地球科学进展 ›› 2021, Vol. 36 ›› Issue (11): 1137 -1145. doi: 10.11867/j.issn.1001-8166.2021.120

数据论文 上一篇    下一篇

中国西北、西藏和周边地区 19612020年每十年 1 km季节冻土最大冻结深度数据集
王冰泉 1 , 2( ), 冉有华 1 , 2( )   
  1. 1.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
  • 收稿日期:2021-09-27 修回日期:2021-11-01 出版日期:2021-11-10
  • 通讯作者: 冉有华 E-mail:wangbingquan@nieer.ac.cn;ranyh@lzb.ac.cn
  • 基金资助:
    国家自然科学基金项目“青藏高原多年冻土退化对基础设施成本影响的统计预测研究”(42071421)

Decadal Dataset of the Seasonal Maximum Freezing Depth with 1 km Resolution from 1961 to 2020 in Northwest China, Tibet and Surrounding Area

Bingquan WANG 1 , 2( ), Youhua RAN 1 , 2( )   

  1. 1.Northwest Institution of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2021-09-27 Revised:2021-11-01 Online:2021-11-10 Published:2022-02-18
  • Contact: Youhua RAN E-mail:wangbingquan@nieer.ac.cn;ranyh@lzb.ac.cn
  • About author:WANG Bingquan (1997-), male, Nanyang City, Henan Province, Master student. Research areas include application of remote sensing and GIS in cryospheric research. E-mail: wangbingquan@nieer.ac.cn
  • Supported by:
    the National Natural Science Foundation of China "Statistical prediction of the permafrost degradation impact on infrastructure future cost in Tibetan Plateau"(42071421)

最大冻结深度是季节冻土热状态的重要指标,其变化对区域水循环、生态过程、气候以及工程稳定性都有重要影响。发布了我国西北五省和西藏及周边地区1961—2020年间每十年的季节冻土最大冻结深度数据集,空间分辨率为1 km。该数据集是利用支持向量机模型集合模拟产生的,以冻结指数、融化指数、降雪、降雨、太阳辐射、高程以及土壤容重为预测因子,利用基准时期(2001—2010年)气象站最大冻结深度的实测数据进行模型训练。10折交叉验证表明,模型具有良好的精度[(R2 = 0.70±0.29,RMSE = (23.63±10.30) cm,bias = (-0.77±6.01) cm)]。基于实测数据的直接验证表明,1980s、1990s、2000s和2010s 4个时期模拟结果的R2分别为0.77、0.83、0.73和0.71,RMSE分别为27.14、22.42、21.63和23.58 cm。运用预测集合的百分位数区间评估了模拟的不确定性,结果表明模拟结果具有良好的稳定性。基于该数据集,发现1961—2020年我国西北五省和西藏地区季节冻土最大冻结深度总体呈显著下降趋势,平均每十年下降3.02 cm。1961—2010年新疆、西藏、青海、甘肃、宁夏和陕西的最大冻结深度平均每十年分别下降2.66、3.04、3.16、2.09、1.98和1.45 cm。该数据集可通过国家青藏高原科学数据中心下载(DOI: 10.11888/Geocry.tpdc.271774)。

The maximum freezing depth is an important indicator for the thermal state of seasonally frozen ground, and its changes have an important impact on the regional water cycle, ecological processes and engineering stability. This paper released a soil maximum freezing depth grid dataset for 10-year period from 1961 to 2020 in Northwest China and Tibet, with a spatial resolution of 1 km. The dataset was produced by integrating downscaled and bias corrected weather data, elevation and soil properties using a support vector machine model with 200 ensemble simulations. The 10-fold cross-validation shows that the accuracy of the support vector machine model is acceptable [R2 = 0.70 ± 0.29, RMSE = (23.63 ± 10.30) cm, bias = (-0.77 ± 6.01) cm]. Validation using in-situ data shows that the R2 for the four periods 1980s, 1990s, 2000s and 2010s are 0.77, 0.83, 0.73 and 0.71 respectively, and the RMSE are 27.14 cm, 22.42 cm, 21.63 cm and 23.58 cm respectively. The uncertainty of the simulation results is stable throughout the simulation period. Based on this dataset, we found that the soil maximum freezing depth in the Northwest China and Tibet decreased significantly between 1960s and 2020s, with an average rate of 3.02 cm per decade. The dataset can be downloaded via the National Tibetan Plateau/Third Pole Environment Data Center (DOI: 10.11888/Geocry.tpdc.271774).

中图分类号: 

图1 模拟季节冻土最大冻结深度技术路线图
Fig. 1 Flowchart of the process used to predict the seasonal maximum freezing depth
图2 最大土壤冻结深度的实测点空间分布
Fig. 2 Distribution of ground-based observation sites
图3 预测变量的重要性排序
Fig. 3 The importance rank of predictors
表1 1960s2010s中国西北和西藏地区季节冻土最大冻结深度模拟结果的精度和不确定性
Table 1 The accuracy and uncertainty of simulation results of the maximum freezing depth of seasonally frozen ground in Northwest China and Tibet from 1960s to 2010s
图4 1960s2010s我国西北和西藏地区最大土壤冻结深度空间分布
Fig. 4 The spatial distribution of the seasonal maximum freezing depth in northwest China and Tibet from 1960s to 2010s
图5 1960s2010s我国西北五省和西藏自治区平均最大土壤冻结深度
Fig. 5 The average soil maximum freezing depth in northwest China and Tibet from 1960s to 2010s
1 QIN Dahe. Glossary of cryospheric science[M]. Beijing:China Meteorological Press, 2014.
秦大河. 冰冻圈科学辞典[M]. 北京:气象出版社, 2014.
2 ZHAO Lin, CHENG Guodong,DING Yongjian. Studies on frozen ground of China[J]. Journal of Geographical Sciences, 2004, 14(4): 411-416.
3 LI Xin, CHENG Guodong, JIN Huijun, et al. Cryospheric change in China[J]. Global and Planetary Change, 2008, 62(3/4): 210-218.
4 PENG Xiaoqing, FRAUENFELD O W,ZHANG Tingjun, et al. Response of seasonal soil freeze depth to climate change across China[J]. The Cryosphere, 2017, 11(3): 1 059-1 073.
5 QIN Yue, CHEN Jinsong, YANG Dawen, et al. Estimating seasonally frozen ground depth from historical climate data and site measurements using a bayesian model[J]. Water Resources Research, 2018, 54(7): 4 361-4 375.
6 LUO Siqiong, WANG Jingyuan, POMEROY J W, et al. Freeze-thaw changes of seasonally frozen ground on the Tibetan Plateau from 1960 to 2014[J]. Journal of Climate, 2020, 33(21): 9 427-9 446.
7 CHEN Boli, LUO Siqiong, LU Shihua, et al. Effects of the soil freeze-thaw process on the regional climate of the Qinghai-Tibet Plateau[J]. Climate Research, 2014, 59(3): 243-257.
8 CHRISTENSEN A F, HE H, DYCK M F, et al. In situ measurement of snowmelt infiltration under various topsoil cap thicknesses on a reclaimed site[J]. Canadian Journal of Soil Science, 2013, 93(4): 497-510.
9 JAFAROV E, SCHAEFER K. The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics[J]. The Cryosphere, 2016, 10(1): 465-475.
10 LUO Siqiong, CHEN Boli, Shihua LYU, et al. An improvement of soil temperature simulations on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018,10(1): 80-94.
11 MU Cuicui, ZHANG Tingjun, WU Qingbai,et al. Carbon and nitrogen properties of permafrost over the Eboling Mountain in the upper reach of Heihe River Basin, Northwestern China[J]. Arctic, Antarctic, and Alpine Research, 2015, 47(2): 203-211.
12 SHIKLOMANOV N I, NELSON F E. Active-layer mapping at regional scales: a 13-year spatial time series for the Kuparuk region, north-central Alaska[J]. Permafrost and Periglacial Processes, 2002, 13(3): 219-230.
13 YANAI Y, IWATA Y, HIROTA T. Optimum soil frost depth to alleviate climate change effects in cold region agriculture[J]. Scientific Reports, 2017, 7(1): 44860.
14 WANG Taihua, YANG Dawen, FANG Beijing, et al. Data-driven mapping of the spatial distribution and potential changes of frozen ground over the Tibetan Plateau[J]. Science of the Total Environment, 2019, 649: 515-525.
15 WANG Rui, DONG Zhibao, ZHOU Zhengchao. Effect of decreasing soil frozen depth on vegetation growth in the source region of the Yellow River for 1982-2015[J]. Theoretical and Applied Climatology, 2020, 140(3/4): 1 185-1 197.
16 LIU Lei, LUO Dongliang, WANG Lei, et al. Variability of soil freeze depth in association with climate change from 1901 to 2016 in the upper Brahmaputra River Basin, Tibetan Plateau[J]. Theoretical and Applied Climatology, 2020, 142(1/2): 19-28.
17 PENG Xiaoqing, ZHANG Tingjun, FRAUENFELD O W, et al. Response of seasonal soil freeze depth to climate change across China[J]. The Cryosphere, 2017, 11(3): 1 059-1 073.
18 LI Xin, KOIKE T. Frozen soil parameterization in SiB2 and its validation with GAME-Tibet observations[J]. Cold Regions Science and Technology, 2003, 36(1/3): 165-182.
19 WALVOORD M A, KURYLYK B L. Hydrologic impacts of thawing permafrost—a review[J]. Vadose Zone Journal, 2016, 15(6): 1-20.
20 RAN Youhua, LI Xin. Challenges and opportunities of permafrost mapping in China[J]. Advances in Earth Sciences, 2019,34 (10): 19-31.
冉有华, 李新. 中国多年冻土制图:进展,挑战与机遇[J]. 地球科学进展, 2019, 34 (10): 19-31.
21 RAN Youhua, LI Xin, CHENG Guodong, et al. Mapping the permafrost stability on the Tibetan Plateau for 2005-2015[J]. Science China Earth Sciences, 2021, 64(1): 62-79.
22 AALTO J, KARJALAINEN O, HJORT J, et al. Statistical forecasting of current and future circum-arctic ground temperatures and active layer thickness[J]. Geophysical Research Letters, 2018, 45(10): 4 889-4 898.
23 RAN Youhua, LI Xin, CHENG Guodong, et al. New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere[J]. Earth System Science Data Discussions, 2021, in press. DOI: 10.5194/essd-2021-83.
24 WANG Bingquan, RAN Youhua. Diversity of remote sensing-based variable inputs improves the estimation of seasonal maximum freezing depth[J]. Remote Sensing, 2021, 13(23): 4829.
25 NELSON F E, OUTCALT S I. A computational method for prediction and regionalization of permafrost[J]. Arctic and Alpine Research, 1987, 19(3): 279.
26 DELUIGI N, LAMBIEL C, KANEVSKI M. Data-driven mapping of the potential mountain permafrost distribution[J]. Science of the Total Environment, 2017, 590: 370-380.
27 PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn:machine learning in Python[J]. The Journal of Machine Learning Research, 2011, 12: 2 825-2 830.
28 FICK S E, HIJMANS R J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12): 4 302-4 315.
29 PENG Shouzhang, DING Yongxia, LIU Wenzhao, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 2019, 11(4): 1 931-1 946.
30 JARVIS A, REUTEr H I, NELSON A, et al. Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database[DS/OL]. 2008[2021-08-09]. .
31 HENGL T, MENDES de Jesus J, HEUVELINK G B M, et al. SoilGrids250m: global gridded soil information based on machine learning[J]. PLoS ONE, 2017, 12(2): e0169748.
32 DE SOUSA L M, POGGIO L, BATJES N H, et al. SoilGrids 2.0: producing quality-assessed soil information for the globe[R]. Soils and the Natural Environment, 2020.DOI:10.5194/soil-2020-65.
33 RAUP B, RACOVITEANU A, KHALSA S J S, et al. The GLIMS geospatial glacier database: a new tool for studying glacier change[J]. Global and Planetary Change, 2007, 56(1/2): 101-110.
34 LEHNER B, DÖLL P. Development and validation of a global database of lakes, reservoirs and wetlands[J]. Journal of Hydrology, 2004, 296(1/4): 1-22.
35 LI Xin, CHENG Guodong. The response model of high altitude permafrost to global change[J]. Science in China Series D: Eerth Sciences, 1999, 29(2):185-192.
李新, 程国栋. 高海拔多年冻土对全球变化的响应模型[J]. 中国科学 D辑: 地球科学, 1999, 29(2): 185-192.
36 ALA-AHO P, AUTIO A, BHATTACHARJEE J, et al. What conditions favor the influence of seasonally frozen ground on hydrological partitioning? A systematic review[J]. Environmental Research Letters, 2021, 16(4): 043008.
[1] 摆玉龙, 路亚妮, 刘名得. 基于变分模态分解的机器学习模型择优风速预测系统[J]. 地球科学进展, 2021, 36(9): 937-949.
[2] 汪芋君, 任宏利, 王琳. 第三极地区气温和积雪的季节—年际气候预测研究[J]. 地球科学进展, 2021, 36(2): 198-210.
[3] 彭小清,张廷军,潘小多,王庆峰,钟歆钥,王康,牟翠翠. 祁连山区黑河流域季节冻土时空变化研究[J]. 地球科学进展, 2013, 28(4): 497-508.
[4] 张廷军,晋锐,高峰. 冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法[J]. 地球科学进展, 2009, 24(9): 963-972.
阅读次数
全文


摘要