1 |
WU Z Q, ZHAO G C. Hydrous plumes in the Archean and the origin of continents[J]. Science Bulletin, 2022, 67(20): 2 023-2 025.
|
2 |
WU Z Q, SONG J, ZHAO G C, et al. Water-induced mantle overturns leading to the origins of Archean continents and subcontinental lithospheric mantle[J]. Geophysical Research Letters, 2023, 50(22). DOI:10.1029/2023GL105178 .
|
3 |
MOYEN J F, MARTIN H. Forty years of TTG research[J]. Lithos, 2012, 148(360): 312-336.
|
4 |
NICK A. Formation and evolution of the continental crust[J]. Geochemical Perspectives, 2013, 2(3): 405-533.
|
5 |
MARTIN H, MOYEN J F, GUITREAU M, et al. Why Archaean TTG cannot be generated by MORB melting in subduction zones[J]. Lithos, 2014, 198: 1-13.
|
6 |
LEAT P T, LARTER R D. Intra-oceanic subduction systems: introduction[J]. Geological Society of London Special Publications, 2003, 219(1): 1-17.
|
7 |
WICANDER R, MONROE J S. Historical geology [M]. Boston: Cengage Learning, 2015.
|
8 |
ZHAO Guochun, ZHANG Guowei. Origin of continents[J]. Acta Geologica Sinica, 2021, 95(1): 1-19.
|
|
赵国春, 张国伟. 大陆的起源[J]. 地质学报, 2021, 95(1): 1-19.
|
9 |
ZHAO Guochun, ZHANG Jian, YIN Changqing, et al. Pre-plate tectonics and origin of continents[J]. Chinese Science Bulletin, 2023, 68(18): 2 312-2 323.
|
|
赵国春, 张健, 尹常青, 等. 前板块构造与大陆起源[J]. 科学通报, 2023, 68(18): 2 312-2 323.
|
10 |
ZHU R X, ZHAO G C, XIAO W J, et al. Origin, accretion, and reworking of continents[J]. Reviews of Geophysics, 2021, 59(3). DOI:10.1029/2019rg000689 .
|
11 |
BARNES S, ARNDT N. Distribution and geochemistry of komatiites and basalts through the Archean[M]// Earth’s oldest rocks. Amsterdam: Elsevier, 2019: 103-132.
|
12 |
CAMPBELL I H, GRIFFITHS R W, HILL R I. Melting in an Archaean mantle plume: heads it’s basalts, tails it’s komatiites[J]. Nature, 1989, 339: 697-699.
|
13 |
CONDIE K C. Mantle-plume model for the origin of Archaean greenstone belts based on trace element distributions[J]. Nature, 1975, 258: 413-414.
|
14 |
ANHAEUSSER C R, WILSON J F. Chapter 8 the granitic-gneiss greenstone shield [M]// Precambrian of the southern hemisphere. Amsterdam: Elsevier, 1981: 423-499.
|
15 |
ZHANG J, LIN S F, LINNEN R, et al. Structural setting of the Young-Davidson syenite-hosted gold deposit in the Western Cadillac-Larder Lake Deformation Zone, Abitibi Greenstone Belt, Superior Province, Ontario[J]. Precambrian Research, 2014, 248: 39-59.
|
16 |
ZHAO G C, WILDE S A, CAWOOD P A, et al. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 2001, 107(1/2): 45-73.
|
17 |
ZHAO G C, SUN M, WILDE S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202.
|
18 |
ZHAO G C, WILDE S A, CAWOOD P A, et al. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting[J]. International Geology Review, 1998, 40(8): 706-721.
|
19 |
BÉDARD J H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle[J]. Geochimica et Cosmochimica Acta, 2005, 70(5): 1 188-1 214.
|
20 |
BÉDARD J H. Stagnant lids and mantle overturns: implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics[J]. Geoscience Frontiers, 2018, 9(1): 19-49.
|
21 |
van KRANENDONK M J, SMITHIES R H, HICKMAN A H, et al. Chapter 4.1 Paleoarchean development of a continental nucleus: the east Pilbara terrane of the Pilbara Craton, Western Australia [M]// Earth’s oldest rocks. Amsterdam: Elsevier, 2007: 307-337.
|
22 |
HARTNADY M I H, JOHNSON T E, SIMON S, et al. Fluid processes in the early Earth and the growth of continents[J]. Earth and Planetary Science Letters, 2022, 594. DOI:10.1016/j.epsl.2022.117695 .
|
23 |
ROMAN A, ARNDT N. Differentiated Archean oceanic crust: its thermal structure, mechanical stability and a test of the sagduction hypothesis[J]. Geochimica et Cosmochimica Acta, 2020, 278: 65-77.
|
24 |
BERNSTEIN S, KELEMEN P B, BROOKS C. Depleted spinel harzburgite xenoliths in Tertiary dykes from East Greenland: restites from high degree melting[J]. Earth and Planetary Science Letters, 1998, 154(1): 221-235.
|
25 |
BOYD F R. Compositional distinction between oceanic and cratonic lithosphere[J]. Earth and Planetary Science Letters, 1989, 96(1/2): 15-26.
|
26 |
BOYD F R, POKHILENKO N P, PEARSON D G, et al. Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths[J]. Contributions to Mineralogy and Petrology, 1997, 128(2): 228-246.
|
27 |
GRIFFIN W L, O’REILLY S Y. The earliest subcontinental lithospheric mantle[M]// Earth’s oldest rocks. Amsterdam: Elsevier, 2019: 81-102.
|
28 |
GRIFFIN W L, O’REILLY S Y, RYAN C G, et al. Secular variation in the composition of subcontinental lithospheric mantle: geophysical and geodynamic implications[M]// BRAUN J, DOOLEY J, GOLEBY B, et al. Structure and evolution of the Australian continent. Washington, D.C.: American Geophysical Union, 1998: 1-26.
|
29 |
KELLER C B, SCHOENE B. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago[J]. Nature, 2012, 485: 490-493.
|
30 |
CARLSON R W, PEARSON D G, JAMES D E. Physical, chemical, and chronological characteristics of continental mantle[J]. Reviews of Geophysics, 2005, 43(1). DOI:10.1029/2004rg000156 .
|
31 |
CONDIE K C, BELOUSOVA E, GRIFFIN W L, et al. Granitoid events in space and time: constraints from igneous and detrital zircon age spectra[J]. Gondwana Research, 2009, 15(3/4): 228-242.
|
32 |
GRIFFIN W L, BELOUSOVA E A, O’NEILL C, et al. The world turns over: Hadean-Archean crust-mantle evolution[J]. Lithos, 2014, 189: 2-15.
|
33 |
DHUIME B, HAWKESWORTH C J, CAWOOD P A, et al. A change in the geodynamics of continental growth 3 billion years ago[J]. Science, 2012, 335(6 074): 1 334-1 336.
|
34 |
TAYLOR S R, MCLENNAN S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265.
|
35 |
BEGG G C, GRIFFIN W L, NATAPOV L M, et al. The lithospheric architecture of Africa: seismic tomography, mantle petrology, and tectonic evolution[J]. Geosphere, 2009, 5(1): 23-50.
|
36 |
GRIFFIN W L, BEGG G C, DUNN D, et al. Archean lithospheric mantle beneath Arkansas: continental growth by microcontinent accretion[J]. Geological Society of America Bulletin, 2011, 123(9/10): 1 763-1 775.
|
37 |
CONDIE K C. Episodic continental growth and supercontinents: a mantle avalanche connection?[J]. Earth and Planetary Science Letters, 1998, 163(1/2/3/4): 97-108.
|
38 |
O’NEILL C, DEBAILLE V, GRIFFIN W. Deep Earth recycling in the Hadean and constraints on surface tectonics[J]. American Journal of Science, 2013, 313(9): 912-932.
|
39 |
CANUP R M. Forming a Moon with an Earth-like composition via a giant impact[J]. Science, 2012, 338(6 110): 1 052-1 055.
|
40 |
LABROSSE S, HERNLUND J W, COLTICE N. A crystallizing dense magma ocean at the base of the Earth’s mantle[J]. Nature, 2007, 450: 866-869.
|
41 |
ALLÈGRE C J, HOFMANN A, O’NIONS K. The argon constraints on mantle structure[J]. Geophysical Research Letters, 1996, 23(24): 3 555-3 557.
|
42 |
BOYET M, CARLSON R. A new geochemical model for the Earth’s mantle inferred from 146Sm-142Nd systematics[J]. Earth and Planetary Science Letters, 2006, 250(1/2): 254-268.
|
43 |
COLTICE N, RICARD Y. Geochemical observations and one layer mantle convection[J]. Earth and Planetary Science Letters, 1999, 174(1/2): 125-137.
|
44 |
RUDNICK R L, BARTH M, et al. Rutile-bearing refractory eclogites: missing link between continents and depleted mantle[J]. Science, 2000, 287(5 451): 278-281.
|
45 |
SUN S. In magmatism in the ocean basins [J]. Geological Society of London Special Publication, 1989, 42: 313-345.
|
46 |
DENG X, XU Y H, HAO S Q, et al. Compositional and thermal state of the lower mantle from joint 3D inversion with seismic tomography and mineral elasticity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(26). DOI:10.1073/pnas.2220178120 .
|
47 |
DESCHAMPS F, COBDEN L, TACKLEY P J. The primitive nature of large low shear-wave velocity provinces[J]. Earth and Planetary Science Letters, 2012, 349/350: 198-208.
|
48 |
TRAMPERT J, DESCHAMPS F, RESOVSKY J, et al. Probabilistic tomography maps chemical heterogeneities throughout the lower mantle[J]. Science, 2004, 306(5 697): 853-856.
|
49 |
VILELLA K, BODIN T, BOUKARÉ C E, et al. Constraints on the composition and temperature of LLSVPs from seismic properties of lower mantle minerals[J]. Earth and Planetary Science Letters, 2021, 554. DOI:10.1016/j.epsl.2020.116685 .
|
50 |
WANG W Z, LIU J C, ZHU F, et al. Formation of large low shear velocity provinces through the decomposition of oxidized mantle[J]. Nature Communications, 2021, 12. DOI:10.1038/s41467-021-22185-1 .
|
51 |
CARACAS R, HIROSE K, NOMURA R, et al. Melt-crystal density crossover in a deep magma ocean[J]. Earth and Planetary Science Letters, 2019, 516: 202-211.
|
52 |
GHOSH D B, KARKI B B. Solid-liquid density and spin crossovers in (Mg, Fe)O system at deep mantle conditions[J]. Scientific Reports, 2016, 6. DOI:10.1038/srep37269 .
|
53 |
STIXRUDE L, de KOKER N, SUN N, et al. Thermodynamics of silicate liquids in the deep Earth[J]. Earth and Planetary Science Letters, 2009, 278(3/4): 226-232.
|
54 |
STIXRUDE L, KARKI B. Structure and freezing of MgSiO3 liquid in Earth’s lower mantle[J]. Science, 2005, 310(5 746): 297-299.
|
55 |
PESLIER A H, SCHÖNBÄCHLER M, BUSEMANN H, et al. Water in the Earth’s interior: distribution and origin[J]. Space Science Reviews, 2017, 212(1): 743-810.
|
56 |
SCHÖNBÄCHLER M, CARLSON R W, HORAN M F, et al. Heterogeneous accretion and the moderately volatile element budget of Earth[J]. Science, 2010, 328(5 980): 884-887.
|
57 |
RUBIE D C, FROST D J, MANN U, et al. Heterogeneous accretion, composition and core-mantle differentiation of the Earth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 31-42.
|
58 |
RUBIE D C, JACOBSON S A, MORBIDELLI A, et al. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water[J]. Icarus, 2015, 248: 89-108.
|
59 |
WOOD B J, WADE J, KILBURN M R. Core formation and the oxidation state of the Earth: additional constraints from Nb, V and Cr partitioning[J]. Geochimica et Cosmochimica Acta, 2008, 72(5): 1 415-1 426.
|
60 |
HIRSCHMANN M M. Constraints on the early delivery and fractionation of Earth’s major volatiles from C/H, C/N, and C/S ratios[J]. American Mineralogist, 2016, 101(3): 540-553.
|
61 |
MARTY B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth [J]. Earth and Planetary Science Letters, 2012, 313: 56-66.
|
62 |
DAUPHAS N. The isotopic nature of the Earth’s accreting material through time[J]. Nature, 2017, 541: 521-524.
|
63 |
OBRIEN D, MORBIDELLI A, LEVISON H. Terrestrial planet formation with strong dynamical friction[J]. Icarus, 2006, 184(1): 39-58.
|
64 |
RAYMOND S N, QUINN T, LUNINE J I. High-resolution simulations of the final assembly of Earth-like planets. 2. water delivery and planetary habitability[J]. Astrobiology, 2007, 7(1): 66-84.
|
65 |
O’BRIEN D P, WALSH K J, MORBIDELLI A, et al. Water delivery and giant impacts in the ‘Grand Tack’ scenario[J]. Icarus, 2014, 239: 74-84.
|
66 |
ALBARÈDE F. Volatile accretion history of the terrestrial planets and dynamic implications[J]. Nature, 2009, 461: 1 227-1 233.
|
67 |
ALBAREDE F, BALLHAUS C, BLICHERT-TOFT J, et al. Asteroidal impacts and the origin of terrestrial and lunar volatiles [J]. Icarus, 2013, 222(1): 44-52.
|
68 |
BALLHAUS C, LAURENZ V, MÜNKER C, et al. The U/Pb ratio of the Earth’s mantle—a signature of late volatile addition [J]. Earth and Planetary Science Letters, 2013, 362: 237-245.
|
69 |
LI Y G, VOČADLO L, SUN T, et al. The Earth’s core as a reservoir of water[J]. Nature Geoscience, 2020, 13: 453-458.
|
70 |
TAGAWA S, SAKAMOTO N, HIROSE K, et al. Experimental evidence for hydrogen incorporation into Earth’s core[J]. Nature Communications, 2021, 12. DOI:10.1038/s41467-021-22035-0 .
|
71 |
UMEMOTO K, HIROSE K. Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations[J]. Geophysical Research Letters, 2015, 42(18): 7 513-7 520.
|
72 |
HELFFRICH G, KANESHIMA S. Outer-core compositional stratification from observed core wave speed profiles[J]. Nature, 2010, 468: 807-810.
|
73 |
LAY T, YOUNG C J. The stably-stratified outermost core revisited[J]. Geophysical Research Letters, 1990, 17(11): 2 001-2 004.
|
74 |
WHALER K A. Does the whole of the Earth’s core convect?[J]. Nature, 1980, 287: 528-530.
|
75 |
BUFFETT B A, SEAGLE C T. Stratification of the top of the core due to chemical interactions with the mantle[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B4). DOI:10.1029/2009jb006751 .
|
76 |
DAVIES C J, POZZO M, GUBBINS D, et al. Transfer of oxygen to Earth’s core from a long-lived magma ocean[J]. Earth and Planetary Science Letters, 2020, 538. DOI:10.1016/j.epsl.2020.116208 .
|
77 |
GUBBINS D, DAVIES C J. The stratified layer at the core-mantle boundary caused by barodiffusion of oxygen, sulphur and silicon[J]. Physics of the Earth and Planetary Interiors, 2013, 215: 21-28.
|
78 |
LI W J, LI Z, MO C J, et al. Self-diffusion coefficient and sound velocity of Fe-Ni-O fluid: implications for the stratification of Earth’s outer core[J]. Physics of the Earth and Planetary Interiors, 2023, 335. DOI:10.1016/j.pepi.2023.106983 .
|
79 |
LI Y G, GUO X, VOČADLO L, et al. The effect of water on the outer core transport properties[J]. Physics of the Earth and Planetary Interiors, 2022, 329/330. DOI:10.1016/j.pepi.2022.106907 .
|
80 |
MOOKHERJEE M, STIXRUDE L, KARKI B. Hydrous silicate melt at high pressure[J]. Nature, 2008, 452: 983-986.
|
81 |
BOLFAN-CASANOVA N, KEPPLER H, RUBIE D C. Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite[J]. Geophysical Research Letters, 2003, 30(17). DOI:10.1029/2003GL017182 .
|
82 |
DU Z X, DENG J, MIYAZAKI Y, et al. Fate of Hydrous Fe-rich silicate melt in Earth’s deep mantle[J]. Geophysical Research Letters, 2019, 46(16): 9 466-9 473.
|
83 |
FU S Y, YANG J, KARATO S I, et al. Water concentration in single-crystal (Al, Fe)-bearing bridgmanite grown from the Hydrous melt: implications for dehydration melting at the topmost lower mantle[J]. Geophysical Research Letters, 2019, 46(17/18): 10 346-10 357.
|
84 |
INOUE T, WADA T, SASAKI R, et al. Water partitioning in the Earth’s mantle[J]. Physics of the Earth and Planetary Interiors, 2010, 183(1/2): 245-251.
|
85 |
LITASOV K. The influence of Al2O3 on the H2O content in periclase and ferropericlase at 25 GPa[J]. Russian Geology and Geophysics, 2010, 51(6): 644-649.
|
86 |
LITASOV K, OHTANI E, LANGENHORST F, et al. Water solubility in Mg-perovskites and water storage capacity in the lower mantle[J]. Earth and Planetary Science Letters, 2003, 211(1): 189-203.
|
87 |
LIU Z D, FEI H Z, CHEN L Y, et al. Bridgmanite is nearly dry at the top of the lower mantle[J]. Earth and Planetary Science Letters, 2021, 570(3). DOI:10.1016/j.epsl.2021.117088 .
|
88 |
ANDRAULT D, PETITGIRARD S, NIGRO G LO, et al. Solid-liquid iron partitioning in Earth’s deep mantle[J]. Nature, 2012, 487: 354-357.
|
89 |
NOMURA R, OZAWA H, TATENO S, et al. Spin crossover and iron-rich silicate melt in the Earth’s deep mantle[J]. Nature, 2011, 473: 199-202.
|
90 |
KARKI B B, GHOSH D B, BANJARA D. Mixed incorporation of carbon and hydrogen in silicate melts under varying pressure and redox conditions[J]. Earth and Planetary Science Letters, 2020, 549. DOI:10.1016/j.epsl.2020.116520 .
|
91 |
KARKI B B, GHOSH D B, MAHARJAN C, et al. Density-pressure profiles of Fe-bearing MgSiO3 liquid: effects of valence and spin states, and implications for the chemical evolution of the lower mantle[J]. Geophysical Research Letters, 2018, 45(9): 3 959-3 966.
|
92 |
SHUKLA G, WU Z, HSU H, et al. Thermoelasticity of Fe2+‐bearing bridgmanite [J]. Geophysical Research Letters, 2015, 42(6): 1 741-1 749.
|
93 |
SOLOMATOVA N V, CARACAS R. Buoyancy and structure of volatile-rich silicate melts[J]. Journal of Geophysical Research Solid Earth, 2021, 126(2). DOI:10.1029/2020JB021045 .
|
94 |
ELKINS-TANTON L T. Magma oceans in the inner solar system[J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 113-139.
|
95 |
SOLOMATOV V. Magma oceans and primordial mantle differentiation[M]// Treatise on geophysics. Amsterdam: Elsevier, 2007: 91-119.
|
96 |
BLANC N A, STEGMAN D R, ZIEGLER L B. Thermal and magnetic evolution of a crystallizing basal magma ocean in Earth’s mantle[J]. Earth and Planetary Science Letters, 2020, 534. DOI:10.1016/j.epsl.2020.116085 .
|
97 |
WALTER M J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere[J]. Journal of Petrology, 1998, 39(1): 29-60.
|
98 |
COLLINS W, van KRANENDONK M, TEYSSIER C. Partial convective overturn of Archaean crust in the east Pilbara Craton, Western Australia: driving mechanisms and tectonic implications[J]. Journal of Structural Geology, 1998, 20(9): 1 405-1 424.
|
99 |
GERYA T, STERN R, BAES M, et al. Plume-induced subduction initiation triggered plate tectonics on Earth [J]. Nature, 2015, 527(7 577): 221-225.
|
100 |
ZHANG S X, LI Y L, LENG W, et al. Photoferrotrophic bacteria initiated plate tectonics in the Neoarchean [J]. Geophysical Research Letters, 2023, 50(13). DOI:10.1029/2023GL103553 .
|
101 |
CAMPBELL I H, GRIFFITHS R W. Did the formation of D″ cause the Archaean-Proterozoic transition?[J]. Earth and Planetary Science Letters, 2014, 388: 1-8.
|
102 |
CONDIE K C. Earth as an evolving planetary system [M]. London, UK:Academic Press, 2021.
|
103 |
CONDIE K C, ASTER R C, van HUNEN J. A great thermal divergence in the mantle beginning 2.5Ga: geochemical constraints from greenstone basalts and komatiites[J]. Geoscience Frontiers, 2016, 7(4): 543-553.
|
104 |
KONHAUSER K O, PECOITS E, LALONDE S V, et al. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event[J]. Nature, 2009, 458: 750-753.
|
105 |
TANG M, CHEN K, RUDNICK R L. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics[J]. Science, 2016, 351(6 271): 372-375.
|
106 |
TAYLOR S R, MCLENNAN S M. The continental crust: its composition and evolution [M]. Palo Alto, California:Blackwell Scientific Publications, 1985.
|
107 |
VALLEY J W, LACKEY J S, CAVOSIE A J, et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon[J]. Contributions to Mineralogy and Petrology, 2005, 150(6): 561-580.
|
108 |
CONDIE K C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales[J]. Chemical Geology, 1993, 104(1/2/3/4): 1-37.
|
109 |
CONDIE K C. Did the character of subduction change at the end of the Archean? Constraints from convergent-margin granitoids[J]. Geology, 2008, 36(8): 611-614.
|
110 |
GASCHNIG R M, RUDNICK R L, McDONOUGH W F, et al. Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites[J]. Geochimica et Cosmochimica Acta, 2016, 186: 316-343.
|
111 |
SOBOLEV A V, ASAFOV E V, GURENKO A A, et al. Komatiites reveal a hydrous Archaean deep-mantle reservoir[J]. Nature, 2016, 531: 628-632.
|
112 |
CONDIE K C. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?[J]. Lithos, 2005, 79(3/4): 491-504.
|
113 |
MOYEN J F, LAURENT O. Archaean tectonic systems: a view from igneous rocks[J]. Lithos, 2018, 302: 99-125.
|
114 |
GUITREAU M, BLICHERT-TOFT J, MARTIN H, et al. Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust[J]. Earth and Planetary Science Letters, 2012, 337/338: 211-223.
|
115 |
HOFFMANN J E, MÜNKER C, POLAT A, et al. The origin of decoupled Hf-Nd isotope compositions in Eoarchean rocks from southern West Greenland[J]. Geochimica et Cosmochimica Acta, 2011, 75(21): 6 610-6 628.
|
116 |
NÄGLER T F, KRAMERS J D. Nd isotopic evolution of the upper mantle during the Precambrian: models, data and the uncertainty of both[J]. Precambrian Research, 1998, 91(3/4): 233-252.
|
117 |
CAWOOD P A, CHOWDHURY P, MULDER J A, et al. Secular evolution of continents and the Earth system[J]. Reviews of Geophysics, 2022, 60(4). DOI:10.1029/2022RG000789 .
|
118 |
LAURENT O, MARTIN H, MOYEN J F, et al. The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga[J]. Lithos, 2014, 205: 208-235.
|