地球科学进展 ›› 2020, Vol. 35 ›› Issue (7): 750 -760. doi: 10.11867/j.issn.1001-8166.2020.056

全球变化研究 上一篇    下一篇

基于自然分区的 19602018年中国气候变化特征
赵东升 1( ), 高璇 1 , 2, 吴绍洪 1 , 2, 郑度 1 , 2   
  1. 1.中国科学院地理科学与资源研究所,中国科学院陆地表层格局与模拟重点实验室,北京 100101
    2.中国科学院大学,北京 100049
  • 收稿日期:2020-01-13 修回日期:2020-06-10 出版日期:2020-07-10
  • 基金资助:
    国家重点研发计划项目“大都市区多灾种重大自然灾害风险综合防范关键技术研究与示范”(2017YFC1503003);国家自然科学基金重点项目“中国陆地表层自然地域系统动态及其驱动机制”(41571193)

Trend of Climate Variation in China from 1960 to 2018 Based on Natural Regionalization

Dongsheng Zhao 1( ), Xuan Gao 1 , 2, Shaohong Wu 1 , 2, Du Zheng 1 , 2   

  1. 1.Key Laboratory of Land Surface Pattern and Simulation,Institute of Geographical Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2020-01-13 Revised:2020-06-10 Online:2020-07-10 Published:2020-08-21
  • About author:Zhao Dongsheng (1978-), male, Zhaoyuan County, Heilongjiang Province, Associate professor. Research areas include impact and adaptation of climate change. E-mail: zhaods@igsnrr.ac.cn
  • Supported by:
    the National Key Research and Development Program of China "Research and demonstration of key technologies for integrated risk prevention of multiple natural disasters in metropolitan areas"(2017YFC1503003);The National Natural Science Foundation of China "Dynamic territorial system of China and its driving mechanism"(41571193)

中国地域辽阔,气候变化存在明显的区域差异,从区域尺度对中国气候变化进行对比分析,对中国地表环境变化的归因研究具有重要意义。以1960—2018年中国483个气象站观测数据为基础,结合自然区划,分析了温度、降水、潜在蒸散和湿润指数的变化特征。结果发现,各气候要素变化具有明显的空间差异性。温度总体呈现显著上升趋势,平均增温速率为0.278 ℃/10a,但北方地区升温幅度大于南方地区,青藏高原大于同纬度的亚热带区域,温度年内变化总体呈现减小趋势,并通过0.05置信度检验。降水量在西北和东南地区呈现增多趋势,而在东北—西南向的生态过渡带附近区域有减小趋势,除亚热带湿润地区和热带湿润地区,其他生态区降水集中度都为明显减小趋势,降水年内变化相对均衡。在全国尺度上,潜在蒸散和湿润指数都呈现增大趋势,其中,湿润指数通过0.05置信度检验,但各生态区之间趋势差异明显。亚热带地区西部湿润指数减小趋势非常显著,而亚热带地区东部、西北干旱地区的西北部以及中温带地区的增大趋势非常显著。总体上,近59年来中国经历了一个以暖湿化为主要特征的气候变化过程,特别显著的是在西北干旱区、青藏高原区和中温带湿润/半湿润区。气候变化特征的研究将有助于解析地表环境和生态系统影响机制,预估未来气候变化风险,为区域气候变化应对和生态建设提供科学依据。

China has a vast territory, and there are obvious regional differences in climate change. The comparative analysis of China's climate change on a regional scale is of great significance to the attribution study of China’s surface environmental change. Based on the observed data of 483 meteorological stations nationwide from 1960 to 2018, the trends of temperature, precipitation, potential evapotranspiration, and moisture index were analyzed in conjunction with natural regionalization. The results showed that the variations of climatic factors exhibited the obvious spatial heterogeneity. Temperature showed a significant rising trend, with the average warming rate of 0.278 ℃/10a. Spatially, the increasing magnitude in the northern region was greater than that in the southern region, and the Tibetan Plateau region was larger than the subtropical region in the same latitude. The annual fluctuation of temperature showed a decreasing trend, and passed the 0.05 confidence test. Precipitation tended to increase in the northwest and southeast regions, while a decreasing trend was detected in the vicinity of the northeast-southwest ecological transition region. Except for subtropical humid region and tropical humid region, the annual fluctuation of precipitation in other ecological regions tended to remain constant. At the national scale, both the potential evapotranspiration and the wetness index showed an increasing trend, and wetness index passed the 0.05 confidence test. The significant decreasing trend of wetness index was found in the west of subtropical region, while the significant increasing trend was examined in the east of subtropical region, northwest of northwest arid region and mid-temperate region. Overall, China had experienced a dramatic climate change characterized by warming and wetting in recent 59 years, especially in northwest arid region, Tibetan Plateau region, and mid-temperate humid/semi-humid region. The study of the trend climate change in China is helpful for analyzing the impact mechanism of surface environment and ecosystem, and predicting the future climate change risk, which will provide scientific basis for regional climate change adaption and ecological construction.

中图分类号: 

表1 湿润指数的干湿气候划分标准
Table 1 Dry and wet climate classification criteria based on moisture index
图1 中国气象站点分布及生态分区
Fig.1 Distribution of meteorological stations and ecological regionalization in China
表2 19602018年中国及其各生态区气候变化趋势
Table 2 Climate change trends in China and various eco-regions during 1960-2018
图2 19602018年中国平均温度(a)和温度方差(b)变化趋势的空间分布
Fig.2 Spatial distribution of trends of average temperatureaand temperature variancebin China during 1960-2018
表3 19602018年中国及各生态区不同气候要素不同变化趋势所占比例
Table 3 Proportion of different trends in different climate elements in China and various eco-regions during 1960-2018
生态分区 趋势和置信度 平均温度 温度方差 降水量 降水集中度 潜在蒸散 湿润指数
I 增大趋势 2(100%) 0(0%) 1(50%) 0(0%) 1(50%) 1(50%)
减小趋势 0(0%) 2(100%) 1(50%) 2(100%) 1(50%) 1(50%)
0.05置信度 2(100%) 1(50%) 1(50%) 0(0%) 1(50%) 2(100%)
II 增大趋势 62(100%) 12(19%) 35(56%) 1(2%) 22(35%) 51(82%)
减小趋势 0(0%) 50(81%) 27(44%) 61(98%) 40(65%) 11(18%)
0.05置信度 62(100%) 19(31%) 7(11%) 38(61%) 28(45%) 20(32%)
III 增大趋势 68(99%) 0(0%) 14(20%) 17(25%) 36(52%) 26(38%)
减小趋势 1(1%) 69(100%) 55(80%) 52(75%) 33(48%) 43(62%)
0.05置信度 67(97%) 50(72%) 10(14%) 15(22%) 38(55%) 8(12%)
IV 增大趋势 47(100%) 10(21%) 20(43%) 7(15%) 41(87%) 26(55%)
减小趋势 0(0%) 37(79%) 27(57%) 40(85%) 6(13%) 21(45%)
0.05置信度 46(98%) 17(36%) 3(6%) 15(32%) 27(57%) 8(17%)
V 增大趋势 197(99%) 8(4%) 133(67%) 94(47%) 74(37%) 143(72%)
减小趋势 2(1%) 191(96%) 66(33%) 105(53%) 125(63%) 56(28%)
0.05置信度 190(95%) 75(37%) 35(18%) 6(3%) 93(47%) 38(19%)
VI 增大趋势 10(100%) 0(0%) 8(80%) 7(570%) 5(50%) 9(90%)
减小趋势 0(0%) 10(100%) 2(20%) 3(30%) 5(50%) 1(10%)
0.05置信度 10(100%) 2(20%) 1(10%) 1(10%) 4(40%) 0(0%)
VII 增大趋势 49(98%) 11(22%) 43(86%) 13(26%) 36(72%) 39(78%)
减小趋势 1(2%) 39(78%) 7(14%) 37(74%) 14(28%) 11(22%)
0.05置信度 49(98%) 19(38%) 26(52%) 11(22%) 34(68%) 22(44%)
VIII 增大趋势 43(98%) 2(5%) 36(82%) 5(11%) 41(93%) 37(84%)
减小趋势 1(2%) 42(95%) 8(18%) 39(89%) 3(7%) 7(16%)
0.05置信度 43(98%) 31(70%) 18(41%) 20(45%) 27(61%) 18(41%)
全国 增大趋势 478(99%) 43(9%) 290(60%) 144(30%) 256(53%) 332(69%)
减小趋势 5(1%) 440(91%) 193(40%) 339(70%) 227(47%) 151(31%)
0.05置信度 469(97%) 214(44%) 101(21%) 106(22%) 252(52%) 116(24%)
图3 19602018年中国降水量(a)和降水集中度(b)变化趋势的空间分布
Fig.3 Spatial distribution of trends of precipitationaand precipitation concentration degreebin China during 1960-2018
图4 19602018年中国平均湿润指数的空间分布
Fig.4 Spatial distribution of wetness index in China during 1960-2018
图5 19602018年中国潜在蒸散发(a)和湿润指数(b)变化趋势的空间分布
Fig.5 Spatial distribution of trends of potential evapotranspirationaand wetness indexbin China during 1960-2018
1 IPCC. Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis: Summary for Policymakers[M]. Cambridge: Cambridge University Press, 2013.
2 Editing Commission of the Third National Report on Climate Change of China. The Third National Report on Climate Change[M]. Beijing: Science Press, 2015.
《第三次气候变化国家评估报告》编委会. 第三次气候变化国家评估报告[M]. 北京: 科学出版社, 2015.
3 Baker A J, Schiemann R, Hodges K I, et al. Enhanced climate change response of wintertime North Atlantic Circulation, cyclonic activity, and precipitation in a 25-km-Resolution Global Atmospheric Model[J]. Journal of Climate, 2019, 32(22): 7 763-7 781.
4 Wang Yanjiao, Yan Feng. Regional differentiation and decadal change of precipitation in China in 1960-2010[J]. Progress in Geography, 2014, 33(10): 1 354-1 363.
王艳姣, 闫峰. 1960—2010年中国降水区域分异及年代际变化特征[J]. 地理科学进展, 2014, 33(10): 1 354-1 363.
5 Wu Y J, Wu S Y, Wen J H, et al. Changing characteristics of precipitation in China during 1960-2012[J]. International Journal of Climatology, 2016, 36(3): 1 387-1 402.
6 Wang T T, Zhang J, Sun F B, et al. Pan evaporation paradox and evaporative demand from the past to the future over China: A review[J]. Wiley Interdisciplinary Reviews—Water, 2017, 4(3): 1-13.
7 Wang Z L, Xie P W, Lai G G, et al. Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961-2013[J]. Journal of Hydrology, 2017, 544: 97-108.
8 Chen H P, Sun J Q. Changes in climate extreme events in China associated with warming[J]. International Journal of Climatology, 2015, 35(10): 2 735-2 751.
9 Li Donghuan, Zou Liwei, Zhou Tianjun. Changes of extreme indices over China in response to 1.5 ℃ global warming projected by a Regional Climate Model[J]. Advances in Earth Science, 2017, 32(4): 446-457.
李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.
10 Du H B, Wu Z F, Li M. Interdecadal changes of vegetation transition zones and their responses to climate in Northeast China[J]. Theoretical and Applied Climatology, 2011, 106(1/2): 179-188.
11 Ge Q S, Zhang X Z, Zheng J Y. Simulated effects of vegetation increase/decrease on temperature changes from 1982 to 2000 across the Eastern China[J]. International Journal of Climatology, 2014, 34(1): 187-196.
12 Wu Shaohong, Yin Yunhe. Impacts of climate extremes on human systems[J]. Climate Change Research, 2012, 8(2): 99-102.
吴绍洪, 尹云鹤. 极端事件对人类系统的影响[J]. 气候变化研究进展, 2012, 8(2): 99-102.
13 Piao S L, Ciais P, Huang Y, et al. The impacts of climate change on water resources and agriculture in China[J]. Nature, 2010, 467: 43-51.
14 Huang Bingwei. A preliminary draft of comprehensive physical regionalization in China[J]. Acta Geographica Sinica, 1958, 25(4): 348-365.
黄秉维. 中国综合自然区划的初步草案[J]. 地理学报, 1958, 25(4): 348-365.
15 Piao S L, Fang J Y, Zhou L M, et al. Variations in satellite‐derived phenology in China's temperate vegetation[J]. Global Change Biology, 2006, 12(4): 672-685.
16 Xiao J F, Zhou Y, Zhang L. Contributions of natural and human factors to increases in vegetation productivity in China[J]. Ecosphere, 2015, 6(11): 233.
17 Yan L J, Zheng M P. Influence of climate change on saline lakes of the Tibet Plateau, 1973-2010[J]. Geomorphology, 2015, 246(10): 68-78.
18 Wu Yanhong, Zhu Liping, Ye Qinghua, et al. The response of Lake-Glacier area change to climate variations in Namco Basin, Central Tibetan Plateau, during the last three decades[J]. Acta Geographica Sinica, 2007, 62(3): 301-311.
吴艳红, 朱立平, 叶庆华, 等. 纳木错流域近30年来湖泊—冰川变化对气候的响应[J]. 地理学报, 2007, 62(3): 301-311.
19 Li Xiaofeng, Yao Xiaojun, Sun Meiping, et al. Spatial-temporal variations in lakes in northwest China from 2000 to 2014[J]. Acta Ecological Sinica, 2018, 38(1): 96-104.
李晓锋, 姚晓军, 孙美平, 等. 2000—2014年我国西北地区湖泊面积的时空变化[J]. 生态学报, 2018, 38(1): 96-104.
20 Chen Dongdong, Zhao Jun. Spatial-temporal variations of lake area in arid region of Northwest China[J]. Remote Sensing Technology and Application, 2017, 32(6): 1 114-1 125.
陈栋栋, 赵军.我国西北干旱区湖泊变化时空特征[J]. 遥感技术与应用, 2017, 32(6): 1 114-1 125.
21 Allen R G, Pereira L S, Raes D, et al. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56[M]. Rome: FAO, 1998.
22 Shen Shuanghe, Zhang Fangmin, Sheng Qiong. Spatio-temporal changes of wetness index in China from 1975 to 2004[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(1): 11-15.
申双和, 张方敏, 盛琼. 1975—2004年中国湿润指数时空变化特征[J]. 农业工程学报, 2009, 25(1): 11-15.
23 Zhang L J, Qian Y F. Annual distribution features of precipitation in China and their interannual variations[J]. Acta Meteorologica Sinica, 2003, 17(2): 146-163.
24 Kendall M G. Rank Correlation Methods[M]. London: Charles Grifin, 1975.
25 Mann H B. Nonparametric tests against trend[J]. Econometrica, 1945, 13(3): 245-259.
26 Hamed K H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis[J]. Journal of Hydrology, 2008, 349(3/4): 350-363.
27 Liu Q, Yang Z F, Cui B S. Spatial and temporal variability of annual precipitation during 1961-2006 in Yellow River Basin, China[J]. Journal of Hydrology (Amsterdam), 2008, 361(3/4): 330-338.
28 Sneyers R. On the statistical analysis of series of observation[J]. Journal of Biological Chemistry, 1990, 258(22): 13 680-13 684.
29 Zheng Du. Research on Eco-geographical Region Systems of China[M]. Beijing: The Commercial Press, 2008.
郑度.中国生态地理区域系统研究[M]. 北京: 商务印书馆, 2008.
30 Yin Yunhe, Wu Shaohong, Chen Gang. Regional difference of climate trend and abrupt climate change in China during 1961-2006[J]. Journal of Natural Resources, 2009, 24(12): 2 147-2 157.
尹云鹤, 吴绍洪, 陈刚. 1961-2006年我国气候变化趋势与突变的区域差异[J]. 自然资源学报, 2009, 24(12): 2 147-2 157.
31 Zhao D S, Wu S H. Spatial and temporal variability of key bio-temperature indicators on the Qinghai-Tibetan Plateau for the period 1961-2013[J]. International Journal of Climatology, 2016, 36(4): 2 083-2 092.
32 Meng Fandong, Dorji Tsechoe, Cui Shujuan, et al. Changes of plant phenophases and their effects on the Qinghai-Tibetan Plateau[J]. Chinese Journal of Nature, 2017, 39(3): 184-190.
孟凡栋, 斯确多吉, 崔树娟, 等.青藏高原植物物候的变化及其影响[J]. 自然杂志, 2017, 39(3): 184-190.
33 Du Qinqin, Zhang Mingjun, Wang Shengjie, et al. Changes in air temperature of China in response to global warming hiatus[J]. Acta Geographica Sinica, 2018, 73(9): 1 748-1 764.
杜勤勤, 张明军, 王圣杰, 等.中国气温变化对全球变暖停滞的响应[J]. 地理学报, 2018, 73(9): 1 748-1 764.
34 Zhang Guohong, Li Zhicai, Song Yan, et al. Spatial patterns of change trend in rainfall of China and the role of East Asia summer monsoon[J]. Arid Land Geography, 2011, 34(1): 34-42.
张国宏, 李智才, 宋燕, 等.中国降水量变化的空间分布特征与东亚夏季风[J]. 干旱区地理, 2011, 34(1): 34-42.
35 Wang Ying, Cao Mingkui, Tao Bo, et al. The characteristics of spatio-temporal patterns in precipitation in China under the background of global climate change[J]. Geographical Research, 2006, 25(6): 1 031-1 040.
王英, 曹明奎, 陶波, 等.全球气候变化背景下中国降水量空间格局的变化特征[J]. 地理研究, 2006, 25(6):1 031-1 040.
36 Huang Y, Wang H, Xiao W H, et al. Spatial and temporal variability in the precipitation concentration in the Upper Reaches of the Hongshui River Basin, Southwestern China[J]. Advances in Meteorology, 2018: 1-19. DOI:10.1155/2018/4329757 .
37 Dore M H I. Climate change and changes in global precipitation patterns: What do we know[J]. Environment International, 2005, 31(8): 1 167-1 181.
38 Gao J B, Jiao K W, Wu S H, et al. Past and future effects of climate change on spatially heterogeneous vegetation activity in China[J]. Earth System Dynamics Discussions, 2017, 5(7): 679-692.
39 Kumar A, Nayak A K, Das B S, et al. Effects of water deficit stress on agronomic and physiological responses of rice and greenhouse gas emission from rice soil under elevated atmospheric CO2 [J]. Science of the Total Environment, 2019, 650: 2 032-2 050.
40 Huang Wanhua, Yang Xiaohuang, Li Maosong, et al. Evolution characteristics of seasonal drought in the south of China during the past 58 years based on standardized precipitation index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(7): 50-59.
黄晚华, 杨晓光, 李茂松, 等.基于标准化降水指数的中国南方季节性干旱近58 a演变特征[J]. 农业工程学报, 2010, 26(7): 50-59.
41 Qiu J. China drought highlights future climate threats[J]. Nature, 2010, 465(7 295): 142-143.
42 Xu C X, An W L, Wang S Y S. Increased drought events in southwest China revealed by tree ring oxygen isotopes and potential role of Indian Ocean Dipole[J]. Science of the Total Environment, 2019, 661: 645-653.
43 Chen Feng, Kang Shichang, Zhang Yongjun, et al. Glaciers and lake change in response to climate change in the Nam Co Basin, Tibet[J]. Mountain Research, 2009, 27(6): 641-647.
陈锋, 康世昌, 张拥军, 等.纳木错流域冰川和湖泊变化对气候变化的响应[J]. 山地学报, 2009, 27(6): 641-647.
44 Duan Shuiqiang, Cao Guangchao, Liu Tao, et al. The recent expansion features and the cause of formation of the lakes in Qinghai Qiangtang Basin[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1 237-1 247.
段水强, 曹广超, 刘敩, 等.青海羌塘盆地近期湖泊扩张特征及成因[J]. 冰川冻土, 2013, 35(5): 1 237-1 247.
45 Ding Zhiyong, Lu Ruijie, Liu Chang, et al. Temporal change characteristics of climatic and its relationships with atmospheric circulation patterns in Qinghai Lake Basin[J]. Advances in Earth Science, 2018, 33(3): 281-293.
丁之勇, 鲁瑞洁, 刘畅, 等. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 2018, 33(3): 281-293.
46 Wang G X, Bai W, Li N, et al. Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China[J]. Climatic Change, 2011, 106(3): 463-482.
47 Zhang R, Ouyang Z T, Xie X, et al. Impact of climate change on vegetation growth in arid northwest of China from 1982 to 2011[J]. Remote Sensing, 2016, 8(5): 364.
48 Shi Y F, Shen Y P, Kang E, et al. Recent and future climate change in Northwest China[J]. Climatic Change, 2007, 80(3/4): 379-393.
49 Zhang Jiutian, He Xiaojia, Shangguan Donghui, et al. Impact of intensive glacier ablation on arid regions of Northwest China and its countermeasure[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 848-854.
张九天, 何霄嘉, 上官冬辉, 等.冰川加剧消融对我国西北干旱区的影响及其适应对策[J]. 冰川冻土, 2012, 34(4): 848-854.
50 Yao Junqiang, Yang Qing, Chen Yaning. Climate change in arid areas of Northwest China in past 50 years and its effects on the local ecological environment[J]. Chinese Journal of Ecology, 2013, 32(5): 1 283-1 291.[
姚俊强, 杨青, 陈亚宁, 等. 西北干旱区气候变化及其对生态环境影响[J]. 生态学杂志, 2013, 32(5): 1 283-1 291.
[1] 陈小刚, 李凌, 杜金洲. 红树林和盐沼湿地间隙水交换过程及其碳汇潜力[J]. 地球科学进展, 2022, 37(9): 881-898.
[2] 陈亚宁, 李玉朋, 李稚, 刘永昌, 黄文静, 刘西刚, 冯梅青. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
[3] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[4] 冯起, 常宗强, 席海洋, 苏永红, 温小虎, 朱猛, 张举涛, 张成琦. 基于碳氮循环的中蒙荒漠生态脆弱区生态系统对全球变化响应研究[J]. 地球科学进展, 2022, 37(11): 1101-1114.
[5] 韩林生, 王祎. 全球海洋观测系统展望及对我国的启示[J]. 地球科学进展, 2022, 37(11): 1157-1164.
[6] 拓守廷, 王文涛. 国际大洋钻探 2050科学框架及其对未来大洋钻探发展的启示[J]. 地球科学进展, 2022, 37(10): 1049-1053.
[7] 姜大膀, 田芝平, 王娜, 张冉. 末次冰盛期和中全新世气候模拟分析进展[J]. 地球科学进展, 2022, 37(1): 1-13.
[8] 李稚, 李玉朋, 李鸿威, 刘永昌, 王川. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50.
[9] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[10] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[11] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[12] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[13] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[14] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[15] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
阅读次数
全文


摘要