地球科学进展 ›› 2024, Vol. 39 ›› Issue (6): 602 -615. doi: 10.11867/j.issn.1001-8166.2024.041

研究论文 上一篇    下一篇

蒙阴金刚石的形态形貌特征及其对深部熔流体性质和活动的指示
丁永康 1( ), 梁伟章 1, 丘志力 1 , 3( ), 邓小芹 2, 孙媛 3, 马瑛 4, 孙成阳 5, 陆太进 6   
  1. 1.中山大学 地球科学与工程学院,广东 珠海 519080
    2.广东省科学院,广东 广州 510070
    3.桂林理工大学 材料科学与工程学院,广西 桂林 541004
    4.国检中心深圳珠宝检验实验室 有限公司,广东 深圳 518020
    5.中国地质大学(北京) 珠宝学院,北京 100083
    6.自然资源部珠宝玉石首饰管理中心北京研究所,北京 100013
  • 收稿日期:2024-04-01 修回日期:2024-05-22 出版日期:2024-06-10
  • 通讯作者: 丘志力 E-mail:dingyk6@mail2.sysu.edu.cn;qiuzhili@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目(42073008)

Morphology and Surface Features of Diamonds from Mengyin: Geological Implications for the Nature and Activity of Deep-Seated Melts and Fluids

Yongkang DING 1( ), Weizhang LIANG 1, Zhili QIU 1 , 3( ), Xiaoqin DENG 2, Yuan SUN 3, Ying MA 4, Chengyang SUN 5, Taijin LU 6   

  1. 1.School of Earth Science and Engineering, Sun Yat-Sen University, Zhuhai Guangdong 519080, China
    2.Guangdong Academy of Sciences, Guangzhou 510070, China
    3.School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
    4.National Gemstone Testing Center Shenzhen Lab Co, Ltd. , Shenzhen Guangdong 518020, China
    5.Gemological Institute, China University of Geosciences (Beijing), Beijing 100083, China
    6.Beijin Research Institude of National Gems & Jewelry Technology Administrative Center, Beijing 100013, China
  • Received:2024-04-01 Revised:2024-05-22 Online:2024-06-10 Published:2024-07-15
  • Contact: Zhili QIU E-mail:dingyk6@mail2.sysu.edu.cn;qiuzhili@mail.sysu.edu.cn
  • About author:DING Yongkang, Master student, research areas include diamond spectroscopy and inclusion geochemistry. E-mail: dingyk6@mail2.sysu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(42073008)

金刚石在金伯利岩浆捕虏前的地幔环境及后续岩浆运移过程中熔流体的共同熔/溶蚀作用下,会产生复杂的晶体形态和表面形貌,这些形态形貌学的表观特征在一定程度上反映了地幔及金伯利岩浆运移过程中熔流体的不同性质。尝试通过对蒙阴金刚石的形态及其形貌学特征进行分析,结合国际大量模拟地幔及金伯利岩温压和化学环境条件下天然金刚石的熔/溶蚀实验的相关成果,对蒙阴金刚石所体现的地幔及金伯利岩熔流体活动的性质和特点进行讨论,得到以下几点认识: 蒙阴金刚石的地幔熔体熔蚀形态及形貌特征以低程度熔蚀的“八面体+三角/锯齿状薄层+联合凹坑/深蚀坑”的组合为主,严重熔蚀的“十二面体+深蚀坑”组合次之,结合统计分析,这在一定程度上暗示了华北克拉通古老岩石圈地幔所经历的小规模、低程度的橄榄岩—熔体反应,熔体性质为相对富CO2贫H2O的含碳酸盐熔体; 蒙阴3个金伯利岩矿带的金刚石溶蚀形态比例指示了其岩浆流体活动性具有一定差异,具有高比例溶蚀形态金刚石的常马庄矿带岩浆流体活动相对坡里和西裕矿带更强; 蒙阴金刚石岩浆流体溶蚀的形态及形貌以“四六面体+浅凹陷+溶蚀凹雕”组合为主,且大多数样品都表现出岩浆流体低程度溶蚀的叠加形貌,另外,所有浅的、独立的三角凹坑均为平底和具有截角的倒三角凹坑,未见特殊类型,以上特征均与浅成金伯利岩释放的富H2O贫CO2流体相关。上述结果表明,即使在比较有限的区域内,金刚石所记录的地幔及金伯利岩浆熔流体活动过程也存在不均一性,其形态及形貌特征可以作为研究地幔熔体及金伯利岩浆流体活动的一个重要参考,也从某些角度揭示出很多金刚石矿区不同岩体、矿带产出的金刚石的品质和品位存在明显差异的内在原因。

Diamond undergoes intricate interactions with melts and fluids in the Subcontinental Lithospheric Mantle (SCLM) and kimberlite magma, resulting in a diverse array of crystal morphologies and surface features. These morphological attributes serve as proxies, reflecting the varying distinct properties of melts and fluids during mantle storage and kimberlite magma migration. This study meticulously analyzed the morphology and surface features of diamonds sourced from Mengyin. In addition, we systematically discuss the characteristics of mantle and kimberlite melt and fluids, as inferred from these diamonds, with reference to a comprehensive body of international dissolution experiments on natural diamonds that simulated the mantle and kimberlite temperature, pressure, and chemical conditions. This investigation yields the following key findings: The morphology and surface features caused by mantle melts predominantly exhibit a combination of low-degree resorption of “octahedron + triangular/serrated laminae + joint pit/deep pit,” with the severe dissolution of “Dodecahedra + deep etch pit” being less common. Statistical analyses suggest that these morphologies indicate the occurrence of small-scale, low-degree peridotite-melt reactions within the ancient lithospheric mantle of the North China Craton (NCC), with melt compositions relatively enriched in CO2 and depleted in H2O. The proportion of dissolution forming among diamonds in the three kimberlite belts in Mengyin indicates discernible differences in the activity of magmatic fluids, with the Changmazhuang belt showing relatively more intense magma fluid activity than Xiyu and Poli belt. The morphology and surface features of Mengyin diamonds, which result from magma fluid etching, primarily showcase a combination of “Tetrahexahedra (THH) + shallow depression + corrosion sculpture,” with the majority of samples displaying characteristics indicative of an overlay of shallow dissolution by magma fluids. Additionally, all shallow independent trigons were flat-bottomed and truncated, with no special types, indicating characteristics associated with fluids rich in H2O and poor in CO2 released by Hypabyssal Kimberlite (HK). These results underscore the heterogeneity in the properties of mantle melts and late-stage magmatic activity, even within relatively confined geographical areas. Moreover, the morphology and surface features of diamonds are crucial indicators of mantle melt and kimberlite magma fluid activity. They also offer insights into the underlying reasons for the pronounced variations in quality and grade observed among diamonds sourced from different rock masses and ore belts in numerous diamond-mining regions.

中图分类号: 

图1 金刚石常见晶形
(a)、(g)和(h)引自参考文献[ 14 ];(b)、(d)~(f)引自参考文献[ 16 ];(c)本文样品
Fig. 1 The common crystal forms of diamond
(a),(g) and (h) Cited from reference [ 14 ];(b),(d)~(f) Cited from reference [ 16 ];(c) Sample of this study
图2 金刚石八面体到十二面体、四六面体的晶形演变模型(据参考文献[ 7 ]修改)
Fig. 2 The transformation processes from octahedra to dodecahedra and tetrahexahedra of diamondmodified after reference 7 ])
图3 金刚石八面体到四六面体的详细晶形演变过程(据参考文献[ 16 ]修改)
Fig. 3 The detailed transformation model from octahedra to tetrahexahera of diamondmodified after reference 16 ])
表1 金刚石熔 /溶蚀代表性实验
Table1 The classic diamond dissolution experiments
图4 金刚石常见的形貌特征
(a)阶梯状生长和倒三角凹坑;(b)三角形薄层;(c)锯齿状薄层;(d)不规则薄层和板片、联合的倒三角凹坑组合;(e)小而密集的正三角凹坑;(f)六边形凹坑、圆滑厚台阶组合;(g)深蚀坑和六边形凹坑;(h)(肋状)十二面体肋纹;(i)盾形/复三角形薄层、倒三角凹坑和滴状丘组合;(j)盾形/梯田纹、菱面中线组合;(k)滴状丘;(l)浅凹陷;(m)溶蚀凹雕;(n)熔蚀沟;(o) 粗霜蚀像;(a)为本文样品,(b)~(e)引自参考文献[ 11 ],(f)~(o)引自参考文献[ 16
Fig. 4 The common surface features of diamond
(a) Step-face and negative trigon; (b) Triangular laminae; (c) Serrate laminae; (d) Irregular laminae/plate and joint negative trigon; (e) Small and dense positive trigon; (f) Hexagon, smooth and thick step-face; (g) Deep pits and hexagon; (h) Ribbed dodec; (i) Shield-shaped/trigonal laminae, negative trigon and hillock;(j) Terrace/striation and median line of rhombic surface; (k) Drop-shaped hillock;(l) Shallow depression; (m) Corrosion sculpture; (n) Rut; (o) Coarse frosting; (a) Sample of this study,(b)~(e) Cited from reference [ 11 ],(f)~(o) Cited from reference [ 16
图5 三角凹坑及六边形凹坑类型
(a)~(d)三角凹坑的4种形状;(e)六边形凹坑;图中增加了箭头和注释,并使用白色虚线框指示六边形凹坑的原貌;(a)、(b)和(d)据参考文献[ 14 ]修改;(c)据参考文献[ 22 ]修改;(e)据参考文献[ 11 ]修改
Fig. 5 Different shapes of the trigon and hexagon
(a)~(d) Four shapes of trigon; (e) Hexagon; Arrows and notes are added in the figure, and white dotted frames are used to indicate the original appearance of hexagon; (a), (b) and (d) Modified after reference [ 14 ]; (c) Modified after reference [ 22 ]; (e) Modified after reference [ 11
图6 金刚石熔/溶蚀形态及形貌的熔流体来源判别方案(据参考文献[ 11 ]修改)
(a)晶形判别步骤;(b)形态及形貌判别步骤;(c)三角凹坑判别步骤; X C O 2 =CO 2/(CO 2+H 2O),即金伯利岩浆流体中CO 2的摩尔比
Fig. 6 The classification scheme of melts and fluids source for the morphology and surface features of diamondmodified after reference 11 ])
(a) Discrimination steps of crystal forms; (b) Discrimination steps of morphology and surface features; (c) Discrimination steps of trigon types; X C O 2 = CO 2/(CO 2 + H 2O), that is, the molar ratio of CO 2 in kimberlite magmatic fluid
图7 蒙阴胜利I号岩管39颗金刚石原石样品图像
Fig. 7 Images of 39 rough diamond samples from Shengli No.1 pipeMengyin kimberlite
表2 39颗金刚石原石的形态及形貌特征
Table 2 The morphology and surface features of 39 rough diamonds
序号 编号 颜色 晶形 形貌特征 熔/溶蚀类型
1 SD-236 淡褐色 十二面体 深蚀坑、粗霜蚀像 地幔熔体熔蚀形态形貌+岩浆流体溶蚀形貌
2 SD-252 淡黄色 四六面体 浅凹陷、错位菱面中线、晶面相对光滑 岩浆流体溶蚀形态形貌
3 SD-255 淡褐色 不规则晶体 浅凹陷、细霜蚀像、滴状丘 岩浆流体溶蚀形貌
4 SD-256 淡黄色 八面体 阶梯状生长纹、锯齿状薄层 地幔熔体熔蚀形貌
5 SD-258 淡黄褐色 四六面体 细霜蚀像、菱面中线、熔蚀沟 岩浆流体溶蚀形态形貌
6 SD-259 淡褐色 拉长变形,晶形不辨 细霜蚀像、熔蚀沟 岩浆流体溶蚀形貌
7 SD-260 黄褐色 十二面体 不规则蚀像、深蚀坑 地幔熔体熔蚀形态形貌
8 SD-261 灰褐色 浑圆状球体,晶形不辨 深蚀坑、熔蚀沟、熔蚀严重 地幔熔体熔蚀形貌
9 SD-278 无色 八面体 阶梯状生长纹、三角形薄层、平底倒三角浅凹坑,部分为联合凹坑 地幔熔体熔蚀形貌+岩浆流体溶蚀形貌
10 SD-283 淡黄褐色 八面体向十二面体过渡 圆滑厚台阶、大的具有截角的平底倒三角凹坑(小部分无截角) 地幔熔体熔蚀形态形貌+岩浆流体溶蚀形貌
11 SD-288 黄褐色 八面体向十二面体过渡 三角薄层、熔蚀沟 地幔熔体熔蚀形态形貌
12 SD-297 淡褐色 浑圆状八面体 初始溶蚀阶段、溶蚀凹雕、粗霜蚀像 岩浆流体溶蚀形貌
13 SD-298 褐色 四六面体过渡形态—四六面体 盾形/梯田纹、残余盾形面、菱面中线、粗霜蚀像 岩浆流体溶蚀形态形貌
14 SD-301 淡黄褐色 十二面体 粗霜蚀像,滴状凹坑、熔蚀沟 地幔熔体熔蚀形态+岩浆流体溶蚀形貌
15 SD-303 淡黄色 四六面体 浅凹陷、菱面中线、晶面(实际上为溶蚀面)相对光滑 岩浆流体溶蚀形态形貌
16 SD-306 淡黄色 八面体向十二面体过渡 深凹坑、三角面、三角薄层 地幔熔体熔蚀形态形貌
17 SD-318 淡褐色 晶体破损,晶形不辨 熔蚀沟、晶格滑移线、断口 无特征熔/溶蚀
18 SD-322 淡黄褐色 八面体向四六面体过渡 盾形梯田纹、盾形薄层、粗霜蚀像、八面体面相对光滑 岩浆流体溶蚀形态形貌
19 SD-324 无色 八面体双晶 阶梯状生长纹、三角形薄层、浅的独立的平底倒三角凹坑 地幔熔体熔蚀形貌+岩浆流体溶蚀形貌
20 SD-329 淡黄褐色 八面体 晶棱锐利、晶面光滑 无熔/溶蚀
21 SD-330 无色 三角薄片双晶 阶梯状生长纹、锯齿状薄层、晶面光滑 地幔熔体熔蚀形貌
22 SD-333 黑褐色 八面体 阶梯状生长纹、三角形薄层 地幔熔体熔蚀形貌
23 SD-334 淡灰褐色 八面体连生 晶棱锐利、晶面光滑,部分有不规则板片、半边严重熔蚀 无特征熔/溶蚀
24 SD-335 无色 八面体 晶棱锋利、晶面相对光滑,略微起伏有微小溶蚀痕迹 浅岩浆流体溶蚀形貌
25 SD-340 淡黄褐色 八面体双晶 阶梯状生长纹、三角形薄层、晶棱圆化(初始熔蚀痕迹) 地幔熔体熔蚀形貌
26 SD-346 灰褐色 浑圆状十二面体 大量深蚀坑和类六边形深凹坑 地幔熔体熔蚀形态形貌
27 SD-350 近无色 八面体 圆滑厚台阶(初始熔蚀痕迹)、大量具有截角的平底倒三角深凹坑,部分为联合凹坑 地幔熔体熔蚀形貌+岩浆流体溶蚀形貌
28 SD-357 黄褐色 八面体 阶梯状生长纹、倒三角凹坑 地幔熔体熔蚀形貌
29 SD-368 黄褐色 八面体双晶 阶梯状生长纹、三角形薄层、浅的平底倒三角凹坑 地幔熔体熔蚀形貌+岩浆流体溶蚀形貌
30 SD-369 黄褐色 八面体 阶梯状生长纹、平底倒三角凹坑,其中一部分表现为联合凹坑 地幔熔体熔蚀形貌
31 SD-370 红褐色 浑圆球状体,晶形不辨 熔蚀沟、大量深蚀坑、不规则复杂蚀像 地幔熔体熔蚀形态形貌
32 SD-372 淡褐色 八面体 阶梯状生长纹、三角形薄层、少量浅的平底倒三角凹坑 地幔熔体熔蚀形貌+岩浆流体溶蚀形貌
33 SD-374 黑色 八面体 晶棱锐利、似贝壳状断口 无熔/溶蚀
34 SD-392 近无色 八面体双晶 圆滑的阶梯状生长纹和三角形板片 地幔熔体熔蚀形貌
35 SD-393 淡黄褐色 半边八面体,半边四六面体 八面体:阶梯状生长纹、三角形薄片,四六面体:滴状丘、错位的菱面中线 地幔熔体熔蚀形貌+岩浆流体溶蚀形态形貌
36 SD-397 淡褐色 四六面体,拉长状 滴状丘、弯曲或错位的菱面中线、晶格滑移线、熔蚀沟 岩浆流体溶蚀形态形貌
37 SD-398 无色 浑圆状十二面体 粗霜蚀像、熔蚀沟、底部具有三角凹坑的特殊溶蚀凹雕 地幔熔体熔蚀形态+岩浆流体溶蚀形貌及形态改造
38 SD-400 淡黄褐色 八面体 阶梯状生长纹、锯齿状薄层 地幔熔体熔蚀形貌
39 SD-401 淡黄褐色 十二面体 向四六面体溶蚀过渡痕迹,溶蚀凹雕、粗霜蚀像、熔蚀沟 地幔熔体熔蚀形态+岩浆流体溶蚀形貌及形态改造
表3 蒙阴地区金刚石晶形比例统计
Table 3 The statistic diamond crystal forms in Mengyin area
图8 蒙阴金刚石样品的代表性形貌特征
(a)八面体地幔浅吸收表面形貌,从左到右分别为“阶梯状生长+浅的独立倒三角凹坑”,联合倒三角凹坑,“具有截角的倒三角凹坑+联合凹坑”,三角薄层,锯齿状薄层;(b)十二面体地幔吸收表面形貌,从左到右为“联合深蚀坑+圆滑厚台阶”,不规则蚀像,类六边形深蚀坑(盘状蚀像);(c)四六面体岩浆流体溶蚀形貌,从左到右为盾形面,溶蚀凹雕,“错位菱面中线+浅凹陷”;(d)熔蚀沟;(e)不均匀熔/溶蚀组合形态
Fig. 8 The representative surface features of Mengyin diamonds
(a) The surface features of octahedral diamond caused by mantle melt’s erosion,from left to right are “step-face + shallow independent negative trigons”, joint negative trigons, “truncated negative trigons + joint pits”, triangular laminae, serrate laminae; (b) The surface features of dodecahedral diamond caused by mantle melt’s erosion, from left to right are “joint deep pits + smooth and thick step-face”, irregular corrosion, hexagonal deep pits (disc corrosion); (c) The surface features of THH diamond caused by magmatic fluid's dissolution, from left to right are shield-shaped surfaces, corrosion sculpture, “dislocated median line of rhombic surface + shallow depressions”; (d) Ruts;(e) Inhomogeneous erosion/dissolution combination morphology
5 CHEN Meihua, LU Fengxiang, DI Jingru, et al. The cathodoluminescence and FTIR analysis of Wangfangdian diamonds from Liaoning Province[J]. Chinese Science Bulletin, 2000, 45(13): 1 424-1 428.
陈美华, 路凤香, 狄敬如, 等. 辽宁瓦房店金刚石的阴极发光和红外光谱分析[J]. 科学通报, 2000, 45(13): 1 424-1 428.
6 FEDORTCHOUK Y, LIEBSKE C, MCCAMMON C. Diamond destruction and growth during mantle metasomatism: an experimental study of diamond resorption features[J]. Earth and Planetary Science Letters, 2019, 506: 493-506.
7 KHOKHRYAKOV A F, PAL’ YANOV Y N. Influence of the fluid composition on diamond dissolution forms in carbonate melts[J]. American Mineralogist, 2010, 95(10): 1 508-1 514.
8 KHOKHRYAKOV A F, PAL’ YANOV Y N. The evolution of diamond morphology in the process of dissolution: experimental data[J]. American Mineralogist, 2007, 92(5/6): 909-917.
9 KOZAI Y. Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300-1420 ℃ and 1 GPa with controlled oxygen partial pressure[J]. American Mineralogist, 2005, 90(11/12): 1 759-1 766.
10 SMIT K V, SHIREY S B. Diamonds from the deep: diamonds are not forever!Diamond dissolution[J]. Gems & Gemology, 2020, 56(1): 148-155.
11 FEDORTCHOUK Y. A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies[J]. Earth-Science Reviews, 2019, 193: 45-65.
12 ZHANG Z H, FEDORTCHOUK Y. Records of mantle metasomatism in the morphology of diamonds from the Slave craton[J]. European Journal of Mineralogy, 2012, 24(4): 619-632.
13 HOWARTH G H, KAHLE B, JANNEY P E, et al. Caught in the act: diamond growth and destruction in the continental lithosphere[J]. Geology, 2023, 51(6): 532-536.
14 HARRIS J W, SMIT K V, FEDORTCHOUK Y, et al. Morphology of monocrystalline diamond and its inclusions[J]. Reviews in Mineralogy and Geochemistry, 2022, 88(1): 119-166.
15 FEDORTCHOUK Y, CHINN I L, PERRITT S H, et al. Diamond-destructive mantle metasomatism: evidence from the internal and external textures of diamonds and their nitrogen defects[J]. Lithos, 2022, 414/415. DOI:10.1016/j.lithos.2022.106616 .
16 TAPPERT R, TAPPERT M C. Diamonds in nature: a guide to rough diamonds[M]. Heidelberg, Germany, New York: Springer, 2011.
17 MOORE M, LANG A R. On the origin of the rounded dodecahedral habit of natural diamond[J]. Journal of Crystal Growth, 1974, 26(1): 133-139.
18 FEDORTCHOUK Y, CANIL D, SEMENETS E. Mechanisms of diamond oxidation and their bearing on the fluid composition in kimberlite magmas[J]. American Mineralogist, 2007, 92(7): 1 200-1 212.
19 ZHANG Z H, FEDORTCHOUK Y, HANLEY J J. Evolution of diamond resorption in a silicic aqueous fluid at 1~3 GPa: application to kimberlite emplacement and mantle metasomatism[J]. Lithos, 2015, 227: 179-193.
20 FEDORTCHOUK Y, ZHANG Z. Diamond resorption: link to metasomatic events in the mantle or record of magmatic fluid in kimberlitic magma?[J]. The Canadian Mineralogist, 2011, 49(3): 707-719.
21 FEDORTCHOUK Y, CHINN I L, KOPYLOVA M G. Three styles of diamond resorption in a single kimberlite: effects of volcanic degassing and assimilation[J]. Geology, 2017, 45(10): 871-874.
22 LI Z Y, FEDORTCHOUK Y, FULOP A, et al. Positively oriented trigons on diamonds from the Snap Lake kimberlite dike, Canada: implications for fluids and kimberlite cooling rates[J]. American Mineralogist, 2018, 103(10): 1 634-1 648.
23 FEDORTCHOUK Y, CANIL D, CARLSON J A. Dissolution forms in Lac de Gras diamonds and their relationship to the temperature and redox state of kimberlite magma[J]. Contributions to Mineralogy and Petrology, 2005, 150(1): 54-69.
24 FEDORTCHOUK Y. Diamond resorption features as a new method for examining conditions of kimberlite emplacement[J]. Contributions to Mineralogy and Petrology, 2015, 170(4). DOI: 10.1007/s00410-015-1190-z .
25 Qing LÜ, LIU Fei, CHU Zhiyuan, et al. The mineralogical characteristics and comparison of diamonds from the three kimberlite belts in Mengyin, Shandong Province[J]. Acta Geologica Sinica, 2022, 96(4): 1 225-1 238.
吕青, 刘飞, 褚志远, 等. 山东蒙阴三个金伯利岩带金刚石的矿物学特征与对比[J]. 地质学报, 2022, 96(4): 1 225-1 238.
26 ZHANG Peiqiang. The formation process of kimberlite in Shandong [D].Beijing: China University of Geosciences (Beijing), 2006.
张培强. 山东金伯利岩岩管成因[D]. 北京: 中国地质大学(北京), 2006.
27 LU Fengxiang, ZHAO Lei, DENG Jinfu, et al. The discussion on the ages of kimberlitic magma activity in North China Platform[J]. Acta Petrologica Sinica, 1995, 11(4): 365-374.
路凤香, 赵磊, 邓晋福, 等. 华北地台金伯利岩岩浆活动时代讨论[J]. 岩石学报, 1995, 11(4): 365-374.
28 DOBBS P N, DUNCAN D, SHEE S R, et al. The geology of the Mengyin kimberlites, Shandong, China[C]// International kimberlite conference extended abstracts. Araxa, Brazil, 1991: 76-78.
29 LI Q L, CHEN F K, WANG X L, et al. Ultra-low procedural blank and the single-grain mica Rb-Sr isochron dating[J]. Chinese Science Bulletin, 2005, 50(24): 2 861-2 865.
30 LI Q L, WU F Y, LI X H, et al. Precisely dating Paleozoic kimberlites in the North China Craton and Hf isotopic constraints on the evolution of the subcontinental lithospheric mantle[J]. Lithos, 2011, 126(1/2): 127-134.
31 ZHANG Hongfu, YANG Yueheng. Emplacement age and Sr-Nd-Hf isotopic characteristics of the diamondiferous kimberlites from the eastern North China Craton[J]. Acta Petrologica Sinica, 2007, 23(2): 285-294.
张宏福, 杨岳衡. 华北克拉通东部含金刚石金伯利岩的侵位年龄和Sr-Nd-Hf同位素地球化学特征[J]. 岩石学报, 2007, 23(2): 285-294.
32 YANG Y H, WU F Y, WILDE S A, et al. In situ perovskite Sr-Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton[J]. Chemical Geology, 2009, 264(1/2/3/4): 24-42.
33 ZHU Rixiang, XU Yigang, ZHU Guang, et al. Destruction of the North China Craton[J]. Science China Earth Sciences, 2012, 42(8): 1 135-1 159.
朱日祥, 徐义刚, 朱光, 等. 华北克拉通破坏[J]. 中国科学:地球科学, 2012, 42(8): 1 135-1 159.
34 CHEN L, CHENG C, WEI Z G. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton[J]. Earth and Planetary Science Letters, 2009, 286(1/2): 171-183.
35 CHEN L. Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration[J]. Physics of the Earth and Planetary Interiors, 2009, 173(3/4): 216-227.
36 ZHANG Hongfu. Peridotite-melt interaction: a key point for the destruction of cratonic lithospheric mantle[J]. Chinese Science Bulletin, 2009, 54(14): 2 008-2 026.
张宏福. 橄榄岩—熔体相互作用:克拉通型岩石圈地幔能够被破坏之关键[J]. 科学通报, 2009, 54(14): 2 008-2 026.
37 ZHANG H F. Peridotite-melt interaction: a key point for the destruction of cratonic lithospheric mantle[J]. Chinese Science Bulletin, 2009, 54(19): 3 417-3 437.
38 TANG Yanjie, YING Jifeng, ZHAO Yuepeng, et al. Nature and secular evolution of the lithospheric mantle beneath the North China Craton[J]. Science China Earth Sciences, 2021, 51(9): 1 489-1 503.
汤艳杰, 英基丰, 赵月鹏, 等. 华北克拉通岩石圈地幔特征与演化过程[J]. 中国科学: 地球科学, 2021, 51(9): 1 489-1 503.
39 LU Fengxiang. Multiple-geological events of ancient lithospheric mantle beneath North China Craton: as inferred from peridotite xenoliths in kimberlite[J]. Acta Petrologica Sinica, 2010, 26(11): 3 177-3 188.
1 FAURE S. World kimberlites CONSOREM database[DB/OL]. 2010. [2024-04-01]. .
2 KJARSGAARD B A, de WIT M, HEAMAN L M, et al. A review of the geology of global diamond mines and deposits[J]. Reviews in Mineralogy and Geochemistry, 2022, 88(1): 1-117.
3 ZHANG Beili, CHEN Hua, QIU Zhili, et al. Study on the origin of diamonds under the framework of the united nations Kimberley process[M]. Beijing: Geological Publishing House, 2013.
张蓓莉, 陈华, 丘志力, 等. 联合国金伯利进程框架下的钻石原产地研究[M]. 北京: 地质出版社, 2013.
4 ZHENG Jianping, YU Chunmei, LU Fengxiang, et al. Diamond with multistage growth and its significance for mantle fluid within accreted craton[J]. Earth Science Frontiers, 2001, 8(3): 103-109.
郑建平, 余淳梅, 路凤香, 等. 不连续生长的金刚石与克拉通地块内部增生过程中的地幔流体作用[J]. 地学前缘, 2001, 8(3): 103-109.
39 路凤香. 华北克拉通古老岩石圈地幔的多次地质事件: 来自金伯利岩中橄榄岩捕虏体的启示[J]. 岩石学报, 2010, 26(11): 3 177-3 188.
40 STACHEL T, HARRIS J W. The origin of cratonic diamonds—constraints from mineral inclusions[J]. Ore Geology Reviews, 2008, 34(1/2): 5-32.
41 SMIT K V, SHIREY S B, STERN R A, et al. Diamond growth from C-H-N-O recycled fluids in the lithosphere: evidence from CH4 micro-inclusions and δ13C-δ15N-N content in Marange mixed-habit diamonds[J]. Lithos, 2016, 265: 68-81.
42 LUTH R W, STACHEL T. The buffering capacity of lithospheric mantle: implications for diamond formation[J]. Contributions to Mineralogy and Petrology, 2014, 168(5). DOI:10.1007/s00410-014-1083-6 .
43 WEISS Y, CZAS J, NAVON O. Fluid inclusions in fibrous diamonds[J]. Reviews in Mineralogy and Geochemistry, 2022, 88(1): 475-532.
44 WEISS Y, KOORNNEEF J M, DAVIES G R. Sr-Nd-Pb isotopes of fluids in diamond record two-stage modification of the continental lithosphere[J]. Geochemical Perspectives Letters, 2023, 27: 20-25.
45 ZHENG Jianping. Comparison of mantle-derived matierals from different spatiotemporal settings: implications for destructive and accretional processes of the North China Craton[J]. Chinese Science Bulletin, 2009, 54(14): 1 990-2 007.
郑建平. 不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程[J]. 科学通报, 2009, 54(14): 1 990-2 007.
46 RUSSELL J K, SPARKS R S J, KAVANAGH J L. Kimberlite volcanology: transport, ascent, and eruption[J]. Elements, 2019, 15(6): 405-410.
47 CHI Jishang, LU Fengxiang, ZHAO Lei, et al. Characteristics of kimberlite and Paleozoic lithospheric mantle in North China platform[M]. Beijing: Science Press, 1996.
池际尚, 路凤香, 赵磊,等. 华北地台金伯利岩及古生代岩石圈地幔特征[M]. 北京: 科学出版社, 1996.
48 MITCHELL R H, GIULIANI A, O’BRIEN H. What is a kimberlite?Petrology and mineralogy of hypabyssal kimberlites[J]. Elements, 2019, 15(6): 381-386.
49 PEARSON D G, WOODHEAD J, JANNEY P E. Kimberlites as geochemical probes of Earth’s mantle[J]. Elements, 2019, 15(6): 387-392.
50 FOLEY S F, YAXLEY G M, KJARSGAARD B A. Kimberlites from source to surface: insights from experiments[J]. Elements, 2019, 15(6): 393-398.
[1] 郑昕雨,丘志力,邓小芹,马瑛,陆太进. 超深金刚石包裹体:对深部地幔物理化学环境的指示[J]. 地球科学进展, 2020, 35(5): 452-464.
[2] 杨志军, 黄珊珊, 陈耀明, 李晓潇, 曾璇, 周文秀. 金伯利岩演化过程及金刚石含矿性评价的研究进展[J]. 地球科学进展, 2016, 31(7): 700-707.
[3] 赵欣, 施光海, 张骥. 岩石圈地幔中的金刚石及其矿物包裹体的研究进展[J]. 地球科学进展, 2015, 30(3): 310-322.
[4] 杨志军,彭明生,苑执中. 金刚石中氢的研究及其意义[J]. 地球科学进展, 2002, 17(1): 91-95.
[5] 肖化云,刘丛强,黄智龙. 金刚石包裹体中的古地幔信息[J]. 地球科学进展, 2001, 16(2): 244-250.
[6] 马金龙,邱亮斌,程 真,曾乔松,许德如,金晓东. 急缺矿种金刚石合成固体密封传压介质叶蜡石资源开发研究及其对策[J]. 地球科学进展, 2000, 15(4): 477-478.
[7] 侯渭; 谢鸿森. 应用于地球深部物质科学研究的静态超高压实验技术[J]. 地球科学进展, 1993, 8(3): 7-13.
阅读次数
全文


摘要