地球科学进展 ›› 2024, Vol. 39 ›› Issue (6): 551 -564. doi: 10.11867/j.issn.1001-8166.2024.044

综述与评述 上一篇    下一篇

水诱导的地幔反转与大陆起源
吴忠庆 1 , 2 , 3( )   
  1. 1.中国科学技术大学 地球和空间科学学院,地震与地球内部物理实验室,安徽 合肥 230026
    2.中国 科学院比较行星学卓越创新中心,安徽 合肥 230026
    3.深空探测实验室,安徽 合肥 230026
  • 收稿日期:2024-03-11 修回日期:2024-05-18 出版日期:2024-06-10
  • 基金资助:
    国家自然科学基金项目(41925017)

Water Induced Mantle Overturn and Origin of the Archean Crust

Zhongqing WU 1 , 2 , 3( )   

  1. 1.Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
    2.Center for Excellence in Comparative Planetology, Chinese Academy of Sciences, Hefei 230026, China
    3.Deep Space Exploration Laboratory, Hefei 230026, China
  • Received:2024-03-11 Revised:2024-05-18 Online:2024-06-10 Published:2024-07-15
  • About author:WU Zhongqing, Professor, research areas include first-principles calculations of mineral properties at high pressure and temperature. E-mail: wuzq10@ustc.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(41925017)

岛弧模型和地幔柱的海底高原模型是大陆起源的两个主流模型。相较于岛弧模型,地幔柱模型能更好地解释太古宙大陆的特征,但在解释太古宙陆壳源区富水这一关键特征时遇到了困难。最近提出的水诱导的地幔反转模型较好地解决了这个问题,同时还能解释太古宙多个令人困惑的现象。该模型指出,在地幔发生整体熔融的情况下,岩浆洋在中地幔深度开始结晶,形成外层和基底两个岩浆洋。由于下地幔矿物含水能力低,随着岩浆的结晶,最初含一定量水的基底岩浆洋将逐渐富水。水降低基底岩浆洋的密度。当水富集到一定程度时,基底岩浆洋的密度将不再高于上覆地幔,从而导致重力失稳,形成地幔反转。这种反转将水带到地球浅部,促进了大陆和克拉通岩石圈地幔等的形成。因此,太古宙大陆是基底岩浆洋演化的产物。当地幔反转耗尽基底岩浆洋后,太古宙型的大陆不再形成。太古宙末期对应着大陆形成机制的转变期,水诱导的地幔反转可以自然地解释为什么太古宙前后的大陆具有完全不同的特性。类似的,水诱导的地幔反转还可以解释其他多个长期困扰的现象,如:为什么几乎没有冥古宙的大陆,为什么太古宙的镁铁质岩石的源区具有原始地幔的组分且在整个太古宙几乎不变,为什么内太阳系只有地球具有大陆等。形成全地幔岩浆洋和岩浆洋含水是水诱导的地幔反转的2个前提。由于大撞击在全地幔岩浆洋形成中扮演了关键角色,月球远比我们想象的重要。

The island arc and oceanic plateau models of a mantle plume are two popular models for the origin of the crust. In contrast to the island arc model, the oceanic plateau model can account for most of the features of the Archean crust but meets the fundamental challenge of explaining the water-rich features of the magma source for the Archean crust. The recent water-induced mantle overturn model accounts for not only water-rich features but also several puzzling phenomena in the Archean. The whole-mantle Magma Ocean (MO) separated into outer and basal MO because the crystallized mantle floated in the middle mantle. The water-induced mantle overturn model shows that with crystallization, basal MO became increasingly enriched in water because lower-mantle minerals can only contain a limited amount of water. Water reduced the density of basal MO. The basal MO eventually became less dense than the overlying solid mantle and became gravitationally unstable because of water enrichment. The triggered mantle overturned transport a large amount of water to the shallow part of the Earth and resulted in large pulses of crust and thick subcontinental lithospheric mantle (SCLM) generation. Therefore, the Archean crust was the result of the evolution of the basal MO. Once the mantle overturned from the basal MO, Archean-type crust no longer formed. Thus, the water-induced mantle overturn model can account for global change at the end of the Archean and other puzzling phenomena. For example, why were Tonalite-Trondhjemite-Granodiorite (TTG) and thick SCLM rare in the Hadean, why does the source of Archean basalts remain the primitive mantle from ca 4.0 to 2.5 Ga, and why does only Earth have continental crust?

中图分类号: 

图1 锆石的年龄分布(绿色柱状图和红线)和地幔包裹体中硫化物的铼—锇模式年龄分布(绿线)(据参考文献[ 27 ]修改)
Fig. 1 The age distribution of all zirconsgreen histogram and red lineand the age distribution of Re-Os model ages for sulfides in mantle-derived xenoliths and xenocrystsgreen line)(modified after reference 27 ])
图2 水诱导的地幔反转的示意图(据参考文献[ 2 ]修改)
(a)水滴用来示意岩浆洋含水,实际硅酸盐溶体中的氢更多地以羟基的形式存在。形成月球的大撞击、地球吸积过程的重力能、放射性元素产热等应该能促成一个全地幔的岩浆洋。岩浆洋在中地幔深度结晶,形成外部和基底2个岩浆洋。(b)随着岩浆的结晶,基底岩浆洋将越来越富水,水降低了基底岩浆洋的密度,当水富集到一定程度后,基底岩浆洋会出现重力失稳而形成地幔反转,该反转将水带到地球浅部,促进大陆的形成
Fig. 2 Schematic illustration of the water-induced mantle overturnsmodified after reference 2 ])
(a) The waterdrop is used to describe hydrous silicate melts although hydrogen mainly exists as hydroxyls in silicate melts. The moon-forming impact, the gravitational energy by the accretion, and the radioactive energy may create a whole-mantle Magma Ocean (MO). The solidification of the whole-mantle MO at the mid mantle forms an outer MO and a basal MO. (b) With the crystallization, the basal MO becomes increasingly enriched in water. Water significantly reduces density of the basal MO. The basal MO eventually becomes gravitationally unstable and generates mantle overturns because of the enrichment of water with solidification. The mantle overturns transport a large amount of water to shallow part of the Earth, which promotes generation of the continent
图3 MgSiO3 固相(布里奇曼石)和液相间的密度差
Fig. 3 The density difference between MgSiO3 solidbridgmaniteand liquid
图4 不同初始水含量下基底岩浆洋与地幔密度差的演化(据参考文献[ 2 ]修改)
水含量用质量比表示:(a)为0,(b)为2×10 -3,(c)为5×10 -3,(d)为10 -2。初始铁含量用原子数比表示:Fe/(Fe+Mg)=0.15,熔体和固体间的铁镁分布系数 K Fe=0.2。黑线表示固液两相密度相等
Fig. 4 The evolution of melt-solid density contrast with various initial water contentmodified after reference 2 ])
Various initial water contents: (a) 0, (b) 2×10 -3, (c) 5×10 -3, (d) 10 -2 in mass fraction. The initial Fe/(Fe+Mg) = 0.15 in atomic ratio, Fe-Mg distribution coefficient K Fe = 0.2; The black lines mark the position where solid density and melt density are equal each other
图5 临界熔融分数和基底岩浆洋寿命(据参考文献[ 2 ]修改)
(a)~(c)临界熔融分数随水含量的变化; (d)基于Labrosse等 40 的基底岩浆洋演化模型,熔融分数随时间指数衰减。临界熔融分数是指岩浆洋和地幔密度相等时对应的基底岩浆洋熔融分数; K Fe为铁镁分布系数;初始铁含量 X Fe用Fe/(Fe+Mg)原子数比表示实线对应平衡结晶的结果,点划线对应分离结晶的结果
Fig. 5 The critical melt fraction and lifetime of the basal Magma OceanMO) (modified after reference 2 ])
(a) ~ (c) The critical melt fraction as a function of initial water content;(d) The melt fraction exponentially decays with time according to the basal MO evolution model of Labrosse et al 40 . K Fe is Fe-Mg distribution coefficient; The critical melt fraction is the fraction at which the basal MO becomes buoyant. X Fe=Fe/(Mg+Fe) in atom ratio is the initial iron content; The solid and dashed lines correspond to the equilibrium crystallization end-member and fractional crystallization end-member, respectively
图6 基底岩浆洋密度和水含量(据参考文献[ 2 ]修改)
(a)平衡结晶下岩浆洋和固体地幔密度差随熔融分数(即岩浆洋结晶程度)变化;(b)密度差最大值对应的年龄(橙色)和水含量(蓝色);密度差是在135 GPa和4 000 K的条件下计算,其中初始铁含量 X Fe=0.15,铁镁分布系数 K Fe=0.2。年龄估计假定密度差为0的时刻是29亿年前且基底岩浆洋指数衰减 40
Fig. 6 the density and water content of the basal Magma OceanMO) (modified after reference 2 ])
(a)The evolution of melt-solid density contrast for the equilibrium crystallization of basal MO; (b)The age (orange) and water content in melts (blue) when Δ ρ/ ρ reaches maximum as a function of initial water content for equilibrium crystallization. The density difference is calculated under 135 GPa and 4 000 K with X Fe=0.15 and Fe-Mg distribution coefficient K Fe=0.2. The age is determined by assuming that Δ ρ/ ρ becomes zero at 2.9 Ga and the melt fraction exponentially decays with time 40
图7 镁铁质源岩(点划线)和其部分熔融成分的多元素图(黄线) 5
数据点用当今洋中脊玄武岩(Mo-MORB)进行了归一化; F是熔融分数;绿线是现洋中脊玄武岩(Mo-MORB);蓝线是太古宙镁铁质岩石;红线是TTG
Fig. 7 The multi-element diagrams of mafic sourcedashed linesand its partial melting compositionyellow lines 5
The data are normalized with average modern Mid-ocean ridge basalt (Mo-MORB); F is melting fraction; Mo-MORB diagrams are shown in green lines; Archean mafic diagrams are shown in blue lines; TTG diagrams are shown in red lines
图8 克拉通岩石的时空分布 117
TTG:英云闪长岩—奥长花岗岩—花岗闪长岩;显示了主要的长英质岩石以及镁铁质和超镁铁质岩石岩浆活动时间、克拉通造山循环后期变形事件的时间、镁铁质基性岩墙的就位时间以及主要的后期沉积盆地沉积时间
Fig. 8 Time-space plot of rocks for the cratons 117
TTG: Tonalite-Trondhjemite-Granodiorite; Showing the time of major felsic and mafic/ultramafic igneous activity, deformational events that are late stage in the orogenic cycle of the craton, mafic dyke emplacement and major late sedimentary basin deposition
1 WU Z Q, ZHAO G C. Hydrous plumes in the Archean and the origin of continents[J]. Science Bulletin, 2022, 67(20): 2 023-2 025.
2 WU Z Q, SONG J, ZHAO G C, et al. Water-induced mantle overturns leading to the origins of Archean continents and subcontinental lithospheric mantle[J]. Geophysical Research Letters, 2023, 50(22). DOI:10.1029/2023GL105178 .
3 MOYEN J F, MARTIN H. Forty years of TTG research[J]. Lithos, 2012, 148(360): 312-336.
4 NICK A. Formation and evolution of the continental crust[J]. Geochemical Perspectives, 2013, 2(3): 405-533.
5 MARTIN H, MOYEN J F, GUITREAU M, et al. Why Archaean TTG cannot be generated by MORB melting in subduction zones[J]. Lithos, 2014, 198: 1-13.
6 LEAT P T, LARTER R D. Intra-oceanic subduction systems: introduction[J]. Geological Society of London Special Publications, 2003, 219(1): 1-17.
7 WICANDER R, MONROE J S. Historical geology [M]. Boston: Cengage Learning, 2015.
8 ZHAO Guochun, ZHANG Guowei. Origin of continents[J]. Acta Geologica Sinica, 2021, 95(1): 1-19.
赵国春, 张国伟. 大陆的起源[J]. 地质学报, 2021, 95(1): 1-19.
9 ZHAO Guochun, ZHANG Jian, YIN Changqing, et al. Pre-plate tectonics and origin of continents[J]. Chinese Science Bulletin, 2023, 68(18): 2 312-2 323.
赵国春, 张健, 尹常青, 等. 前板块构造与大陆起源[J]. 科学通报, 2023, 68(18): 2 312-2 323.
10 ZHU R X, ZHAO G C, XIAO W J, et al. Origin, accretion, and reworking of continents[J]. Reviews of Geophysics, 2021, 59(3). DOI:10.1029/2019rg000689 .
11 BARNES S, ARNDT N. Distribution and geochemistry of komatiites and basalts through the Archean[M]// Earth’s oldest rocks. Amsterdam: Elsevier, 2019: 103-132.
12 CAMPBELL I H, GRIFFITHS R W, HILL R I. Melting in an Archaean mantle plume: heads it’s basalts, tails it’s komatiites[J]. Nature, 1989, 339: 697-699.
13 CONDIE K C. Mantle-plume model for the origin of Archaean greenstone belts based on trace element distributions[J]. Nature, 1975, 258: 413-414.
14 ANHAEUSSER C R, WILSON J F. Chapter 8 the granitic-gneiss greenstone shield [M]// Precambrian of the southern hemisphere. Amsterdam: Elsevier, 1981: 423-499.
15 ZHANG J, LIN S F, LINNEN R, et al. Structural setting of the Young-Davidson syenite-hosted gold deposit in the Western Cadillac-Larder Lake Deformation Zone, Abitibi Greenstone Belt, Superior Province, Ontario[J]. Precambrian Research, 2014, 248: 39-59.
16 ZHAO G C, WILDE S A, CAWOOD P A, et al. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 2001, 107(1/2): 45-73.
17 ZHAO G C, SUN M, WILDE S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 2005, 136(2): 177-202.
18 ZHAO G C, WILDE S A, CAWOOD P A, et al. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting[J]. International Geology Review, 1998, 40(8): 706-721.
19 BÉDARD J H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle[J]. Geochimica et Cosmochimica Acta, 2005, 70(5): 1 188-1 214.
20 BÉDARD J H. Stagnant lids and mantle overturns: implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics[J]. Geoscience Frontiers, 2018, 9(1): 19-49.
21 van KRANENDONK M J, SMITHIES R H, HICKMAN A H, et al. Chapter 4.1 Paleoarchean development of a continental nucleus: the east Pilbara terrane of the Pilbara Craton, Western Australia [M]// Earth’s oldest rocks. Amsterdam: Elsevier, 2007: 307-337.
22 HARTNADY M I H, JOHNSON T E, SIMON S, et al. Fluid processes in the early Earth and the growth of continents[J]. Earth and Planetary Science Letters, 2022, 594. DOI:10.1016/j.epsl.2022.117695 .
23 ROMAN A, ARNDT N. Differentiated Archean oceanic crust: its thermal structure, mechanical stability and a test of the sagduction hypothesis[J]. Geochimica et Cosmochimica Acta, 2020, 278: 65-77.
24 BERNSTEIN S, KELEMEN P B, BROOKS C. Depleted spinel harzburgite xenoliths in Tertiary dykes from East Greenland: restites from high degree melting[J]. Earth and Planetary Science Letters, 1998, 154(1): 221-235.
25 BOYD F R. Compositional distinction between oceanic and cratonic lithosphere[J]. Earth and Planetary Science Letters, 1989, 96(1/2): 15-26.
26 BOYD F R, POKHILENKO N P, PEARSON D G, et al. Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths[J]. Contributions to Mineralogy and Petrology, 1997, 128(2): 228-246.
27 GRIFFIN W L, O’REILLY S Y. The earliest subcontinental lithospheric mantle[M]// Earth’s oldest rocks. Amsterdam: Elsevier, 2019: 81-102.
28 GRIFFIN W L, O’REILLY S Y, RYAN C G, et al. Secular variation in the composition of subcontinental lithospheric mantle: geophysical and geodynamic implications[M]// BRAUN J, DOOLEY J, GOLEBY B, et al. Structure and evolution of the Australian continent. Washington, D.C.: American Geophysical Union, 1998: 1-26.
29 KELLER C B, SCHOENE B. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago[J]. Nature, 2012, 485: 490-493.
30 CARLSON R W, PEARSON D G, JAMES D E. Physical, chemical, and chronological characteristics of continental mantle[J]. Reviews of Geophysics, 2005, 43(1). DOI:10.1029/2004rg000156 .
31 CONDIE K C, BELOUSOVA E, GRIFFIN W L, et al. Granitoid events in space and time: constraints from igneous and detrital zircon age spectra[J]. Gondwana Research, 2009, 15(3/4): 228-242.
32 GRIFFIN W L, BELOUSOVA E A, O’NEILL C, et al. The world turns over: Hadean-Archean crust-mantle evolution[J]. Lithos, 2014, 189: 2-15.
33 DHUIME B, HAWKESWORTH C J, CAWOOD P A, et al. A change in the geodynamics of continental growth 3 billion years ago[J]. Science, 2012, 335(6 074): 1 334-1 336.
34 TAYLOR S R, MCLENNAN S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265.
35 BEGG G C, GRIFFIN W L, NATAPOV L M, et al. The lithospheric architecture of Africa: seismic tomography, mantle petrology, and tectonic evolution[J]. Geosphere, 2009, 5(1): 23-50.
36 GRIFFIN W L, BEGG G C, DUNN D, et al. Archean lithospheric mantle beneath Arkansas: continental growth by microcontinent accretion[J]. Geological Society of America Bulletin, 2011, 123(9/10): 1 763-1 775.
37 CONDIE K C. Episodic continental growth and supercontinents: a mantle avalanche connection?[J]. Earth and Planetary Science Letters, 1998, 163(1/2/3/4): 97-108.
38 O’NEILL C, DEBAILLE V, GRIFFIN W. Deep Earth recycling in the Hadean and constraints on surface tectonics[J]. American Journal of Science, 2013, 313(9): 912-932.
39 CANUP R M. Forming a Moon with an Earth-like composition via a giant impact[J]. Science, 2012, 338(6 110): 1 052-1 055.
40 LABROSSE S, HERNLUND J W, COLTICE N. A crystallizing dense magma ocean at the base of the Earth’s mantle[J]. Nature, 2007, 450: 866-869.
41 ALLÈGRE C J, HOFMANN A, O’NIONS K. The argon constraints on mantle structure[J]. Geophysical Research Letters, 1996, 23(24): 3 555-3 557.
42 BOYET M, CARLSON R. A new geochemical model for the Earth’s mantle inferred from 146Sm-142Nd systematics[J]. Earth and Planetary Science Letters, 2006, 250(1/2): 254-268.
43 COLTICE N, RICARD Y. Geochemical observations and one layer mantle convection[J]. Earth and Planetary Science Letters, 1999, 174(1/2): 125-137.
44 RUDNICK R L, BARTH M, et al. Rutile-bearing refractory eclogites: missing link between continents and depleted mantle[J]. Science, 2000, 287(5 451): 278-281.
45 SUN S. In magmatism in the ocean basins [J]. Geological Society of London Special Publication, 1989, 42: 313-345.
46 DENG X, XU Y H, HAO S Q, et al. Compositional and thermal state of the lower mantle from joint 3D inversion with seismic tomography and mineral elasticity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(26). DOI:10.1073/pnas.2220178120 .
47 DESCHAMPS F, COBDEN L, TACKLEY P J. The primitive nature of large low shear-wave velocity provinces[J]. Earth and Planetary Science Letters, 2012, 349/350: 198-208.
48 TRAMPERT J, DESCHAMPS F, RESOVSKY J, et al. Probabilistic tomography maps chemical heterogeneities throughout the lower mantle[J]. Science, 2004, 306(5 697): 853-856.
49 VILELLA K, BODIN T, BOUKARÉ C E, et al. Constraints on the composition and temperature of LLSVPs from seismic properties of lower mantle minerals[J]. Earth and Planetary Science Letters, 2021, 554. DOI:10.1016/j.epsl.2020.116685 .
50 WANG W Z, LIU J C, ZHU F, et al. Formation of large low shear velocity provinces through the decomposition of oxidized mantle[J]. Nature Communications, 2021, 12. DOI:10.1038/s41467-021-22185-1 .
51 CARACAS R, HIROSE K, NOMURA R, et al. Melt-crystal density crossover in a deep magma ocean[J]. Earth and Planetary Science Letters, 2019, 516: 202-211.
52 GHOSH D B, KARKI B B. Solid-liquid density and spin crossovers in (Mg, Fe)O system at deep mantle conditions[J]. Scientific Reports, 2016, 6. DOI:10.1038/srep37269 .
53 STIXRUDE L, de KOKER N, SUN N, et al. Thermodynamics of silicate liquids in the deep Earth[J]. Earth and Planetary Science Letters, 2009, 278(3/4): 226-232.
54 STIXRUDE L, KARKI B. Structure and freezing of MgSiO3 liquid in Earth’s lower mantle[J]. Science, 2005, 310(5 746): 297-299.
55 PESLIER A H, SCHÖNBÄCHLER M, BUSEMANN H, et al. Water in the Earth’s interior: distribution and origin[J]. Space Science Reviews, 2017, 212(1): 743-810.
56 SCHÖNBÄCHLER M, CARLSON R W, HORAN M F, et al. Heterogeneous accretion and the moderately volatile element budget of Earth[J]. Science, 2010, 328(5 980): 884-887.
57 RUBIE D C, FROST D J, MANN U, et al. Heterogeneous accretion, composition and core-mantle differentiation of the Earth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 31-42.
58 RUBIE D C, JACOBSON S A, MORBIDELLI A, et al. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water[J]. Icarus, 2015, 248: 89-108.
59 WOOD B J, WADE J, KILBURN M R. Core formation and the oxidation state of the Earth: additional constraints from Nb, V and Cr partitioning[J]. Geochimica et Cosmochimica Acta, 2008, 72(5): 1 415-1 426.
60 HIRSCHMANN M M. Constraints on the early delivery and fractionation of Earth’s major volatiles from C/H, C/N, and C/S ratios[J]. American Mineralogist, 2016, 101(3): 540-553.
61 MARTY B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth [J]. Earth and Planetary Science Letters, 2012, 313: 56-66.
62 DAUPHAS N. The isotopic nature of the Earth’s accreting material through time[J]. Nature, 2017, 541: 521-524.
63 OBRIEN D, MORBIDELLI A, LEVISON H. Terrestrial planet formation with strong dynamical friction[J]. Icarus, 2006, 184(1): 39-58.
64 RAYMOND S N, QUINN T, LUNINE J I. High-resolution simulations of the final assembly of Earth-like planets. 2. water delivery and planetary habitability[J]. Astrobiology, 2007, 7(1): 66-84.
65 O’BRIEN D P, WALSH K J, MORBIDELLI A, et al. Water delivery and giant impacts in the ‘Grand Tack’ scenario[J]. Icarus, 2014, 239: 74-84.
66 ALBARÈDE F. Volatile accretion history of the terrestrial planets and dynamic implications[J]. Nature, 2009, 461: 1 227-1 233.
67 ALBAREDE F, BALLHAUS C, BLICHERT-TOFT J, et al. Asteroidal impacts and the origin of terrestrial and lunar volatiles [J]. Icarus, 2013, 222(1): 44-52.
68 BALLHAUS C, LAURENZ V, MÜNKER C, et al. The U/Pb ratio of the Earth’s mantle—a signature of late volatile addition [J]. Earth and Planetary Science Letters, 2013, 362: 237-245.
69 LI Y G, VOČADLO L, SUN T, et al. The Earth’s core as a reservoir of water[J]. Nature Geoscience, 2020, 13: 453-458.
70 TAGAWA S, SAKAMOTO N, HIROSE K, et al. Experimental evidence for hydrogen incorporation into Earth’s core[J]. Nature Communications, 2021, 12. DOI:10.1038/s41467-021-22035-0 .
71 UMEMOTO K, HIROSE K. Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations[J]. Geophysical Research Letters, 2015, 42(18): 7 513-7 520.
72 HELFFRICH G, KANESHIMA S. Outer-core compositional stratification from observed core wave speed profiles[J]. Nature, 2010, 468: 807-810.
73 LAY T, YOUNG C J. The stably-stratified outermost core revisited[J]. Geophysical Research Letters, 1990, 17(11): 2 001-2 004.
74 WHALER K A. Does the whole of the Earth’s core convect?[J]. Nature, 1980, 287: 528-530.
75 BUFFETT B A, SEAGLE C T. Stratification of the top of the core due to chemical interactions with the mantle[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B4). DOI:10.1029/2009jb006751 .
76 DAVIES C J, POZZO M, GUBBINS D, et al. Transfer of oxygen to Earth’s core from a long-lived magma ocean[J]. Earth and Planetary Science Letters, 2020, 538. DOI:10.1016/j.epsl.2020.116208 .
77 GUBBINS D, DAVIES C J. The stratified layer at the core-mantle boundary caused by barodiffusion of oxygen, sulphur and silicon[J]. Physics of the Earth and Planetary Interiors, 2013, 215: 21-28.
78 LI W J, LI Z, MO C J, et al. Self-diffusion coefficient and sound velocity of Fe-Ni-O fluid: implications for the stratification of Earth’s outer core[J]. Physics of the Earth and Planetary Interiors, 2023, 335. DOI:10.1016/j.pepi.2023.106983 .
79 LI Y G, GUO X, VOČADLO L, et al. The effect of water on the outer core transport properties[J]. Physics of the Earth and Planetary Interiors, 2022, 329/330. DOI:10.1016/j.pepi.2022.106907 .
80 MOOKHERJEE M, STIXRUDE L, KARKI B. Hydrous silicate melt at high pressure[J]. Nature, 2008, 452: 983-986.
81 BOLFAN-CASANOVA N, KEPPLER H, RUBIE D C. Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite[J]. Geophysical Research Letters, 2003, 30(17). DOI:10.1029/2003GL017182 .
82 DU Z X, DENG J, MIYAZAKI Y, et al. Fate of Hydrous Fe-rich silicate melt in Earth’s deep mantle[J]. Geophysical Research Letters, 2019, 46(16): 9 466-9 473.
83 FU S Y, YANG J, KARATO S I, et al. Water concentration in single-crystal (Al, Fe)-bearing bridgmanite grown from the Hydrous melt: implications for dehydration melting at the topmost lower mantle[J]. Geophysical Research Letters, 2019, 46(17/18): 10 346-10 357.
84 INOUE T, WADA T, SASAKI R, et al. Water partitioning in the Earth’s mantle[J]. Physics of the Earth and Planetary Interiors, 2010, 183(1/2): 245-251.
85 LITASOV K. The influence of Al2O3 on the H2O content in periclase and ferropericlase at 25 GPa[J]. Russian Geology and Geophysics, 2010, 51(6): 644-649.
86 LITASOV K, OHTANI E, LANGENHORST F, et al. Water solubility in Mg-perovskites and water storage capacity in the lower mantle[J]. Earth and Planetary Science Letters, 2003, 211(1): 189-203.
87 LIU Z D, FEI H Z, CHEN L Y, et al. Bridgmanite is nearly dry at the top of the lower mantle[J]. Earth and Planetary Science Letters, 2021, 570(3). DOI:10.1016/j.epsl.2021.117088 .
88 ANDRAULT D, PETITGIRARD S, NIGRO G LO, et al. Solid-liquid iron partitioning in Earth’s deep mantle[J]. Nature, 2012, 487: 354-357.
89 NOMURA R, OZAWA H, TATENO S, et al. Spin crossover and iron-rich silicate melt in the Earth’s deep mantle[J]. Nature, 2011, 473: 199-202.
90 KARKI B B, GHOSH D B, BANJARA D. Mixed incorporation of carbon and hydrogen in silicate melts under varying pressure and redox conditions[J]. Earth and Planetary Science Letters, 2020, 549. DOI:10.1016/j.epsl.2020.116520 .
91 KARKI B B, GHOSH D B, MAHARJAN C, et al. Density-pressure profiles of Fe-bearing MgSiO3 liquid: effects of valence and spin states, and implications for the chemical evolution of the lower mantle[J]. Geophysical Research Letters, 2018, 45(9): 3 959-3 966.
92 SHUKLA G, WU Z, HSU H, et al. Thermoelasticity of Fe2+‐bearing bridgmanite [J]. Geophysical Research Letters, 2015, 42(6): 1 741-1 749.
93 SOLOMATOVA N V, CARACAS R. Buoyancy and structure of volatile-rich silicate melts[J]. Journal of Geophysical Research Solid Earth, 2021, 126(2). DOI:10.1029/2020JB021045 .
94 ELKINS-TANTON L T. Magma oceans in the inner solar system[J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 113-139.
95 SOLOMATOV V. Magma oceans and primordial mantle differentiation[M]// Treatise on geophysics. Amsterdam: Elsevier, 2007: 91-119.
96 BLANC N A, STEGMAN D R, ZIEGLER L B. Thermal and magnetic evolution of a crystallizing basal magma ocean in Earth’s mantle[J]. Earth and Planetary Science Letters, 2020, 534. DOI:10.1016/j.epsl.2020.116085 .
97 WALTER M J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere[J]. Journal of Petrology, 1998, 39(1): 29-60.
98 COLLINS W, van KRANENDONK M, TEYSSIER C. Partial convective overturn of Archaean crust in the east Pilbara Craton, Western Australia: driving mechanisms and tectonic implications[J]. Journal of Structural Geology, 1998, 20(9): 1 405-1 424.
99 GERYA T, STERN R, BAES M, et al. Plume-induced subduction initiation triggered plate tectonics on Earth [J]. Nature, 2015, 527(7 577): 221-225.
100 ZHANG S X, LI Y L, LENG W, et al. Photoferrotrophic bacteria initiated plate tectonics in the Neoarchean [J]. Geophysical Research Letters, 2023, 50(13). DOI:10.1029/2023GL103553 .
101 CAMPBELL I H, GRIFFITHS R W. Did the formation of D″ cause the Archaean-Proterozoic transition?[J]. Earth and Planetary Science Letters, 2014, 388: 1-8.
102 CONDIE K C. Earth as an evolving planetary system [M]. London, UK:Academic Press, 2021.
103 CONDIE K C, ASTER R C, van HUNEN J. A great thermal divergence in the mantle beginning 2.5Ga: geochemical constraints from greenstone basalts and komatiites[J]. Geoscience Frontiers, 2016, 7(4): 543-553.
104 KONHAUSER K O, PECOITS E, LALONDE S V, et al. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event[J]. Nature, 2009, 458: 750-753.
105 TANG M, CHEN K, RUDNICK R L. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics[J]. Science, 2016, 351(6 271): 372-375.
106 TAYLOR S R, MCLENNAN S M. The continental crust: its composition and evolution [M]. Palo Alto, California:Blackwell Scientific Publications, 1985.
107 VALLEY J W, LACKEY J S, CAVOSIE A J, et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon[J]. Contributions to Mineralogy and Petrology, 2005, 150(6): 561-580.
108 CONDIE K C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales[J]. Chemical Geology, 1993, 104(1/2/3/4): 1-37.
109 CONDIE K C. Did the character of subduction change at the end of the Archean? Constraints from convergent-margin granitoids[J]. Geology, 2008, 36(8): 611-614.
110 GASCHNIG R M, RUDNICK R L, McDONOUGH W F, et al. Compositional evolution of the upper continental crust through time, as constrained by ancient glacial diamictites[J]. Geochimica et Cosmochimica Acta, 2016, 186: 316-343.
111 SOBOLEV A V, ASAFOV E V, GURENKO A A, et al. Komatiites reveal a hydrous Archaean deep-mantle reservoir[J]. Nature, 2016, 531: 628-632.
112 CONDIE K C. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?[J]. Lithos, 2005, 79(3/4): 491-504.
113 MOYEN J F, LAURENT O. Archaean tectonic systems: a view from igneous rocks[J]. Lithos, 2018, 302: 99-125.
114 GUITREAU M, BLICHERT-TOFT J, MARTIN H, et al. Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust[J]. Earth and Planetary Science Letters, 2012, 337/338: 211-223.
115 HOFFMANN J E, MÜNKER C, POLAT A, et al. The origin of decoupled Hf-Nd isotope compositions in Eoarchean rocks from southern West Greenland[J]. Geochimica et Cosmochimica Acta, 2011, 75(21): 6 610-6 628.
116 NÄGLER T F, KRAMERS J D. Nd isotopic evolution of the upper mantle during the Precambrian: models, data and the uncertainty of both[J]. Precambrian Research, 1998, 91(3/4): 233-252.
117 CAWOOD P A, CHOWDHURY P, MULDER J A, et al. Secular evolution of continents and the Earth system[J]. Reviews of Geophysics, 2022, 60(4). DOI:10.1029/2022RG000789 .
118 LAURENT O, MARTIN H, MOYEN J F, et al. The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga[J]. Lithos, 2014, 205: 208-235.
[1] 黄春林, 侯金亮, 李维德, 顾娟, 张莹, 韩伟孝, 王维真, 温小虎, 朱高峰. 深度学习融合遥感大数据的陆地水文数据同化:进展与关键科学问题[J]. 地球科学进展, 2023, 38(5): 441-452.
[2] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[3] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[4] 黄婉彬,鄢春华,张晓楠,邱国玉. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
[5] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[6] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[7] 谢正辉,陈思,秦佩华,贾炳浩,谢瑾博. 人类用水活动的气候反馈及其对陆地水循环的影响研究——进展与挑战[J]. 地球科学进展, 2019, 34(8): 801-813.
[8] 汤秋鸿,刘星才,李哲,运晓博,张学君,于强,李俊,张永勇,崔惠娟,孙思奥,张弛,唐寅,冷国勇. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.
[9] 马忠, 苏守娟, 龙爱华, 张晓霞. 塔里木河流域社会经济系统水循环分析[J]. 地球科学进展, 2018, 33(8): 833-841.
[10] 李育, 刘媛. 干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例[J]. 地球科学进展, 2017, 32(7): 731-743.
[11] 廖一帆, 孙宁宇, 毛竹. 地球下地幔矿物结构和热力学参数的研究进展与展望[J]. 地球科学进展, 2017, 32(5): 465-480.
[12] 汤秋鸿, 黄忠伟, 刘星才, 韩松俊, 冷国勇, 张学君, 穆梦斐. 人类用水活动对大尺度陆地水循环的影响[J]. 地球科学进展, 2015, 30(10): 1091-1099.
[13] 王连喜, 吴建生, 李琪, 顾嘉熠, 薛红喜. AquaCrop作物模型应用研究进展[J]. 地球科学进展, 2015, 30(10): 1100-1106.
[14] 邓铭江, 石泉. 内陆干旱区水资源管理调控模式[J]. 地球科学进展, 2014, 29(9): 1046-1054.
[15] 李霞, 高艳红, 王婉昭, 蓝永超, 许建伟, 李凯. 黄河源区气候变化与GLDAS数据适用性评估[J]. 地球科学进展, 2014, 29(4): 531-540.
阅读次数
全文


摘要