1 |
IPCC. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021:2 391.
|
2 |
CAO L, GOVINDASAMY B, CALDEIRA K. Why is there a short-term increase in global precipitation in response to diminished CO2 forcing?[J]. Geophysical Research Letters, 2011, 38(6). DOI: 10.1029/2011GL046713 .
|
3 |
WU Peili, WOOD R, RIDLEY J, et al. Temporary acceleration of the hydrological cycle in response to a CO2 rampdown[J]. Geophysical Research Letters,2010,37. DOI:10.1029/2010GL043730 .
|
4 |
YEH S W, SONG S Y, ALLAN R P, et al. Contrasting response of hydrological cycle over land and ocean to a changing CO2 pathway[J]. NPJ Climate and Atmospheric Science, 2021, 4. DOI:10.1038/s41612-021-00206-6 .
|
5 |
HELD I M, SODEN B J. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006, 19(21). DOI: 10.1175/JCLI3990.1 .
|
6 |
ZHU Huanhuan, JIANG Sheng, JIANG Zhihong. Projection of climate extremes over China in response to 1.5/2.0 ℃ global warming based on the reliability ensemble averaging[J]. Advances in Earth Science, 2022, 37(6): 612-626.
|
|
朱欢欢, 姜胜, 江志红. 基于可靠性集合平均方法的全球1.5/2.0 ℃变暖下中国极端气候的未来预估[J]. 地球科学进展, 2022, 37(6): 612-626.]
|
7 |
BOUCHER O, HALLORAN P R, BURKE E J, et al. Reversibility in an Earth system model in response to CO2 concentration changes[J]. Environmental Research Letters, 2012, 7(2). DOI:10.1088/1748-9326/7/2/024013 .
|
8 |
KAMAE Y, OGURA T, WATANABE M, et al. Robust cloud feedback over tropical land in a warming climate[J]. Journal of Geophysical Research (Atmospheres), 2016, 121(6): 2 593-2 609.
|
9 |
QU X, HUANG G. CO2-induced heat source changes over the Tibetan Plateau in boreal summer-part II: the effects of CO2 direct radiation and uniform sea surface warming[J]. Climate Dynamics, 2020, 55(5): 1 631-1 647.
|
10 |
ANDREWS T, FORSTER P, BOUCHER O, et al. Precipitation, radiative forcing and global temperature change[J]. Geophysical Research Letters, 2010, 37(14). DOI:10.1029/2010GL043991 .
|
11 |
EHLERT D, ZICKFELD K. Irreversible ocean thermal expansion under carbon dioxide removal[J]. Earth System Dynamics, 2018, 9(1): 197-210.
|
12 |
WU P L, RIDLEY J, PARDAENS A, et al. The reversibility of CO2 induced climate change[J]. Climate Dynamics, 2015, 45(3): 745-754.
|
13 |
KIM S K, SHIN J, AN S I, et al. Widespread irreversible changes in surface temperature and precipitation in response to CO2 forcing[J]. Nature Climate Change, 2022, 12: 834-840.
|
14 |
SONG S Y, YEH S W, AN S I, et al. Asymmetrical response of summer rainfall in East Asia to CO2 forcing[J]. Science Bulletin, 2022, 67(2): 213-222.
|
15 |
ZHANG S Q, QU X, HUANG G, et al. Asymmetric response of South Asian summer monsoon rainfall in a carbon dioxide removal scenario[J]. NPJ Climate and Atmospheric Science, 2023, 6. DOI:10.1038/s41612-023-00338-x .
|
16 |
TANG Mingxiu, SUN Shao, ZHU Xiufang, et al. CMIP6 assessment of changes in hazard of future rainstorms in China[J]. Advances in Earth Science, 2022, 37(8): 519-534.
|
|
唐明秀, 孙劭, 朱秀芳, 等. 基于CMIP6的中国未来暴雨危险性变化评估[J]. 地球科学进展, 2022, 37(5): 519-534.
|
17 |
SANDERSON B, O’NEILL B, TEBALDI C. What would it take to achieve the Paris temperature targets?[J]. Geophysical Research Letters, 2016, 43: 7 133-7 142.
|
18 |
XU Y Y, RAMANATHAN V. Well below 2 ℃: mitigation strategies for avoiding dangerous to catastrophic climate changes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(39): 10 315-10 323.
|
19 |
HELD I M, WINTON M, TAKAHASHI K, et al. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing[J]. Journal of Climate, 2010, 23(9): 2 418-2 427.
|
20 |
JELTSCH-THÖ M A, STOCKER T, JOOS F. Hysteresis of the Earth system under positive and negative CO2 emissions[J]. Environmental Research Letters, 2020, 15(12). DOI:10.1088/1748-9326/abc4af .
|
21 |
KUG J S, OH J H, AN S I, et al. Hysteresis of the intertropical convergence zone to CO2 forcing[J]. Nature Climate Change, 2022, 12: 47-53.
|
22 |
KELLER D, LENTON A, SCOTT V, et al. The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6[J]. Geoscientific Model Development, 2018, 11(3): 1 133-1 160.
|
23 |
GREGORY J M, INGRAM W J, PALMER M A, et al. A new method for diagnosing radiative forcing and climate sensitivity [J]. Geophysical Research Letters, 2004, 31(3). DOI:10.1029/2003GL018747 .
|
24 |
ANDREWS T, GREGORY J M, WEBB M J, et al. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models[J]. Geophysical Research Letters, 2012, 39(9). DOI: 10.1029/2012GL051607 .
|
25 |
GEOFFROY O, SAINT-MARTIN D. Equilibrium- and transient-state dependencies of climate sensitivity: are they important for climate projections?[J]. Journal of Climate, 2019, 33(5):1 863-1 879.
|
26 |
GEOFFROY O, SAINT-MARTIN D, BELLON G, et al. Transient climate response in a two-layer energy-balance model. part II: representation of the efficacy of deep-ocean heat uptake and validation for CMIP5 AOGCMs[J]. Journal of Climate, 2013, 26(6): 1 859-1 876.
|
27 |
GEOFFROY O, SAINT-MARTIN D, BELLON G, et al. Transient climate response in a two-layer energy-balance model. Part I: analytical solution and parameter calibration using CMIP5 AOGCM experiments[J]. Journal of Climate,2013,26(6):1 841-1 857.
|
28 |
EYRING V, BONY S, MEEHL G A, et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development, 2016, 9(5): 1 937-1 958.
|
29 |
GREGORY J M, ANDREWS T, GOOD P. The inconstancy of the transient climate response parameter under increasing CO2 [J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373(2 054). DOI:10.1098/rsta.2014.0417 .
|