5 |
CHEN Meihua, LU Fengxiang, DI Jingru, et al. The cathodoluminescence and FTIR analysis of Wangfangdian diamonds from Liaoning Province[J]. Chinese Science Bulletin, 2000, 45(13): 1 424-1 428.
|
|
陈美华, 路凤香, 狄敬如, 等. 辽宁瓦房店金刚石的阴极发光和红外光谱分析[J]. 科学通报, 2000, 45(13): 1 424-1 428.
|
6 |
FEDORTCHOUK Y, LIEBSKE C, MCCAMMON C. Diamond destruction and growth during mantle metasomatism: an experimental study of diamond resorption features[J]. Earth and Planetary Science Letters, 2019, 506: 493-506.
|
7 |
KHOKHRYAKOV A F, PAL’ YANOV Y N. Influence of the fluid composition on diamond dissolution forms in carbonate melts[J]. American Mineralogist, 2010, 95(10): 1 508-1 514.
|
8 |
KHOKHRYAKOV A F, PAL’ YANOV Y N. The evolution of diamond morphology in the process of dissolution: experimental data[J]. American Mineralogist, 2007, 92(5/6): 909-917.
|
9 |
KOZAI Y. Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300-1420 ℃ and 1 GPa with controlled oxygen partial pressure[J]. American Mineralogist, 2005, 90(11/12): 1 759-1 766.
|
10 |
SMIT K V, SHIREY S B. Diamonds from the deep: diamonds are not forever!Diamond dissolution[J]. Gems & Gemology, 2020, 56(1): 148-155.
|
11 |
FEDORTCHOUK Y. A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies[J]. Earth-Science Reviews, 2019, 193: 45-65.
|
12 |
ZHANG Z H, FEDORTCHOUK Y. Records of mantle metasomatism in the morphology of diamonds from the Slave craton[J]. European Journal of Mineralogy, 2012, 24(4): 619-632.
|
13 |
HOWARTH G H, KAHLE B, JANNEY P E, et al. Caught in the act: diamond growth and destruction in the continental lithosphere[J]. Geology, 2023, 51(6): 532-536.
|
14 |
HARRIS J W, SMIT K V, FEDORTCHOUK Y, et al. Morphology of monocrystalline diamond and its inclusions[J]. Reviews in Mineralogy and Geochemistry, 2022, 88(1): 119-166.
|
15 |
FEDORTCHOUK Y, CHINN I L, PERRITT S H, et al. Diamond-destructive mantle metasomatism: evidence from the internal and external textures of diamonds and their nitrogen defects[J]. Lithos, 2022, 414/415. DOI:10.1016/j.lithos.2022.106616 .
|
16 |
TAPPERT R, TAPPERT M C. Diamonds in nature: a guide to rough diamonds[M]. Heidelberg, Germany, New York: Springer, 2011.
|
17 |
MOORE M, LANG A R. On the origin of the rounded dodecahedral habit of natural diamond[J]. Journal of Crystal Growth, 1974, 26(1): 133-139.
|
18 |
FEDORTCHOUK Y, CANIL D, SEMENETS E. Mechanisms of diamond oxidation and their bearing on the fluid composition in kimberlite magmas[J]. American Mineralogist, 2007, 92(7): 1 200-1 212.
|
19 |
ZHANG Z H, FEDORTCHOUK Y, HANLEY J J. Evolution of diamond resorption in a silicic aqueous fluid at 1~3 GPa: application to kimberlite emplacement and mantle metasomatism[J]. Lithos, 2015, 227: 179-193.
|
20 |
FEDORTCHOUK Y, ZHANG Z. Diamond resorption: link to metasomatic events in the mantle or record of magmatic fluid in kimberlitic magma?[J]. The Canadian Mineralogist, 2011, 49(3): 707-719.
|
21 |
FEDORTCHOUK Y, CHINN I L, KOPYLOVA M G. Three styles of diamond resorption in a single kimberlite: effects of volcanic degassing and assimilation[J]. Geology, 2017, 45(10): 871-874.
|
22 |
LI Z Y, FEDORTCHOUK Y, FULOP A, et al. Positively oriented trigons on diamonds from the Snap Lake kimberlite dike, Canada: implications for fluids and kimberlite cooling rates[J]. American Mineralogist, 2018, 103(10): 1 634-1 648.
|
23 |
FEDORTCHOUK Y, CANIL D, CARLSON J A. Dissolution forms in Lac de Gras diamonds and their relationship to the temperature and redox state of kimberlite magma[J]. Contributions to Mineralogy and Petrology, 2005, 150(1): 54-69.
|
24 |
FEDORTCHOUK Y. Diamond resorption features as a new method for examining conditions of kimberlite emplacement[J]. Contributions to Mineralogy and Petrology, 2015, 170(4). DOI: 10.1007/s00410-015-1190-z .
|
25 |
Qing LÜ, LIU Fei, CHU Zhiyuan, et al. The mineralogical characteristics and comparison of diamonds from the three kimberlite belts in Mengyin, Shandong Province[J]. Acta Geologica Sinica, 2022, 96(4): 1 225-1 238.
|
|
吕青, 刘飞, 褚志远, 等. 山东蒙阴三个金伯利岩带金刚石的矿物学特征与对比[J]. 地质学报, 2022, 96(4): 1 225-1 238.
|
26 |
ZHANG Peiqiang. The formation process of kimberlite in Shandong [D].Beijing: China University of Geosciences (Beijing), 2006.
|
|
张培强. 山东金伯利岩岩管成因[D]. 北京: 中国地质大学(北京), 2006.
|
27 |
LU Fengxiang, ZHAO Lei, DENG Jinfu, et al. The discussion on the ages of kimberlitic magma activity in North China Platform[J]. Acta Petrologica Sinica, 1995, 11(4): 365-374.
|
|
路凤香, 赵磊, 邓晋福, 等. 华北地台金伯利岩岩浆活动时代讨论[J]. 岩石学报, 1995, 11(4): 365-374.
|
28 |
DOBBS P N, DUNCAN D, SHEE S R, et al. The geology of the Mengyin kimberlites, Shandong, China[C]// International kimberlite conference extended abstracts. Araxa, Brazil, 1991: 76-78.
|
29 |
LI Q L, CHEN F K, WANG X L, et al. Ultra-low procedural blank and the single-grain mica Rb-Sr isochron dating[J]. Chinese Science Bulletin, 2005, 50(24): 2 861-2 865.
|
30 |
LI Q L, WU F Y, LI X H, et al. Precisely dating Paleozoic kimberlites in the North China Craton and Hf isotopic constraints on the evolution of the subcontinental lithospheric mantle[J]. Lithos, 2011, 126(1/2): 127-134.
|
31 |
ZHANG Hongfu, YANG Yueheng. Emplacement age and Sr-Nd-Hf isotopic characteristics of the diamondiferous kimberlites from the eastern North China Craton[J]. Acta Petrologica Sinica, 2007, 23(2): 285-294.
|
|
张宏福, 杨岳衡. 华北克拉通东部含金刚石金伯利岩的侵位年龄和Sr-Nd-Hf同位素地球化学特征[J]. 岩石学报, 2007, 23(2): 285-294.
|
32 |
YANG Y H, WU F Y, WILDE S A, et al. In situ perovskite Sr-Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton[J]. Chemical Geology, 2009, 264(1/2/3/4): 24-42.
|
33 |
ZHU Rixiang, XU Yigang, ZHU Guang, et al. Destruction of the North China Craton[J]. Science China Earth Sciences, 2012, 42(8): 1 135-1 159.
|
|
朱日祥, 徐义刚, 朱光, 等. 华北克拉通破坏[J]. 中国科学:地球科学, 2012, 42(8): 1 135-1 159.
|
34 |
CHEN L, CHENG C, WEI Z G. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton[J]. Earth and Planetary Science Letters, 2009, 286(1/2): 171-183.
|
35 |
CHEN L. Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration[J]. Physics of the Earth and Planetary Interiors, 2009, 173(3/4): 216-227.
|
36 |
ZHANG Hongfu. Peridotite-melt interaction: a key point for the destruction of cratonic lithospheric mantle[J]. Chinese Science Bulletin, 2009, 54(14): 2 008-2 026.
|
|
张宏福. 橄榄岩—熔体相互作用:克拉通型岩石圈地幔能够被破坏之关键[J]. 科学通报, 2009, 54(14): 2 008-2 026.
|
37 |
ZHANG H F. Peridotite-melt interaction: a key point for the destruction of cratonic lithospheric mantle[J]. Chinese Science Bulletin, 2009, 54(19): 3 417-3 437.
|
38 |
TANG Yanjie, YING Jifeng, ZHAO Yuepeng, et al. Nature and secular evolution of the lithospheric mantle beneath the North China Craton[J]. Science China Earth Sciences, 2021, 51(9): 1 489-1 503.
|
|
汤艳杰, 英基丰, 赵月鹏, 等. 华北克拉通岩石圈地幔特征与演化过程[J]. 中国科学: 地球科学, 2021, 51(9): 1 489-1 503.
|
39 |
LU Fengxiang. Multiple-geological events of ancient lithospheric mantle beneath North China Craton: as inferred from peridotite xenoliths in kimberlite[J]. Acta Petrologica Sinica, 2010, 26(11): 3 177-3 188.
|
1 |
FAURE S. World kimberlites CONSOREM database[DB/OL]. 2010. [2024-04-01]. .
|
2 |
KJARSGAARD B A, de WIT M, HEAMAN L M, et al. A review of the geology of global diamond mines and deposits[J]. Reviews in Mineralogy and Geochemistry, 2022, 88(1): 1-117.
|
3 |
ZHANG Beili, CHEN Hua, QIU Zhili, et al. Study on the origin of diamonds under the framework of the united nations Kimberley process[M]. Beijing: Geological Publishing House, 2013.
|
|
张蓓莉, 陈华, 丘志力, 等. 联合国金伯利进程框架下的钻石原产地研究[M]. 北京: 地质出版社, 2013.
|
4 |
ZHENG Jianping, YU Chunmei, LU Fengxiang, et al. Diamond with multistage growth and its significance for mantle fluid within accreted craton[J]. Earth Science Frontiers, 2001, 8(3): 103-109.
|
|
郑建平, 余淳梅, 路凤香, 等. 不连续生长的金刚石与克拉通地块内部增生过程中的地幔流体作用[J]. 地学前缘, 2001, 8(3): 103-109.
|
39 |
路凤香. 华北克拉通古老岩石圈地幔的多次地质事件: 来自金伯利岩中橄榄岩捕虏体的启示[J]. 岩石学报, 2010, 26(11): 3 177-3 188.
|
40 |
STACHEL T, HARRIS J W. The origin of cratonic diamonds—constraints from mineral inclusions[J]. Ore Geology Reviews, 2008, 34(1/2): 5-32.
|
41 |
SMIT K V, SHIREY S B, STERN R A, et al. Diamond growth from C-H-N-O recycled fluids in the lithosphere: evidence from CH4 micro-inclusions and δ13C-δ15N-N content in Marange mixed-habit diamonds[J]. Lithos, 2016, 265: 68-81.
|
42 |
LUTH R W, STACHEL T. The buffering capacity of lithospheric mantle: implications for diamond formation[J]. Contributions to Mineralogy and Petrology, 2014, 168(5). DOI:10.1007/s00410-014-1083-6 .
|
43 |
WEISS Y, CZAS J, NAVON O. Fluid inclusions in fibrous diamonds[J]. Reviews in Mineralogy and Geochemistry, 2022, 88(1): 475-532.
|
44 |
WEISS Y, KOORNNEEF J M, DAVIES G R. Sr-Nd-Pb isotopes of fluids in diamond record two-stage modification of the continental lithosphere[J]. Geochemical Perspectives Letters, 2023, 27: 20-25.
|
45 |
ZHENG Jianping. Comparison of mantle-derived matierals from different spatiotemporal settings: implications for destructive and accretional processes of the North China Craton[J]. Chinese Science Bulletin, 2009, 54(14): 1 990-2 007.
|
|
郑建平. 不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程[J]. 科学通报, 2009, 54(14): 1 990-2 007.
|
46 |
RUSSELL J K, SPARKS R S J, KAVANAGH J L. Kimberlite volcanology: transport, ascent, and eruption[J]. Elements, 2019, 15(6): 405-410.
|
47 |
CHI Jishang, LU Fengxiang, ZHAO Lei, et al. Characteristics of kimberlite and Paleozoic lithospheric mantle in North China platform[M]. Beijing: Science Press, 1996.
|
|
池际尚, 路凤香, 赵磊,等. 华北地台金伯利岩及古生代岩石圈地幔特征[M]. 北京: 科学出版社, 1996.
|
48 |
MITCHELL R H, GIULIANI A, O’BRIEN H. What is a kimberlite?Petrology and mineralogy of hypabyssal kimberlites[J]. Elements, 2019, 15(6): 381-386.
|
49 |
PEARSON D G, WOODHEAD J, JANNEY P E. Kimberlites as geochemical probes of Earth’s mantle[J]. Elements, 2019, 15(6): 387-392.
|
50 |
FOLEY S F, YAXLEY G M, KJARSGAARD B A. Kimberlites from source to surface: insights from experiments[J]. Elements, 2019, 15(6): 393-398.
|