 974-981.
[11] 赵同谦,张华,徐华山,贺玉晓. 黄河湿地孟津段不同植物群落类型土壤有机质含量变化特征研究[J]. 地球科学进展, 2008, 23(6): 638-643.
[12] 张永民,赵士洞,郭荣朝. 全球湿地的状况、未来情景与可持续管理对策[J]. 地球科学进展, 2008, 23(4): 415-420.
[13] 周俊,邓伟,刘伟龙. 沟渠湿地的水文和生态环境效应研究进展[J]. 地球科学进展, 2008, 23(10): 1079-1083.
[14] 胡巍巍,王根绪. 湿地景观格局与生态过程研究进展[J]. 地球科学进展, 2007, 22(9): 969-975.
[15] 邓伟. 湿地水空间效应[J]. 地球科学进展, 2007, 22(7): 725-729.
阅读次数
全文


摘要