地球科学进展 ›› 2024, Vol. 39 ›› Issue (6): 616 -631. doi: 10.11867/j.issn.1001-8166.2024.048

研究论文 上一篇    下一篇

全新世安达曼海周边区域火灾历史及其影响因素
梁诗晴 1 , 2( ), 罗传秀 1( ), 向荣 1, ARIFUL Islam 1 , 2, 魏海成 3, 苏翔 1, 万随 1, 杜恕环 1, 张兰兰 1, 杨艺萍 1, 黄云 1, 林刚 4   
  1. 1.中国科学院南海海洋研究所 中国科学院边缘海与大洋地质重点实验室,广东 广州 510301
    2.中国科学院大学,北京 100049
    3.中国科学院青海盐湖研究所,青海省盐湖地质与环境 重点实验室,青海 西宁 810008
    4.丹麦技术大学,罗斯基勒 4000,丹麦
  • 收稿日期:2023-12-13 修回日期:2024-05-07 出版日期:2024-06-10
  • 通讯作者: 罗传秀 E-mail:lshiqing17@gmail.com;xiu104@scsio.ac.cn
  • 基金资助:
    国家自然科学基金共享航次计划项目(42149910);青海省盐湖地质与环境重点实验室奖励经费2024资助

Holocene Fire History and Its Influencing Factors in the Surrounding Areas of the Andaman Sea

Shiqing LIANG 1 , 2( ), Chuanxiu LUO 1( ), Rong XIANG 1, Islam ARIFUL 1 , 2, Haicheng WEI 3, Xiang SU 1, Sui WAN 1, Shuhuan DU 1, Lanlan ZHANG 1, Yiping YANG 1, Yun HUANG 1, Gang LIN 4   

  1. 1.Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
    4.Technical University of Denmark, Roskilde 4000, Denmark
  • Received:2023-12-13 Revised:2024-05-07 Online:2024-06-10 Published:2024-07-15
  • Contact: Chuanxiu LUO E-mail:lshiqing17@gmail.com;xiu104@scsio.ac.cn
  • About author:LIANG Shiqing, Master student, research area includes marine charcoal. E-mail: lshiqing17@gmail.com
  • Supported by:
    the National Science Foundation of China Shiptime Sharing(42149910);The Science and Technology Plan Project of Qinghai Province Incentive Fund 2024

火事件的发生与气候变化以及植被变化密切相关,系统性地研究全新世火活动的时空演化规律,可以更清晰地理解火活动机制与区域性气候、植物变化的关联,同时有助于预测未来火的演化趋势。为了解安达曼海周边地区火灾活动的演化以及可能的驱动因素,以安达曼海南部的海洋钻孔ADM-C1为研究材料,对其全新世以来的炭屑记录进行深入分析,并综合安达曼海周边地区其余的5个炭屑记录,重建了全新世以来安达曼海周边地区火灾活动的演变过程。研究表明,尽管点火、火灾天气和植被组成在各地不尽相同,导致火灾发生频率在区域和地方范围有所不同,但在广泛的气候变化背景下,全新世安达曼海周边各地的火事件发生频率变化具有广泛同步性。全新世安达曼海周边的火灾活动发生频率受到区域性植被和降水变化影响,并最终受控于印度夏季风强度的变化。与末次冰消期相比,12.0~9.0 ka BP安达曼海周边区域火灾活动的发生频率呈下降趋势,反映了印度夏季风降水逐步增加以及木本植物含量逐渐上升的区域环境;9.0~5.0 ka BP较低的区域火灾活动发生频率同时受到较高的印度夏季风降水量和区域木本植物含量的制约;5.0 ka BP后高频的区域火灾活动更多反映了印度夏季风降水的降低。此外,研究结果还表明全新世安达曼海周边区域火灾活动发生频率与厄尔尼诺—南方涛动强度、印度洋偶极子位相和热带辐合带位置的变化相关。

The occurrence of fire events is closely related to climate change and vegetation changes. A systematic study of the spatial and temporal evolutionary patterns of Holocene fire activities enables a clearer comprehension of the association between fire activity mechanisms and regional climate and vegetation changes, and contributes to the prediction of future fire evolutionary trends simultaneously. In order to comprehend the fire evolution and potential driving factors in the surrounding areas of the Andaman Sea, charcoal analysis was conducted on core ADM-C1 in the southern Andaman Sea to reconstruct its Holocene fire record. Additionally, five other charcoal records were synthesized to reconstruct Holocene fire activities in the surrounding areas of the Andaman Sea in this study. Although the nature of the changes of ignition, fire weather, and vegetation composition varied from place to place, leading to regional and local variations in fire frequency, the changes of fire event frequency around the Andaman Sea were widely synchronized under broader climate change during the Holocene. The frequency of fire activity around the Andaman Sea during the Holocene was influenced by regional variations in vegetation and precipitation, and ultimately by changes in the intensity of the Indian Summer Monsoon. Compared to the last deglaciation, there was a decrease in the frequency of fire activities in the surrounding areas of the Andaman Sea during 12.0~9.0 ka BP period, reflecting a gradual increase in Indian Summer Monsoon precipitation and woody plant abundance within this region. During 9.0~5.0 ka BP period, regional fire activity was constrained by higher Indian summer monsoon precipitation and woody plants. After 5.0 ka BP, an increase in regional fire activity primarily reflected a decrease in Indian Summer Monsoon precipitation. Furthermore, the changes in El Ni?o-Southern Oscillation (ENSO) intensity, Indian Ocean Dipole (IOD) phase and the location of the Intertropical Convergence Zone (ITCZ) were related to fire activity frequency around Andaman Sea during the Holocene.

中图分类号: 

图1 安达曼海周边地区示意图
星号为本文研究的钻孔ADM-C1;圆形符号表示参与生成复合火灾活动曲线所用到炭屑记录所在的钻孔位置,分别是Inle湖 37 、NTSH 38 - 39 、SB-B 40 - 41 、Jaw SPT 42 、RD-3 43 ;三角形符号代表印度夏季风和IOD相位记录的钻孔位置,分别为Tangga洞穴 44 、ADM-159 45 、SSK50-GC3A 46 、RC12-344 47 、MD77-176 48 、Mentawai岛 49 和SO189-39KL 50
Fig. 1 Overview map of surrounding areas of the Andaman Sea
The asterisk marks the core ADM-C1 for this study. The circles indicate the core locations where the charcoal records are involved in generating regional fire activity, which are Inle Lake 37 , NTSH 38 - 39 , SB-B 40 - 41 , Jaw SPT 42 and RD-3 43 . The triangular symbols represent the core locations recording Indian Summer Monsoon and IOD phase, which are Tangga Cave 44 , ADM-159 45 , SSK50-GC3A 46 , RC12-344 47 , MD77-176 48 , Mentawai Island 49 and SO189-39KL 50 respectively
表1 ADM-C1钻孔年龄—深度模型建立所用的 AMS14C测年数据 59 - 60
Table 1 AMS 14C ages of core ADM-C1 for age-depth model 59 - 60
图2 ADM-C1钻孔年龄—深度模型及沉积速率
菱形符号为校正的AMS 14C年龄点(误差为2 σ)和由此得出的年代深度模型(深灰色阴影表示更有可能的历史年代,虚线表示95%的置信区间,实线表示根据每个深度的加权平均年龄得出的单一“最佳”模型)
Fig. 2 The age-depth model and sedimentation rate for core ADM-C1
The diamond symbol shows the calibrated AMS 14C dates(2 σ errors) and the resulting age-depth model (the darker gray shading indicates more likely calendar ages, the dotted lines show 95% confidence intervals, and the solid line shows the single “best” model based on the weighted mean age for each depth)
图3 ADM-C1的炭屑结果
(a)总炭屑浓度;(b)粒径为50~125 μm的炭屑浓度;(c)粒径>125 μm的炭屑浓度;(d)对称形炭屑浓度;(e)长条形炭屑浓度;(f)粒径为50~125 μm的炭屑的百分含量;(g)粒径>125 μm的炭屑的百分含量;(h)对称形炭屑的百分含量;(i)长条形炭屑的百分含量
Fig. 3 Charcoal results of core ADM-C1
(a)Concentration of total charcoal; (b)Concentration of 50~125 μm charcoal; (c)Concentration of >125 μm charcoal; (d) Concentration of symmetrical charcoal; (e)Concentration of long charcoal; (f)The percentage of 50~125 μm charcoal; (g)The percentage of >125 μm charcoal; (h) The percentage of symmetrical charcoal;(i) The percentage of long charcoal
表2 生成安达曼海周边区域火灾活动曲线所用到炭屑记录所在的钻孔信息
Table 2 Core information whose charcoal records involved in generating fire activity curve in the surrounding areas of the Andaman Sea
图4 参与生成安达曼海周边火灾活动曲线的各钻孔炭屑记录
(a)Inle湖的炭屑浓度 37 ;(b)钻孔NTSH的炭屑浓度 38 - 39 ;(c)钻孔ADM-C1粒径为50~125 μm的炭屑浓度(本文);(d)钻孔ADM-C1粒径>125 μm的炭屑浓度(本文);(e)钻孔SB-B粒径>150 μm的炭屑浓度 40 - 41 ;(f)钻孔Jaw SPT粒径>150 μm的炭屑浓度 42 ;(g)钻孔RD-3的炭屑与花粉的比率 43
Fig. 4 Charcoal records involved in generating fire activity curve in the surrounding areas of the Andaman Sea
(a)Charcoal concentration from Inle Lake 37 ; (b)Charcoal concentration from core NTSH 38 - 39 ; (c) and (d) The concentrations of 50~125 μm charcoal and >125 μm charcoal in core ADM-C1, respectively (this study); (e)Concentration of >150 μm charcoal from core SB-B 40 - 41 ; (f)Concentration of >150 μm charcoal from core Jaw SPT 42 ; (g)Charcoal to pollen ratio from core RD-3 43
图5 安达曼海周边区域内7条炭屑记录转换的 Z 分数及其集成结果
所有炭屑记录经过归一化处理后,再以0.1 ka的间隔进行插值
Fig. 5 The normalized fire activity index of seven charcoal records in surrounding areas of the Andaman Sea and their integration result
All charcoal records were normalized and then interpolated at intervals of 0.1 ka
图6 安达曼海周边区域性和地方性火灾活动曲线
(a)ADM-C1钻孔粒径为50~125 μm的炭屑浓度记录转换成 Z分数,主要代表安达曼海南部的区域性火灾活动的发生频率(本文);(b)ADM-C1钻孔粒径>125 μm的炭屑浓度记录(本文)、SB-B钻孔 40 - 41 和Jaw SPT钻孔 42 粒径>150 μm的炭屑浓度记录转换的 Z分数及其集成的安达曼海周边(主要南部)地方性火灾活动;所有炭屑记录经过归一化处理后,再以0.1 ka的间隔进行插值
Fig. 6 Regional and local fire activity curves in the surrounding areas of the Andaman Sea
(a) The Z-score converted from 50~125 μm charcoal concentration record of core ADM-C1, mainly representing the frequency of regional fire in the southern Andaman Sea (this study); (b) Z-scores converted from >125 μm charcoal concentration record of core ADM-C1(this study), >150 μm charcoal concentration of core SB-B 40 - 41 and core Jaw SPT 42 and their integration result, representing the frequency of local fire events in the surrounding (mainly southern)areas of the Andaman Sea. All charcoal records were normalized and then interpolated at intervals of 0.1 ka
图7 无法区分粒径大小的炭屑记录转换的 Z 分数及其集成结果
所有炭屑记录经过归一化处理后,再以0.1 ka的间隔进行插值
Fig. 7 The normalized fire activity index from charcoal records with indistinguishable particle sizes and their integration result
All charcoal records were normalized and then interpolated at intervals of 0.1 ka
图8 安达曼海周边区域火灾活动曲线对比
所有炭屑记录经过归一化处理后,再以0.1 ka的间隔进行插值
Fig. 8 Comparison of fire activity curves in the surrounding area of Andaman Sea
All charcoal records were normalized and then interpolated at intervals of 0.1 ka
图9 全新世安达曼海周边区域火灾活动与其可能的影响因素的比较
(a)苏门答腊岛的Tangga洞穴的石笋δ 18O 44 ;(b)钻孔ADM-C1的δ 18O sw 60 ,指示安达曼海南部局部的降水量变化;(c)ADM-C1钻孔的热带—亚热带阔叶乔木花粉的百分含量,指示印度夏季风的降水变化 80 ;(d)安达曼海周边火灾活动曲线,值越大,表明火灾活动发生频率越高(本文);(e)ADM-C1钻孔的对称形炭屑的百分含量,指示木本植物的燃烧量变化(本文);(f)ADM-C1钻孔的木本植物花粉的百分含量 80 ;(g)ENSO事件的强度,值愈大,表明ENSO强度越大 90 ;(h)东印度洋Mentawai岛的珊瑚Sr/Ca比率重建的海表温度异常 49 ;(i)东印度洋混合层厚度,基于SO189-39KL钻孔的海表温度与温跃层温度的差值计算而来 50 ;黑色虚线标示9.0 ka BP和5.0 ka BP。灰色阴影指示印度洋IOD模态处于正位相时期
Fig. 9 Comparison of Holocene fire activity and its possible influencing factors in surrounding areas of the Andaman Sea
(a) δ 18O values in speleothem record from Tangga Cave in Sumatra 44 ;(b) δ 18O sw records of core ADM-C1 indicating local precipitation variation in the southern Andaman Sea 60 ;(c) The percentage of tropical and subtropical broad-leaved trees pollen of core ADM-C1 indicating the precipitation changes in the Indian Summer Monsoon 80 ;(d) Fire activity curve around the Andaman Sea, with larger values indicating higher frequency of fire activity (this study); (e) The percentage of symmetrical charcoal in the core ADM-C1, indicating changes in the burning of woody plants (this study);(f) The percentage of woody plants pollen of core ADM-C1 80 ;(g) The intensity of ENSO events, the greater the value, the greater the intensity of ENSO events 90 ;(h) Sea surface temperature anomalies reconstructed from coral Sr/Ca ratios in Mentawai Island in East Indian Ocean 49 ;(i) Mixed layer thickness in the eastern Indian Ocean, calculated based on the difference between sea surface temperature and thermocline temperature of core SO189-39KL 50 . The black dotted line marks 9.0 ka BP and 5.0 ka BP. Gray shading indicates a period of a more positive IOD-like mean state in the Indian Ocean
表3 全新世安达曼海周边区域的火灾活动曲线与区域内的降水记录之间的相关性系数
Table 3 Statistic correlation between fire activity in surrounding areas of the Andaman Sea and precipitation records during the Holocene
1 BIRD M I, CALI J A. A million-year record of fire in sub-Saharan Africa[J]. Nature, 1998, 394: 767-769.
2 LI Xiaoqiang, ZHAO Hongli, YAN Minhua, et al. Fire variations and relationship among fire and vegetation and climate during Holocene at Sanjiang Plain, Northeast China[J]. Scientia Geographica Sinica, 2005, 25(2): 177-182.
李小强, 赵宏丽, 闫敏华, 等. 东北三江平原全新世火演化及其与植被和气候的关系[J]. 地理科学, 2005, 25(2): 177-182.
3 JIANG Hong, RAO Zhiguo. Research progress on fire history reconstruction and its implications for climate change and human activities[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 185-197.
江鸿, 饶志国. 火的历史重建及其与气候变化和人类活动关系研究进展[J]. 海洋地质与第四纪地质, 2018, 38(2): 185-197.
4 HABERLE S G, HOPE G S, van der KAARS S. Biomass burning in Indonesia and Papua New Guinea: natural and human induced fire events in the fossil record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 171(3/4): 259-268.
5 LUO Yunli, CHEN Huaicheng, WU Guoxuan, et al. Natural fire and climate in the last three glacial cycles in the South China Sea—records of carbon debris in deep-sea sediments of hole—ODP1144[J]. Science in China Series D: Earth Sciences, 2001, 31(10): 854-860.
罗运利, 陈怀成, 吴国瑄, 等. 南海最近3个冰期旋回中的天然火与气候: ODP1144孔深海沉积中的炭屑记录[J]. 中国科学D辑:地球科学, 2001, 31(10): 854-860.
6 DANIAU A L, HARRISON S P, BARTLEIN P J. Fire regimes during the last glacial[J]. Quaternary Science Reviews, 2010, 29(21/22): 2 918-2 930.
7 XIAO X Y, SHEN J I, HABERLE S G, et al. Vegetation, fire, and climate history during the last 18 500 cal a BP in south-western Yunnan Province, China[J]. Journal of Quaternary Science, 2015, 30(8): 859-869.
8 ZHANG Lu, WANG Wei, JIA Guodong, et al. Fire evolution history of the Xiaoxing’an mountains and its response to environmental change during the past 1 100 years[J]. Advances in Earth Science, 2023, 38(11): 1 173-1 185.
张璐, 王伟, 贾国栋, 等. 近1100年来小兴安岭火灾演化历史及其对环境变化的响应[J]. 地球科学进展, 2023, 38(11): 1 173-1 185.
9 MOLINARI C, LEHSTEN V, BRADSHAW R H W, et al. Exploring potential drivers of European biomass burning over the Holocene: a data-model analysis[J]. Global Ecology and Biogeography, 2013, 22(12): 1 248-1 260.
10 MARLON J R, BARTLEIN P J, WALSH M K, et al. Wildfire responses to abrupt climate change in North America[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(8): 2 519-2 524.
11 MARLON J R, BARTLEIN P J, GAVIN D G, et al. Long-term perspective on wildfires in the western USA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(9): E535-E543.
12 PATTERSON W A III, EDWARDS K J, MAGUIRE D J. Microscopic charcoal as a fossil indicator of fire[J]. Quaternary Science Reviews, 1987, 6(1): 3-23.
13 WARD D E, HARDY C C. Smoke emissions from wildland fires[J]. Environment International, 1991, 17(2/3): 117-134.
14 FORBES M S, RAISON R J, SKJEMSTAD J O. Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems[J]. The Science of the Total Environment, 2006, 370(1): 190-206.
15 CLARK J S. Particle motion and the theory of charcoal analysis: source area, transport, deposition, and sampling[J]. Quaternary Research, 1988, 30(1): 67-80.
16 SCOTT A C, JONES T P. Fossil charcoal: a plant-fossil record preserved by fire[J]. Geology Today, 1991, 7(6): 214-216.
17 WHITLOCK C, LARSEN C. Charcoal as a fire proxy[M]//Tracking environmental change using lake sediments. Dordrecht: Springer Netherlands, 2002: 75-97.
18 HIGUERA P E, GAVIN D G, BARTLEIN P J, et al. Peak detection in sediment-charcoal records: impacts of alternative data analysis methods on fire-history interpretations[J]. International Journal of Wildland Fire, 2010, 19(8): 996-1 014.
19 WHITLOCK C, BRILES C E, FERNANDEZ M C, et al. Holocene vegetation, fire and climate history of the Sawtooth Range, central Idaho, USA[J]. Quaternary Research, 2011, 75(1): 114-124.
20 MUSTAPHI C J C, PISARIC M F J. A classification for macroscopic charcoal morphologies found in Holocene lacustrine sediments[J]. Progress in Physical Geography: Earth and Environment, 2014, 38(6): 734-754.
21 CARCAILLET C, RICHARD P J H. Holocene changes in seasonal precipitation highlighted by fire incidence in eastern Canada[J]. Climate Dynamics, 2000, 16(7): 549-559.
22 JENSEN K, LYNCH E A, CALCOTE R, et al. Interpretation of charcoal morphotypes in sediments from Ferry Lake, Wisconsin, USA: do different plant fuel sources produce distinctive charcoal morphotypes?[J]. The Holocene, 2007, 17(7): 907-915.
23 KENNETT D, KENNETT J, WEST G, et al. Wildfire and abrupt ecosystem disruption on California’s Northern Channel Islands at the Ållerød-Younger Dryas boundary (13.0~12.9 ka)[J]. Quaternary Science Reviews, 2008, 27(27/28): 2 530-2 545.
24 DANIAU A L, SÁNCHEZ-GOÑI M F, BEAUFORT L, et al. Dansgaard-Oeschger climatic variability revealed by fire emissions in southwestern Iberia[J]. Quaternary Science Reviews, 2007, 26(9/10): 1 369-1 383.
25 VANNIÈRE B, COLOMBAROLI D, CHAPRON E, et al. Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy)[J]. Quaternary Science Reviews, 2008, 27(11/12): 1 181-1 196.
26 FEURDEAN A, SPESSA A, MAGYARI E K, et al. Trends in biomass burning in the Carpathian region over the last 15, 000 years[J]. Quaternary Science Reviews, 2012, 45: 111-125.
27 FEURDEAN A, LIAKKA J, VANNIÈRE B, et al. 12, 000-Years of fire regime drivers in the Lowlands of Transylvania (Central-Eastern Europe): a data-model approach[J]. Quaternary Science Reviews, 2013, 81: 48-61.
28 WILLIAMS A N, MOONEY S D, SISSON S A, et al. Exploring the relationship between Aboriginal population indices and fire in Australia over the last 20, 000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 432: 49-57.
29 SHI G, YAN H, ZHANG W C, et al. Rapid warming has resulted in more wildfires in northeastern Australia[J]. The Science of the Total Environment, 2021, 771. DOI: 10.1016/j.scitotenv.2020.144888 .
30 WURSTER C M, ROWE C, ZWART C, et al. Indigenous impacts on North Australian savanna fire regimes over the Holocene[J]. Scientific Reports, 2021, 11. DOI: 10.1038/s41598-021-02618-z .
31 POWER M J, MARLON J, ORTIZ N, et al. Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data[J]. Climate Dynamics, 2008, 30(7): 887-907.
32 MARLON J R, BARTLEIN P J, CARCAILLET C, et al. Climate and human influences on globalbiomass burning over the past twomillennia[J]. Nature Geoscience, 2008, 1: 697-702.
33 DANIAU A L, BARTLEIN P J, HARRISON S P, et al. Predictability of biomass burning in response to climate changes[J]. Global Biogeochemical Cycles, 2012, 26(4). DOI:10.1029/2011GB004249 .
34 XU X, LI F, LIN Z D, et al. Holocene fire history in China: responses to climate change and human activities[J]. The Science of the Total Environment, 2021, 753. DOI:10.1016/j.scitotenv.2020.142019 .
35 MA Ting, ZHENG Zhuo, MAN Meiling, et al. Holocene fire history in relation to climate changes and human activities in southern subtropical China[J]. Tropical Geography, 2016, 36(3): 486-494.
马婷, 郑卓, 满美玲, 等. 南亚热带全新世火灾记录的气候变化及人类影响[J]. 热带地理, 2016, 36(3): 486-494.
36 MAXWELL A L. Fire regimes in north-eastern Cambodian monsoonal forests, with a 9300-year sediment charcoal record[J]. Journal of Biogeography, 2004, 31(2): 225-239.
37 HOPE G, van der KAARS S, FINN J, et al. Holocene environmental change at Inle Lake, Shan State, Myanmar, and its implications for the regional development of agriculture[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 523: 18-29.
38 MALONEY B. A 10, 600 year pollen record from Nong Thale Song Hong, Trang Province, South Thailand[J]. Bulletin of the Indo-Pacific Prehistory Association, 1999, 18: 129-138.
39 WHITE J C, PENNY D, KEALHOFER L, et al. Vegetation changes from the late Pleistocene through the Holocene from three areas of archaeological significance in Thailand[J]. Quaternary International, 2004, 113(1): 111-132.
40 HAPSARI K A, BIAGIONI S, JENNERJAHN T C, et al. Environmental dynamics and carbon accumulation rate of a tropical peatland in Central Sumatra, Indonesia[J]. Quaternary Science Reviews, 2017, 169: 173-187.
41 HAPSARI K A, BIAGIONI S, JENNERJAHN T C, et al. Resilience of a peatland in Central Sumatra, Indonesia to past anthropogenic disturbance: improving conservation and restoration designs using palaeoecology[J]. Journal of Ecology, 2018, 106(6): 2 473-2 490.
42 BIAGIONI S, KRASHEVSKA V, ACHNOPHA Y, et al. 8000 years of vegetation dynamics and environmental changes of a unique inland peat ecosystem of the Jambi Province in Central Sumatra, Indonesia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440: 813-829.
43 van der KAARS S, PENNY D, TIBBY J, et al. Late Quaternary palaeoecology, palynology and palaeolimnology of a tropical lowland swamp: Rawa Danau, West-Java, Indonesia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 171(3/4): 185-212.
44 WURTZEL J B, ABRAM N J, LEWIS S C, et al. Tropical Indo-Pacific hydroclimate response to North Atlantic forcing during the last deglaciation as recorded by a speleothem from Sumatra, Indonesia[J]. Earth and Planetary Science Letters, 2018, 492: 264-278.
45 LIU S F, LI J R, ZHANG H, et al. Complex response of weathering intensity registered in the Andaman Sea sediments to the Indian Summer Monsoon over the last 40kyr[J]. Marine Geology, 2020, 426. DOI: 10.1016/j.margeo.2020.106206 .
46 SEBASTIAN T, NAGENDER NATH B, VENKATESHWARLU M, et al. Impact of the Indian Summer Monsoon variability on the source area weathering in the Indo-Burman ranges during the last 21 kyr-A sediment record from the Andaman Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516: 22-34.
47 RASHID H, FLOWER B P, POORE R Z, et al. A ∼25ka Indian Ocean monsoon variability record from the Andaman Sea[J]. Quaternary Science Reviews, 2007, 26(19/20/21): 2 586-2 597.
48 MARZIN C, KALLEL N, KAGEYAMA M, et al. Glacial fluctuations of the Indian Monsoon and their relationship with North Atlantic climate: new data and modelling experiments[J]. Climate of the Past, 2013, 9(5): 2 135-2 151.
49 ABRAM N J, McGREGOR H V, GAGAN M K, et al. Oscillations in the southern extent of the Indo-Pacific Warm Pool during the mid-Holocene[J]. Quaternary Science Reviews, 2009, 28(25/26): 2 794-2 803.
50 KWIATKOWSKI C, PRANGE M, VARMA V, et al. Holocene variations of thermocline conditions in the eastern tropical Indian Ocean[J]. Quaternary Science Reviews, 2015, 114: 33-42.
51 KERSHAW A P, van der KAARS S, FLENLEY J R. The Quaternary history of Far Eastern rainforests[M]// Tropical rainforest responses to climatic change. Berlin, Heidelberg: Springer, 2011: 85-123.
52 WHITMORE T C. Tropical rain forests of the Far East[M]. Oxford: Clarendon Press, 1984.
53 SEIN S, TIN S M, AUNG N M M. Survey of forest species of Inle region[M]. Taunggyi: Botany Department,Taunggyi University, 2004.
54 SARMA V V S S, NARVEKAR P V. A study on inorganic carbon components in the Andaman Sea during the post monsoon season[J]. Oceanologica Acta, 2001, 24(2): 125-134.
55 SAJI N H, GOSWAMI B N, VINAYACHANDRAN P N, et al. A dipole mode in the tropical Indian Ocean[J]. Nature, 1999, 401: 360-363.
56 ALDRIAN E, SUSANTO R DWI. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature[J]. International Journal of Climatology, 2003, 23(12): 1 435-1 452.
57 CHANG C P, WANG Z, JU J H, et al. On the relationship between western maritime continent monsoon rainfall and ENSO during northern winter[J]. Journal of Climate, 2004, 17(3): 665-672.
58 WEBSTER P J, MOORE A M, LOSCHNIGG J P, et al. Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98[J]. Nature, 1999, 401: 356-360.
59 HUANG Y, XIAO J L, XIANG R, et al. Holocene Indian Summer Monsoon variations inferred from end-member modeling of sediment grain size in the Andaman Sea[J]. Quaternary International, 2020, 558: 28-38.
60 YANG Y P, XIANG R, HUANG Y, et al. Meridional migration of Indian Ocean Monsoon precipitation during the early Holocene: evidence from the Andaman Sea[J]. Quaternary Science Reviews, 2021, 267. DOI:10.1016/j.quascirev.2021.107102 .
61 SOUTHON J, KASHGARIAN M, FONTUGNE M, et al. Marine reservoir corrections for the Indian Ocean and southeast Asia[J]. Radiocarbon, 2002, 44(1): 167-180.
62 REIMER P J, BARD E, BAYLISS A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0~50, 000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1 869-1 887.
63 REIMER P J, AUSTIN W E N, BARD E, et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0~55 cal kBP)[J]. Radiocarbon, 2020, 62(4): 725-757.
64 HEATON T J, KÖHLER P, BUTZIN M, et al. Marine20—the marine radiocarbon age calibration curve (0~55, 000 cal BP)[J]. Radiocarbon, 2020, 62(4): 779-820.
65 BLAAUW M, CHRISTEN J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(3). DOI: 10.1214/11-BA618 .
66 WHITLOCK C. Variations in Holocene fire frequency: a view from the western United States[J]. Biology and Environment: Proceedings of the Royal Irish Academy, 2001, 101B(1/2): 65-77.
67 LI Xiaoqiang, ZHOU Xinying, SHANG Xue, et al. Different-(kPa/℃) size method of charcoal analysis in loess and its significance in the study of fire variation[J]. Journal of Lake Sciences, 2006, 18(5): 540-544.
李小强, 周新郢, 尚雪, 等. 黄土炭屑分级统计方法及其在火演化研究中的意义[J]. 湖泊科学, 2006, 18(5): 540-544.
68 SADORI L, ZANCHETTA G, GIARDINI M. Last Glacial to Holocene palaeoenvironmental evolution at Lago di Pergusa (Sicily, Southern Italy) as inferred by pollen, microcharcoal, and stable isotopes[J]. Quaternary International, 2008, 181(1): 4-14.
69 DANIAU A L, GOÑI M F S, MARTINEZ P, et al. Orbital-scale climate forcing of grassland burning in southern Africa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(13): 5 069-5 073.
70 ALEMAN J C, BLARQUEZ O, BENTALEB I, et al. Tracking land-cover changes with sedimentary charcoal in the Afrotropics[J]. The Holocene, 2013, 23(12): 1 853-1 862.
71 UMBANHOWAR C E, MCGRATH M J. Experimental production and analysis of microscopic charcoal from wood, leaves and grasses[J]. The Holocene, 1998, 8(3): 341-346.
72 ZHANG Jianping, Houyuan LÜ. Preliminary study of charcoal morphology and its environmental significance[J]. Quaternary Sciences, 2006, 26(5): 857-863.
张健平, 吕厚远. 现代植物炭屑形态的初步分析及其古环境意义[J]. 第四纪研究, 2006, 26(5): 857-863.
73 CRAWFORD A J, BELCHER C M. Charcoal morphometry for paleoecological analysis: the effects of fuel type and transportation on morphological parameters[J]. Applications in Plant Sciences, 2014, 2(8). DOI: 10.3732/apps.1400004 .
74 WANG Zisha, ZHAO Yongtao, MIAO Yunfa, et al. Statistical problem of microcharcoal in Loess sediments based on the pollen methodology[J]. Arid Land Geography, 2020, 43(3): 661-670.
王梓莎, 赵永涛, 苗运法, 等. 以孢粉学方法为例浅论黄土沉积物中微体炭屑的统计问题[J]. 干旱区地理, 2020, 43(3): 661-670.
75 ZHANG Rui, CHI Yunping, XIE Yuanyun, et al. Paleofire events recorded by charcoal in Harbin loess since the middle-late Pleistocene with driving mechanism[J]. Acta Ecologica Sinica, 2022, 42(24): 10 317-10 328.
张瑞, 迟云平, 谢远云, 等. 哈尔滨黄土炭屑记录的中晚更新世以来古火活动及其驱动机制[J]. 生态学报, 2022, 42(24): 10 317-10 328.
76 BLARQUEZ O, VANNIÈRE B, MARLON J R, et al. Paleofire: an R package to analyse sedimentary charcoal records from the Global Charcoal Database to reconstruct past biomass burning[J]. Computers & Geosciences, 2014, 72: 255-261.
77 VENABLES W N, RIPLEY B D. Modern applied statistics with S[M]. New York, NY: Springer, 2002.
78 ZHANG J W, CHEN F H, HOLMES J A, et al. Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China: a review and synthesis[J]. Quaternary Science Reviews, 2011, 30(15/16): 1 973-1 987.
79 MARLON J R, BARTLEIN P J, DANIAU A L, et al. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls[J]. Quaternary Science Reviews, 2013, 65: 5-25.
80 YANG Z J, LUO C X, ARIFUL ISLAM G M, et al. Northward migration of the maximum Indian summer monsoon precipitation during the early-mid-Holocene: evidence from sporopollen in the Andaman Sea[J]. Marine Micropaleontology, 2023, 181. DOI: 10.1016/j.marmicro.2023.102230 .
81 WOODS P. Effects of logging, drought, and fire on structure and composition of tropical forests in Sabah, Malaysia[J]. Biotropica, 1989, 21(4): 290-298.
82 PAYSEN T E, ANSLEY R J, BROWN J K, et al. Fire in western shrubland, woodland, and grassland ecosystems[J]. Wildland Fire in Ecosystems: Effects of Fire on Flora, 2000, 2: 121-159.
83 ZHOU B, SHEN C D, SUN W D, et al. Elemental carbon record of paleofire history on the Chinese Loess Plateau during the last 420ka and its response to environmental and climate changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(3/4): 617-625.
84 van der KAARS S, BASSINOT F, de DECKKER P, et al. Changes in monsoon and ocean circulation and the vegetation cover of southwest Sumatra through the last 83, 000years: the record from marine core BAR94-42[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296(1/2): 52-78.
85 KEALHOFER L. Looking into the gap: land use and the tropical forests of southern Thailand[J]. Asian Perspectives, 2003, 42(1): 72-95.
86 van der KAARS S, WILLIAMS M A J, BASSINOT F, et al. The influence of the ∼73ka Toba super-eruption on the ecosystems of northern Sumatra as recorded in marine core BAR94-25[J]. Quaternary International, 2012, 258: 45-53.
87 CHEN Y, MORTON D C, ANDELA N, et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation[J]. Nature Climate Change, 2017, 7: 906-911.
88 HABERLE S G, LEDRU M P. Correlations among charcoal records of fires from the past 16, 000 years in Indonesia, Papua new Guinea, and central and South America[J]. Quaternary Research, 2001, 55(1): 97-104.
89 DOMMAIN R, COUWENBERG J, JOOSTEN H. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability[J]. Quaternary Science Reviews, 2011, 30(7/8): 999-1 010.
90 LIU Z Y, LU Z Y, WEN X Y, et al. Evolution and forcing mechanisms of El Niño over the past 21, 000 years[J]. Nature, 2014, 515: 550-553.
91 YOSHIDA S, MORIMOTO T, USHIO T, et al. ENSO and convective activities in Southeast Asia and Western Pacific[J]. Geophysical Research Letters, 2007, 34(21). DOI: 10.1029/2007GL030758 .
92 DOWDY A J. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world[J]. Scientific Reports, 2016, 6. DOI: 10.1038/srep20874 .
93 TUTIN C E G, WHITE L J T, MACKANGA-MISSANDZOU A. Lightning strike burns large forest tree in the lope reserve, Gabon[J]. Global Ecology and Biogeography Letters, 1996, 5(1): 36-41.
94 KRASOVSKII A, KHABAROV N, PIRKER J, et al. Modeling burned areas in Indonesia: the FLAM approach[J]. Forests, 2018, 9(7). DOI: 10.3390/f9070437 .
[1] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[2] 张璐, 王伟, 贾国栋, 伊凯, 张振卿. 1 100年来小兴安岭火灾演化历史及其对环境变化的响应[J]. 地球科学进展, 2023, 38(11): 1173-1185.
[3] 叶传红, 栾锡武, 樊爱萍, 冉伟民, 穆敬轩, 何明勇, 魏新元, 李阳, 刘洁. 安达曼海东部台缘阶地中新世生物礁演化特征及其古环境响应[J]. 地球科学进展, 2022, 37(3): 316-330.
[4] 姜大膀, 田芝平, 王娜, 张冉. 末次冰盛期和中全新世气候模拟分析进展[J]. 地球科学进展, 2022, 37(1): 1-13.
[5] 况雪源, 韩跃超. 中全新世背景下中国区域气候对植被变化响应的降尺度模拟研究[J]. 地球科学进展, 2021, 36(12): 1301-1312.
[6] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[7] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[8] 梁文癸, 闻新宇. 古AO/NAO的研究进展[J]. 地球科学进展, 2016, 31(11): 1137-1150.
[9] 吉琳, 庞奖励, 黄春长, 查小春, 周亚利, 刘涛, 王蕾彬. 汉江上游晏家棚段全新世古洪水研究 *[J]. 地球科学进展, 2015, 30(4): 487-494.
[10] 刘学, 张志强, 郑军卫, 赵纪东, 王立伟. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
[11] 黄小慧,王汝建,翦知湣,王吉良. 全新世冲绳海槽北部表层海水温度和初级生产力对黑潮变迁的响应[J]. 地球科学进展, 2009, 24(6): 652-661.
[12] 杨文光,郑洪波,王可,谢昕,陈国成,梅西. 南海东北部MD05-2905站36 ka BP以来的陆源碎屑沉积特征与东亚季风的演化[J]. 地球科学进展, 2007, 22(10): 1012-1018.
[13] 曹光杰;王建. 长江三角洲全新世环境演变与人地关系研究综述[J]. 地球科学进展, 2005, 20(7): 757-764.
[14] 汪卫国;冯兆东;P.Khosbayar;T.Narantsetseg. 蒙古全新世气候变化研究进展[J]. 地球科学进展, 2005, 20(2): 240-247.
[15] 任美锷. 气候变化对全新世以来中国东部政治、经济和社会发展影响的初步研究[J]. 地球科学进展, 2004, 19(5): 695-698.
阅读次数
全文


摘要