地球科学进展 ›› 2024, Vol. 39 ›› Issue (6): 632 -646. doi: 10.11867/j.issn.1001-8166.2024.042

全球变化研究 上一篇    下一篇

全球地表气温对 CO2 浓度变化的非对称响应:能量平衡模式研究
屈侠 1 , 2( ), 黄刚 2   
  1. 1.中国科学院大气物理研究所季风系统研究中心,北京 100029
    2.中国科学院大气物理研究所 大气科学和地球流体力学数值模拟国家重点实验室,北京 100029
  • 收稿日期:2024-01-15 修回日期:2024-05-10 出版日期:2024-06-10
  • 基金资助:
    国家自然科学基金项目(42141019)

Asymmetric Response of Global Temperature to Changes in CO 2 Concentration: Energy Balance Models Study

Xia QU 1 , 2( ), Gang HUANG 2   

  1. 1.Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
  • Received:2024-01-15 Revised:2024-05-10 Online:2024-06-10 Published:2024-07-15
  • About author:QU Xia, Associated professor, research areas include climate dynamics under climate change. E-mail: quxia@mail.iap.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(42141019)

气候系统属性可影响二氧化碳(CO2)浓度变化背景下全球地表气温演变的非对称性,但目前仍不清楚哪些属性的贡献相对关键。因第六次国际耦合模式比较计划(CMIP6)试验样本不足,基于45个CMIP6模式数据,逐一构建了快速、再现能力理想的两层能量模型,共开展了391组试验。该模型试验结果显示,在对称的CO2浓度上升和下降演变下,平衡气候响应、深海热容量和海表—深海热传输系数对全球地表气温演变的非对称性起主要贡献,它们主要通过改变CO2浓度下降期全球地表气温达峰后的降温速度来实现。因此,加深对气候系统平衡气候响应、深海热容量和海表—深海热传输系数的理解,有助于更科学地实现巴黎协定目标。

Climate system properties influence asymmetry in global surface air temperature evolution under changes in carbon dioxide (CO2) concentration; however, it remains unclear which properties contribute more significantly. Owing to the insufficient number of samples from the Coupled Model Intercomparison Project Phase 6 (CMIP6) experiments, this study utilized the output of 45 CMIP6 models and constructed 391 sets of experiments using a two-layer energy balance model that was both rapid and reproducible. The experimental results demonstrate that the Equilibrium Climate Sensitivity (ECS), ocean heat capacity, and coefficient of vertical heat exchange in the ocean play primary roles in the asymmetry of the Global Surface Air Temperature (GSAT) evolution under a fixed CO2 concentration rise and fall. This was achieved by altering the cooling rate after the GSAT peak during the CO2 concentration decline period. Therefore, a deeper understanding of the ECS, ocean heat capacity, and the coefficient of vertical heat exchange in the ocean may facilitate a more scientifically realistic achievement of the goals of the Paris Agreement.

中图分类号: 

表1 CMIP6模式和对应的能量平衡模式( EBMs)参数
Table 1 The CMIP6 models and their parameters of Energy-Balance ModelsEBMs
模式名称 F/(W/m2 λ/[(W/(m2·K)] f ε ECS/K C/[(W·a/(m2·K)] C0/[(W·a/(m2·K)] γ/[(W/(m2·K)]
ACCESS-CM2 7.80 0.66 0.09 1.41 5.93 9.51 122.65 0.62
ACCESS-ESM1-5 6.46 0.72 0.19 1.64 4.51 8.79 86.13 0.58
AWI-CM-1-1-MR 8.71 1.24 0.09 1.28 3.51 7.91 72.94 0.53
BCC-CSM2-MR 5.91 1.10 0.09 1.26 2.70 8.76 43.37 0.62
BCC-ESM1 6.37 0.96 0.09 1.31 3.33 7.29 63.59 0.47
CAMS-CSM1-0 9.55 1.76 0.09 1.22 2.71 11.46 156.29 0.86
CAS-ESM2-0 7.08 0.96 0.09 1.41 3.70 9.23 72.87 0.51
CESM2 8.65 0.61 0.09 1.58 7.11 10.45 105.28 0.83
CESM2-FV2 7.98 0.50 0.09 1.65 7.96 8.58 121.78 0.88
CESM2-WACCM 7.85 0.69 0.24 1.54 5.66 9.09 92.64 0.76
CESM2-WACCM-FV2 6.75 0.58 0.20 1.43 5.82 8.04 113.48 0.76
CMCC-CM2-SR5 9.80 1.01 0.09 1.17 4.85 11.28 217.87 1.04
CMCC-ESM2 10.96 1.04 0.09 1.17 5.79 9.69 218.84 1.06
CNRM-ESM2-1 7.28 0.68 0.09 0.87 5.33 9.22 214.28 0.89
CanESM5 7.55 0.63 0.17 1.09 5.95 8.13 82.02 0.56
E3SM-1-0 7.38 0.62 0.05 1.38 5.92 8.22 44.01 0.36
EC-Earth3-Veg 7.59 0.84 0.10 1.37 4.54 8.25 42.44 0.46
FGOALS-f3-L 9.05 1.36 0.10 1.47 3.32 10.66 106.81 0.71
FGOALS-g3 12.98 1.21 0.09 1.12 5.38 13.28 701.53 2.03
FIO-ESM-2-0 10.22 0.84 0.09 1.20 6.11 10.56 213.86 1.20
GFDL-CM4 8.13 0.80 0.09 1.69 5.09 7.40 112.58 0.66
GFDL-ESM4 7.66 1.34 0.09 1.09 2.86 8.07 143.03 0.61
GISS-E2-1-G 8.35 1.45 0.16 1.06 2.88 6.23 151.35 0.84
GISS-E2-1-H 7.51 1.18 0.10 1.14 3.17 8.90 91.49 0.66
GISS-E2-2-G 7.44 1.76 0.07 0.52 2.11 8.08 280.39 0.43
GISS-E2-2-H 7.31 1.39 0.09 1.05 2.64 9.49 89.12 0.59
INM-CM4-8 10.21 1.37 0.09 1.17 3.72 14.30 561.06 1.82
INM-CM5-0 8.20 1.49 0.09 1.24 2.76 10.75 260.96 0.99
IPSL-CM5A2-INCA 6.26 0.82 0.14 1.06 3.82 8.23 122.38 0.56
IPSL-CM6A-LR 8.42 0.75 0.09 1.27 5.63 7.87 101.16 0.52
KACE-1-0-G 8.15 0.70 0.09 1.25 5.82 4.26 161.51 1.41
KIOST-ESM 7.29 0.97 -0.56 1.31 3.77 6.27 104.56 0.77
MIROC-ES2L 9.27 1.63 0.09 0.84 2.84 11.42 358.99 0.86
MIROC6 8.73 1.42 0.09 1.09 3.07 10.13 377.21 0.97
MPI-ESM-1-2-HAM 9.14 1.33 0.09 1.34 3.43 9.83 151.69 0.72
MPI-ESM1-2-HR 8.62 1.29 0.12 1.40 3.35 8.60 108.59 0.69
MPI-ESM1-2-LR 9.34 1.39 0.09 1.27 3.36 9.83 151.15 0.74
MRI-ESM2-0 8.48 1.11 0.09 1.25 3.84 9.43 153.55 1.24
NESM3 7.48 0.82 0.09 1.00 4.56 5.44 86.45 0.45
NorCPM1 7.38 1.08 0.22 1.44 3.41 11.49 119.48 0.89
NorESM2-LM 9.02 1.55 0.29 1.79 2.91 6.05 119.48 0.94
NorESM2-MM 9.14 1.70 0.24 1.40 2.68 5.36 116.43 0.75
SAM0-UNICON 10.51 1.04 0.09 1.19 5.07 8.67 227.62 1.16
TaiESM1 8.42 0.88 0.06 1.27 4.80 8.72 102.71 0.65
UKESM1-0-LL 7.70 0.67 -0.08 1.15 5.75 7.09 79.02 0.51
图1 CO2 浓度(a)、CO2 缓变试验(b)以及单参数敏感性试验(c~i)中? T 的时间序列
(b)曲线表示45个模型中CO 2缓变试验的输出;(c)~(i)曲线的颜色由浅到深表示对应的敏感参数的变化由小到大
Fig. 1 The time serials of CO2 concentrationaand ? T of reconstructed simulationsband single parameter sensitive simulationsc~i
The curves in (b) denotes outputs of reconstructed simulations in the 45 models; The colors of the curves in (c)~(i) from light to dark represent the sensitive parameters from small to large
图2 CMIP6模式和能量平衡模式(EBMs)中? T 的演变
CMIP6模式使用的是CO 2浓度突增试验结果(黑色曲线),能量平衡模式的为4倍CO 2突增重建试验(红色曲线)结果,该结果为减去工业革命前试验结束时的全球平均地表气温的异常;CMIP6各模式的名称标在图上
Fig. 2 The evolution of ? T in CMIP6 models and Energy-Balance ModelsEBMs
The evolutions are the ? T results in abrupt-4×CO 2 simulations. The black curves are results of CMIP6 models and the red ones are the results of the surrogated EBMs. The changes are the anomalies relative to the end of pre-industrial simulation. The CMIP6 mode name is above each figure
图3 能量平衡模式(EBMs)与对应CMIP6模式中全球平均地表气温变化( ? T )和非对称性的散点图
(a)CO 2 4倍突增试验的第131~150年平均? T;(b)1%CO 2试验的第121~140年平均? T;(c)1%CO 2试验及其移除试验中的? T的非对称性,虚线之间的区域表示EBMs与CMIP6模式中? T的相对误差小于10%
Fig. 3 The scatterplot of the ? T and asymmetry in Energy-Balance ModelsEBMsand corresponding CMIP6 models
(a) The results are the mean ? T from year 131 to 150 in abrupt-4×CO 2 simulations;(b) The results are the mean ? T from year 121 to 140 in 1%CO 2 simulations;(c) The results are the asymmetry of 1%CO 2 and 1%CO 2 -cdr simulations, the area between the two dash lines indicates that the relative ? T difference between EBMs and CMIP6 models is less than 10%
图4 CMIP6模式和能量平衡模式(EBMs)中? T 的演变
CMIP6模式使用的是CO 2浓度突增试验结果(黑色曲线),能量平衡模式的为4倍CO 2突增重建试验(红色曲线)结果。该结果为减去工业革命前试验结束时的全球平均地表气温的异常;CMIP6各模式的名称标在图上;大气CO 2浓度演变为:第1~140年,以逐年1%的速度上升;第141~180年,以逐年1%的速度降低。因只有8个CMIP6模式开展了1% CO 2移除试验,其他模式在第141~280年无相关数据
Fig. 4 The evolution of ? T in CMIP6 models and Energy-Balance ModelsEBMs
The evolution are the ? T results in abrupt-4×CO 2 simulations. The black curves are results of CMIP6 models and the red ones are the results of the surrogated EBMs. The changes are the anomalies relative to the end of pre-industrial simulation; The CO 2 concentration evolves as follows: it increases 1% per year during year 1~140 and decreases 1% per year during year 141~280. As only 8 models conducted the 1% CO 2 removal simulation, the outputs of other models during year 141~280 is unavailable. The CMIP6 mode name is above each figure
图5 CO2 缓变试验和单参数敏感性实验中? T 演变非对称性的箱线图
Rec:缓变试验; F fECSCC 0γε对应的箱线分别表示单参数敏感试验中它们的贡献。箱线图的中线表示对应的平均结果,上下两端表示平均值加减一个模式间标准差的结果,上下端分别表示最大和最小值
Fig. 5 The boxplots of the asymmetries of ? T evolution in reconstructed simulations and single parameter sensitive simulations
Rec: reconstructed simulations; The corresponding boxes of F fECSCC 0γ and ε represent their contributions derived from single parameter sensitive simulation, respectively. The middle lines are averaged results; The top and bottom of the box indicate the ±1 intermodel standard deviation of the asymmetries,respectively; The top and bottom lines of the error bars indicate the maximum and minimum,respectively
图6 ? T 达峰时间(a)和达峰后的下降速度(b)影响非对称性的示意图
Fig. 6 Diagram of the effects ofapeak year andbcooling rate on the asymmetry of ? T evolution
图7 深海热容量( C0 )变化时能量平衡模式(EBMs)中的? T 峰值后的下降趋势(a)和峰值年份(b)的散点图
Fig. 7 The scatter plots ofacooling rate versus C0 andbpeak year of ? T versus C0 in Energy-Balance ModelsEBMswhen the capacity of deep oceanC0varies
图8 深海热容量( C0 )变化时能量平衡模式(EBMs)的全球平均温度和能量通量时间序列
(a)全球平均地表气温变化( ? T );(b)深层海洋温度异常(? T 0);(c)地表与深层海洋间的温差(? T-? T 0);(d)有效辐射强迫( F);(e)气候反馈(- λ ? T );(f)地表向深海的能量损失(- εH);(g)地表净能量[Cd(Δ T)/d t];曲线的颜色从浅到深表示 C 0由小变大;这些结果是在单参数敏感性模拟中产生的,其中 C 0变化而其他参数固定
Fig. 8 The time serials of global mean temperature and energy fluxes in Energy-Balance ModelsEBMswhen the capacity of deep oceanC0varies
(a) Global mean surface air temperature change (? T); (b) Temperature change in the deep ocean (? T 0); (c) Changes in temperature differences between the Earth’s surface and the deep ocean (? T-? T 0); (d) Effective radiative forcing ( F); (e) Climate feedback (- λ ? T ); (f) Energy loss of the Earth’s surface to the deep ocean (- εH); (g) Net energy gained by the Earth’s surface [Cd(Δ T)/d t], respectively; The colors of the curves from light to dark represent C 0 from small to large; The results are the output of the single parameter sensitive simulations in which C 0 was varied and the other parameters were fixed
图9 海表—深海热传输系数( γ )变化时能量平衡模式(EBMs)的全球平均温度变化和能量通量时间序列
(a)全球平均地表气温变化(? T);(b)深层海洋温度异常(? T 0);(c)地表与深层海洋间的温差(? T-? T 0);(d)有效辐射强迫( F);(e)气候反馈(- λ? T);(f)地表向深海的能量损失(- εH);(g)地表净能量[ Cd(Δ T)/d t];曲线的颜色从浅到深表示 γ 由小变大;这些结果是在单参数敏感性模拟中产生的,其中 γ 变化其他参数固定
Fig. 9 The time serials of global mean temperature and energy fluxes in Energy-Balance ModelsEBMswhen the coefficient of vertical heat exchange in the oceanγvaries
(a) Global mean surface air temperature change (? T); (b) Temperature change in the deep ocean (? T 0); (c) Changes in temperature differences between the Earth’s surface and the deep ocean (? T-? T 0); (d) Effective radiative forcing ( F); (e) Climate feedback (- λ? T); (f) Energy loss of the Earth’s surface to the deep ocean (- εH); (g) Net energy gained by the Earth’s surface [ Cd(Δ T)/d t], respectively. The colors of the curves from light to dark represent γ from small to large. The results are the output of the single parameter sensitive simulations in which γ was varied and the other parameters were fixed
图10 161~280年平均的各项随时间的导数
Fig. 10 The mean derivative of the fluxes during year 161~280
图11 平衡气候响应(ECS)变化时能量平衡模式(EBMs)的全球平均温度和能量通量时间序列
(a)全球平均地表气温变化(? T);(b)深层海洋温度异常(? T 0);(c)地表与深层海洋间的温差(? T-? T 0);(d)有效辐射强迫( F);(e)气候反馈(- λ? T);(f)地表向深海的能量损失(- εH)和(g)地表净能量[ Cd(Δ T)/d t];曲线的颜色从浅到深表示ECS由小变大;这些结果是在单参数敏感性模拟中产生的,其中ECS变化而其他参数固定
Fig. 11 The time serials in Energy-Balance ModelsEBMsof global mean temperature and energy fluxes when the Equilibrium Climate SensitivityECSvaries
(a) Global mean surface air temperature change (? T); (b) Temperature change in the deep ocean (? T 0); (c) Changes in temperature differences between the Earth’s surface and the deep ocean (? T-? T 0); (d) Effective radiative forcing ( F); (e) Climate feedback (- λ? T); (f) Energy loss of the Earth’s surface to the deep ocean (- εH); (g) Net energy gained by the Earth’s surface [ Cd(Δ T)/d t], respectively. The colors of the curves from light to dark represent ECS from small to large; The results are the output of the single parameter sensitive simulations in which ECS was varied and the other parameters were fixed
1 IPCC. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021:2 391.
2 CAO L, GOVINDASAMY B, CALDEIRA K. Why is there a short-term increase in global precipitation in response to diminished CO2 forcing?[J]. Geophysical Research Letters, 2011, 38(6). DOI: 10.1029/2011GL046713 .
3 WU Peili, WOOD R, RIDLEY J, et al. Temporary acceleration of the hydrological cycle in response to a CO2 rampdown[J]. Geophysical Research Letters,2010,37. DOI:10.1029/2010GL043730 .
4 YEH S W, SONG S Y, ALLAN R P, et al. Contrasting response of hydrological cycle over land and ocean to a changing CO2 pathway[J]. NPJ Climate and Atmospheric Science, 2021, 4. DOI:10.1038/s41612-021-00206-6 .
5 HELD I M, SODEN B J. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006, 19(21). DOI: 10.1175/JCLI3990.1 .
6 ZHU Huanhuan, JIANG Sheng, JIANG Zhihong. Projection of climate extremes over China in response to 1.5/2.0 ℃ global warming based on the reliability ensemble averaging[J]. Advances in Earth Science, 2022, 37(6): 612-626.
朱欢欢, 姜胜, 江志红. 基于可靠性集合平均方法的全球1.5/2.0 ℃变暖下中国极端气候的未来预估[J]. 地球科学进展, 2022, 37(6): 612-626.]
7 BOUCHER O, HALLORAN P R, BURKE E J, et al. Reversibility in an Earth system model in response to CO2 concentration changes[J]. Environmental Research Letters, 2012, 7(2). DOI:10.1088/1748-9326/7/2/024013 .
8 KAMAE Y, OGURA T, WATANABE M, et al. Robust cloud feedback over tropical land in a warming climate[J]. Journal of Geophysical Research (Atmospheres), 2016, 121(6): 2 593-2 609.
9 QU X, HUANG G. CO2-induced heat source changes over the Tibetan Plateau in boreal summer-part II: the effects of CO2 direct radiation and uniform sea surface warming[J]. Climate Dynamics, 2020, 55(5): 1 631-1 647.
10 ANDREWS T, FORSTER P, BOUCHER O, et al. Precipitation, radiative forcing and global temperature change[J]. Geophysical Research Letters, 2010, 37(14). DOI:10.1029/2010GL043991 .
11 EHLERT D, ZICKFELD K. Irreversible ocean thermal expansion under carbon dioxide removal[J]. Earth System Dynamics, 2018, 9(1): 197-210.
12 WU P L, RIDLEY J, PARDAENS A, et al. The reversibility of CO2 induced climate change[J]. Climate Dynamics, 2015, 45(3): 745-754.
13 KIM S K, SHIN J, AN S I, et al. Widespread irreversible changes in surface temperature and precipitation in response to CO2 forcing[J]. Nature Climate Change, 2022, 12: 834-840.
14 SONG S Y, YEH S W, AN S I, et al. Asymmetrical response of summer rainfall in East Asia to CO2 forcing[J]. Science Bulletin, 2022, 67(2): 213-222.
15 ZHANG S Q, QU X, HUANG G, et al. Asymmetric response of South Asian summer monsoon rainfall in a carbon dioxide removal scenario[J]. NPJ Climate and Atmospheric Science, 2023, 6. DOI:10.1038/s41612-023-00338-x .
16 TANG Mingxiu, SUN Shao, ZHU Xiufang, et al. CMIP6 assessment of changes in hazard of future rainstorms in China[J]. Advances in Earth Science, 2022, 37(8): 519-534.
唐明秀, 孙劭, 朱秀芳, 等. 基于CMIP6的中国未来暴雨危险性变化评估[J]. 地球科学进展, 2022, 37(5): 519-534.
17 SANDERSON B, O’NEILL B, TEBALDI C. What would it take to achieve the Paris temperature targets?[J]. Geophysical Research Letters, 2016, 43: 7 133-7 142.
18 XU Y Y, RAMANATHAN V. Well below 2 ℃: mitigation strategies for avoiding dangerous to catastrophic climate changes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(39): 10 315-10 323.
19 HELD I M, WINTON M, TAKAHASHI K, et al. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing[J]. Journal of Climate, 2010, 23(9): 2 418-2 427.
20 JELTSCH-THÖ M A, STOCKER T, JOOS F. Hysteresis of the Earth system under positive and negative CO2 emissions[J]. Environmental Research Letters, 2020, 15(12). DOI:10.1088/1748-9326/abc4af .
21 KUG J S, OH J H, AN S I, et al. Hysteresis of the intertropical convergence zone to CO2 forcing[J]. Nature Climate Change, 2022, 12: 47-53.
22 KELLER D, LENTON A, SCOTT V, et al. The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6[J]. Geoscientific Model Development, 2018, 11(3): 1 133-1 160.
23 GREGORY J M, INGRAM W J, PALMER M A, et al. A new method for diagnosing radiative forcing and climate sensitivity [J]. Geophysical Research Letters, 2004, 31(3). DOI:10.1029/2003GL018747 .
24 ANDREWS T, GREGORY J M, WEBB M J, et al. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models[J]. Geophysical Research Letters, 2012, 39(9). DOI: 10.1029/2012GL051607 .
25 GEOFFROY O, SAINT-MARTIN D. Equilibrium- and transient-state dependencies of climate sensitivity: are they important for climate projections?[J]. Journal of Climate, 2019, 33(5):1 863-1 879.
26 GEOFFROY O, SAINT-MARTIN D, BELLON G, et al. Transient climate response in a two-layer energy-balance model. part II: representation of the efficacy of deep-ocean heat uptake and validation for CMIP5 AOGCMs[J]. Journal of Climate, 2013, 26(6): 1 859-1 876.
27 GEOFFROY O, SAINT-MARTIN D, BELLON G, et al. Transient climate response in a two-layer energy-balance model. Part I: analytical solution and parameter calibration using CMIP5 AOGCM experiments[J]. Journal of Climate,2013,26(6):1 841-1 857.
28 EYRING V, BONY S, MEEHL G A, et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1 937-1 958.
29 GREGORY J M, ANDREWS T, GOOD P. The inconstancy of the transient climate response parameter under increasing CO2 [J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373(2 054). DOI:10.1098/rsta.2014.0417 .
[1] 程久菊, 吕新苗, 朱立平, 马庆峰, SIMA HUMAGAIN, KHUM PAUDAYAL N. 珠穆朗玛峰北坡桤木属大气花粉传输路径与来源[J]. 地球科学进展, 2024, 39(4): 419-428.
[2] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[3] 丁一汇, 柳艳菊, 徐影, 吴萍, 薛童, 汪靖, 石英, 张颖娴, 宋亚芳, 王朋岭. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
[4] 姚楠, 马耀明. 亚洲三大高原感热变化及其对中国天气气候协同影响研究进展[J]. 地球科学进展, 2023, 38(6): 580-593.
[5] 鲁学云, 季建清, 王丽宁, 钟大赉. 气候—构造—剥蚀相互作用研究进展与展望[J]. 地球科学进展, 2023, 38(3): 270-285.
[6] 朱欢欢, 姜胜, 江志红. 基于可靠性集合平均方法的全球 1.5/2.0 °C变暖下中国极端气候的未来预估[J]. 地球科学进展, 2022, 37(6): 612-626.
[7] 姜大膀, 田芝平, 王娜, 张冉. 末次冰盛期和中全新世气候模拟分析进展[J]. 地球科学进展, 2022, 37(1): 1-13.
[8] 昝金波, 宁文晓, 杨胜利, 方小敏, 康健, 罗元龙. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
[9] 况雪源, 韩跃超. 中全新世背景下中国区域气候对植被变化响应的降尺度模拟研究[J]. 地球科学进展, 2021, 36(12): 1301-1312.
[10] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[11] 夏松, 刘鹏, 江志红, 程军. CMIP5CMIP6模式在历史试验下对 AMOPDO的模拟评估[J]. 地球科学进展, 2021, 36(1): 58-68.
[12] 赵东升, 高璇, 吴绍洪, 郑度. 基于自然分区的 19602018年中国气候变化特征[J]. 地球科学进展, 2020, 35(7): 750-760.
[13] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[14] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[15] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
阅读次数
全文


摘要